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Abstract—Deep learning has grown tremendously in recent
years, having a substantial impact on practically every discipline.
Transfer learning allows us to transfer the knowledge of a model
that has been formerly trained for a particular task to a new
model that is attempting to solve a related but not identical
problem. Specific layers of a pre-trained model must be retrained
while the others must remain unmodified to adapt it to a new
task effectively. There are typical issues in selecting the layers to
be enabled for training and layers to be frozen, setting hyper-
parameter values, and all these concerns have a substantial effect
on training capabilities as well as classification performance. The
principal aim of this study is to compare the network performance
of the selected pre-trained models based on transfer learning
to help the selection of a suitable model for image classifica-
tion. To accomplish the goal, we examined the performance
of five pre-trained networks, such as SqueezeNet, GoogleNet,
ShuffleNet, Darknet-53, and Inception-V3 with different Epochs,
Learning Rates, and Mini-Batch Sizes to compare and evaluate
the network’s performance using confusion matrix. Based on
the experimental findings, Inception-V3 has achieved the highest
accuracy of 96.98%, as well as other evaluation metrics, including
precision, sensitivity, specificity, and f1-score of 92.63%, 92.46%,
98.12%, and 92.49%, respectively.

Keywords—Transfer learning; deep neural networks; image
classification; Convolutional Neural Network (CNN) models

I. INTRODUCTION

The primary evolution of neural networks was stimulated
by the desire to design a process that could imitate the
human brain. The ability of conventional machine-learning
approaches to explore natural data in its natural form was
limited. Deep learning enables computational models with
several processing layers to learn and represent data at multiple
levels of abstraction, simulating how the brain receives and
analyses multi-modal information, and so implicitly capturing
intricate data structures [1]. A convolutional neural network
(CNN) is one of the most popular deep learning models. It
uses deep convolutional networks and non-linearity to discover
local and spatial features, and patterns directly from raw data.
As a result, a CNN learns features from data automatically,
eliminating the necessity to manually extract them [2]. Im-
age classification is a vital phenomenon in computer vision
and other computer vision approaches, such as localisation,
detection, and segmentation are built on top of it [3]. Deep
neural networks (DNN) have recently been popular in the
deep learning community for solving real-world issues, but
the deep networks may face obstacles and hurdles throughout
the training process, such as exploding/vanishing gradients and
degradation [4]. The deep architecture presents the dedicated

concern of training a CNN from scratch, which needs massive
computational power, a long training time, and a substantial
amount of training data. The specificity of features rises as we
progress from lower-level CNN layers to higher-level layers,
until the last classification layer becomes profoundly task
specific. The image features extracted by the lower-level CNN
layers can be used to retrain the model for a completely
different task, avoiding the need to start over [5]. In this case,
all of the layers of a pre-trained CNN model can be employed
as fixed feature extractors, with the exception of the final
classification layer. Using the knowledge gained from earlier
training, the final layer can be customised and retrained for
a new task. When the depth of a network goes beyond the
limit, it endures the degradation problem, which results in a
decline in accuracy [6]. The internal covariate shift, which is
the variation in the dissemination of the input data to a layer
during training, is another matter of concern.

Transfer learning is a machine learning technique in which
knowledge gained from one type of problem is applied to
another similar task or domain [7]. CNN models are normally
trained either from scratch or by applying transfer learning.
Training from scratch involves a substantial amount of data to
learn millions of parameters. Because a sufficiently labelled
dataset is required for many applications, CNNs rarely train
from scratch. Instead, a large-scale dataset is commonly used
to pre-train a CNN, which is subsequently used as a fixed
feature extractor or as an initialisation for other particular tasks
[2]. The initial few layers of CNN models are trained to recog-
nise task features. In the first layer, pre-trained models learn
simple patterns like shapes and diagonals, then combine these
components in successive layers to learn multipart features [8].
The models create meaningful constructs in the final layer by
exploiting patterns learned from earlier layers. The final few
layers of the trained network can be replaced and retrained
with new layers for the target activity during transfer learning.
Although fine tuned learning experimental studies need some
learning, they are still much quicker than learning from the
scratch [9], [6].

A. Pre-Trained Deep Learning Architectures

The promotion of artificial neural networks (ANNs) is
the deep neural network (DNN), which comprises numerous
hidden layers between the input and output layers. A DNN
is capable of expressing an object well through its deep
architectures and excels at modelling complex nonlinear rela-
tionships [10]. In recent times, CNNs have played a critical
role in image classification and object detection. In 1998
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TABLE I. SUMMARY OF SELECTED PRE-TRAINED CNN MODELS

Pre-Trained
Models Time Depth Layers

Image
Input Size Parameters

SqueezeNet [19] 2016 18 68 227-by-227 1.24 M
GoogleNet [20] 2014 22 144 224-by-224 7.0 M
ShuffleNet [21] 2018 50 173 224-by-224 1.4 M
Darknet-53 [22] 2018 53 184 256-by-256 41.6 M
Inception-V3 [23] 2016 48 315 299-by-299 23.9 M

LeCun et al. [11] proposed the first multilayer CNN, which
is a convolutional network with seven levels that is simple
to use, called LeNet-5. The layers of CNNs have become
significantly deeper as GPU technology continues to advance.
From 1998 to 2018, a number of CNN frameworks were
developed, including LeNet [12], AlexNet [13], VGG 16 and
VGG 19 [14], ResNet’s Inception ResNet [15], ResNeXt,
and other frameworks including PolyNet [16], DenseNet [17].
Transfer learning at a deep level instead of utilising traditional
machine learning approaches that benefit from handcrafted
features, CNN learns the most representative features from
raw data automatically [18]. A variety of CNN architecture
modifications with a rapid growth in the number of layers
have recently been demonstrated. In this study, five pre-trained
models, namely SqueezeNet, GoogleNet, ShuffleNet, Darknet-
53, and Inception-v3 have been selected for the performance
comparison and a brief summary is provided in Table I.

A system designer must incorporate their judgment and
substantial feature engineering to resolve the question of what
needs to be transferred. The challenge on how knowledge
should be conveyed through is model selection and how to
supplement it to enhance prediction performance [11]. When
selecting a network to apply to a problem, different aspects
of pre-trained models are important to consider. Network ac-
curacy, speed, and size are the most important considerations.
Choosing a network is usually a compromise between these
factors. The primary goal of this study is to compare the
network performance of the selected pre-trained models based
on accuracy, speed, and size to help the selection of a suitable
model for image classification.

The rest of the paper is organised as follows. In Section
II, we give a description of the related works. In Section
III, the methodology is described in detail together with the
transfer learning steps used in MATLAB. In Section IV, the
experimental results are shown, followed by the performance
evaluation and performance comparison of the pre-trained
deep neural networks. Finally, in Section V, we provide the
conclusions and future work.

II. RELATED WORK

In several disciplines, traditional machine learning algo-
rithms have been widely accepted. Deep learning as well
as image processing techniques have been used. With the
introduction of transfer learning as a new learning framework
[24], by fine-tuning pre-trained CNN models that have already
been trained on ImageNet, similar results can now be obtained
on deep learning applications. These models require a smaller
number of training examples than developed models, which ne-
cessitate a significant amount of effort to acquire a big number

of training instances [25]. Transfer learning has been used in a
variety of fields, including agriculture, where it has been used
to identify weeds, classify land cover, identify plants, count
fruits, and classify crop types. Transfer learning has become
increasingly important in medical image processing, while pre-
trained deep neural networks have made significant advances
in the medical field, including the use of magnetic reso-
nance imaging (MRI) scans, computerised tomography (CT)
scans, and electrocardiograms (ECs) to detect life-threatening
diseases, such as heart disease, cancer, and brain tumours.
Shakil Ahmed et. al. [8] developed a transfer learning-based
framework, which was tested against two well-known CNN
models, Inception-V3 and VGG-16, using the Kimia Path24
dataset, which was created specifically for the classification
and retrieval of histopathological images. Muhammed Talo
[26] did the same kind of study with the same Kimia Path24
dataset. ResNet-50 and DenseNet-161, however, were used
as well-known pre-trained CNN models. Rishav Singh et. al
[11] presented a framework based on the concept of transfer
learning to address and focus efforts on histopathology and
unbalanced image classification, employing the widely used
VGG-19 as a base model.

Samuel Kumaresan et. al. [18], suggested employing trans-
fer learning to overcome the issue of a small dataset of welding
defect X-ray pictures. They used two large pre-trained con-
volutional neural networks, VGG16 and ResNet50, to extract
features from weld defect radiograph images that can be used
to classify 14 different types of weld defects. The goal for Edna
Chebet Too et. al. [6] was to fine-tune and explore the deep
convolutional neural network for image-based plant disease
classification. The models VGG 16, Inception V4, ResNet
with 50, 101, and 152 layers, and DenseNet with 121 layers
were assessed in an empirical comparison of the deep learning
architectures. Jianping Ju et. al. [27] in an effort to address the
actual demand for jujube fault detection, introduced a jujube
sorting model in small data sets based on convolutional neural
networks and transfer learning using the SE-ResNet50-TL and
SE-ResNet50-CL models. Triplet loss function and Center
loss function were used to replace SoftMax loss function and
embedded SE module for the dry red date defect detection.
Alper et. al. [28] recommended a new CNN architecture for
the hazelnut variety classification and the model was compared
with four pre-trained models: VGG16, VGG19, InceptionV3,
and ResNet50. In recent years, the difficulty of layer selection
when using transfer learning with fine-tuning has received
substantial attention. With the widespread adoption of deep
learning techniques, transfer learning with fine-tuning appeared
to be the ultimate approach for transferring knowledge, allow-
ing scientists and professionals to apply such deep learning
methods more quickly to a variety of domain problems [29].

III. METHODOLOGY

Classification has been an effective mission, and it is
important in the subject of computer vision, which seeks to
classify images into predefined classes automatically. Prior
to the boom of deep learning approaches, a lot of effort
was invested into constructing scale-invariant features, feature
representations, and image classification classifiers [30]. These
well-crafted qualities, on the other hand, work against objects
in natural images with complex scenes, varying colour, texture,
and illumination, as well as constantly changing positions
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and view parameters. Researchers have been working on
sophisticated ways to increase image classification accuracy
for decades. When the large-scale image dataset ImageNet was
formed in 2009, Feifei Li [31] created the great-leap-forward
advancement of image classification. The information about
dataset, learning environment, gradient, learning rate, epoch,
and mini-batch size employed in MATLAB, and the steps of
transfer learning used in this study are explained under the
methodology in the subsequent sections.

A. Dataset

The CIFAR-10 [32] dataset has 32 x 32 colour images that
are divided into ten classes, each with 5,000 training images
and 1,000 test images. Among the ten classes, five classes have
been selected for the experimental process. From the training
dataset, 3,000 training images are selected for each of the five
classes, which includes the list as shown below:

Selected Classes = (‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘horse’);

The most widely used split ratios are 70:30; 80:20; 65:35;
60:40 etc., in which the sample size suits the nature of the
problem and the architecture implemented. There is no fixed
law for dividing training and trial datasets when it comes
to data splitting. Some scholars have traditionally used the
70:30 ratio to differentiate the datasets. As most widely used
in MATLAB, the training set of images is split into training
set and validation set by the 70:30 ratio.

[imdsTrain, imdsValidation] = splitEachLabel(imds, 0.7);

Besides that, image augmentation could be used at random
on the training datasets with distinct values to help expand the
dataset, preventing the network from overfitting and capturing
the exact features of the training images. The following settings
for image augmentation have been chosen, as indicated in most
of the MATLAB examples: horizontal reflection, horizontal
and vertical translation in the range [-30 30] pixels, and
horizontal and vertical scaling in the range [0.9 1.1] with a
random rate.

B. Learning of the Pre-Trained Networks

• Environment – The networks are implemented in
MATLAB R2021a. The size of input images is ad-
justed to match the layers of various models.

• Stochastic Gradient Descent with Momentum
(SGDM) – Gradient descent [10] is a popular neural
network optimisation approach that can tackle a
variety of trivial issues. When the training dataset is
huge, however, the simple gradient descent method
may use a lot of processing resources, making the
convergence process slow. Simultaneously, because
the gradient descent approach considers all of the
training data for each calculation, it may result
in overfitting. To resolve this challenging dispute,
SGDM has been considered in this study. Momentum
[33] is a commonly used acceleration technique in
the gradient descent method whereby the convergence
process can be accelerated.

• Learning Rate (LR) – When it comes to CNN training,
LR is a crucial parameter. The LR is frequently

decreased by a factor of 0.1 or 0.5. In this study, fixed
learning rates of LR-0.001 and LR-0.0001 have been
chosen instead of reducing the LR by each epoch.

• Epoch – The complete pass of the training algorithm
across the entire training set is referred to as an epoch.
In this study, the selected epoch values are 10, 20, 30.

• Mini Batch Size – A mini-batch is a subset of the
training set that is utilised to calculate the loss func-
tion’s gradient and update the weights. Two batch sizes
are selected as part of the experimentation process: 32
and 64.

C. Transfer Learning Flow in MATLAB

CNN’s unique qualities, such as incremental feature extrac-
tion in subsequent layers, make it possible to use parts of a
pre-trained model for a completely new task without retraining
the entire network [34], [35]. The fundamental idea is to use
the initial layers from a pre-trained model and just retrain
the last few layers on new images. Transfer learning can be
implemented by replacing the output layer with a new classifier
and then, selecting one of the two approaches:

• Fixed feature extraction by freezing the initial layers
or other layers of the convolutional base.

• Fine-tuning the weights and other parameters to retrain
one or more convolution layers.

The entire experimentation process of image classification
with the dataset CIFAR-10 has been done with MATLAB.
The CIFAR-10 dataset is downloaded and provided as input
data to the pre-trained model. Prior to loading the data, the
entire dataset is divided into three main datasets comprising the
training, validation, and testing datasets. To get good perfor-
mance, deep neural networks require a vast amount of training
data. Image augmentation, such as reflection, translation, and
scaling, are used to increase the performance of deep networks
in order to develop an effective image classifier with little
training data. The pre-trained network is loaded, and the final
layers are replaced with a new classification layer and a fully
connected or convolutional layer. To fine-tune the model, the
initial layers of each network are frozen and other parameters
like the pool size, stride etc., are updated. The freezing layers
are chosen according to the depth, size, and number of layers
of the pre-trained network. Afterwards, the training process is
initiated, followed by the classification of the validation, and
test images. Finally, the classification accuracy is computed
and performance of the networks are evaluated using confusion
matrix. The transfer learning steps are illustrated in Fig. 1
which is then followed by the detailed steps performed in
MATLAB to implement the entire transfer learning process.

First, training and validation sets are used to perform the
training process to make sure that we have the best possible
training model in the study. By checking the accuracy and loss
of training and validation sets, we will be able to control the
model’s performance during training. Thus, the best possible
model can be obtained by fine-tuning at the end of the training
process. The results are evaluated by using the test set and
these procedures were applied for each of the five models used
in the study. All parameters are used in the same way for each
model and the models used were evaluated using confusion
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Fig. 1. Flow of Transfer Learning Sequence.

Transfer Learning Steps - MATLAB
Prepare Data
1) Downloading the data.
2) https://www.cs.toronto.edu/ kriz/cifar.html.
Load Data
3) Selection of classes from the downloaded data.
4) imds = imageDatastore(fullfile(rootFolder));
Load Pretrained Network
5) net = SqueezeNet | GoogleNet | ShuffleNet | Darknet-53 | Inception-v3;
6) Analyze the network.
Replace Final Layers
7) lgraph = layerGraph(net);
8) lgraph = replaceLayer(lgraph, learnableLayer.Name, newLearnableLayer);
Freeze Initial Layers
9) layers = lgraph.Layers;
10) layers(1:10) = freezeWeights(layers(1:10));
Train Network
11) Training options: [‘MiniBatchSize’, ’MaxEpochs’, ’InitialLearnRate’];
12) net = trainNetwork(augimdsTrain, lgraph, options);
Classify Images
13) Validation, Testing.
Accuracy and Loss Plot
14) Validation.
Confusion Matrix
15) cm = confusionmat(trueLabels, predictedlLabels);
16) cm chart = confusionchart(trueLabels, predictedlLabels);
Reset GPU

matrix to find out the performance of the classifier. The
performance evaluation used in the study and the comparison
on the performance of different models are presented in Table
VIII and Table IX in the following section.

IV. RESULT AND DISCUSSION

The whole experimental process was carried out with a
laptop and the experimental setup including the hardware,
software, and its specifications are mentioned in Table II.

A. Experimental Results

In the training process, each iteration involves a gradient
estimation and a network parameter update. Training can be
tracked in MATLAB to determine how quickly the network’s
accuracy improves, as well as if the network attempts to overfit
the training data. Following the completion of the training, the
results can be inspected to see the finalised validation accuracy
and to discover how the training was proceeded by plotting
the key metrics, which include training accuracy, validation

TABLE II. EXPERIMENTAL SETUP

Hardware/Software Specifications
Microprocessor AMD Ryzen 7 5800H- Radeon Graphics@3.20 GHz
RAM 16.0 GB
GPU NVIDIA GeForce RTX 3060 Laptop GPU
Dedicated Video RAM 6.0 GB
Deep Learning Framework MATLAB R2021a – 64 bit
Programming Language MATLAB
Operating System Windows 10 Home Single Language

Fig. 2. Training Progress Sample – MATLAB.

accuracy, training loss, and validation loss. Fig. 2 depicts
the sample of training progress accomplished with MATLAB,
which primarily highlights the results for validation accuracy,
training time, training cycle with iterations and epoch, valida-
tion, and about the hardware resources. The validation plots are
portrayed in Fig. 3, and they contain the validation accuracy,
which represents the classification accuracy, and the validation
loss, which represents the validation loss across the entire
validation set for the five pre-trained networks.

The experimental results are presented in the tables

TABLE III. SQUEEZENET – FREEZING LAYERS:[1-11]

Hyper
Parameters

Validation Accuracy
(%)

Test Accuracy
(%)

Time
(mins)

LR - 0.001 Epoch - 30
Mini Batch Size- 64 81.87 79.10 21.20
Mini Batch Size- 32 81.40 78.90 20.15

LR - 0.0001 Epoch - 30
Mini Batch Size- 64 72.73 70.78 21.19
Mini Batch Size- 32 78.36 76.28 20.17

TABLE IV. GOOGLENET – FREEZING LAYERS:[1-10]

Hyper
Parameters

Validation Accuracy
(%)

Test Accuracy
(%)

Time
(mins)

LR - 0.001 Epoch - 30
Mini Batch Size- 64 89.29 88.58 57.28
Mini Batch Size- 32 90.16 88.82 53.37

LR - 0.0001 Epoch - 30
Mini Batch Size- 64 83 83.94 58.21
Mini Batch Size- 32 85.98 86.10 53.51
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(a) SqueezeNet (b) SqueezeNet

(c) GoogleNet (d) GoogleNet

(e) ShuffleNet (f) ShuffleNet

(g) Darknet-53 (h) Darknet-53

(i) Inception-V3 (j) Inception-V3

Fig. 3. Validation Plots - Batch-32.

TABLE V. SHUFFLENET – FREEZING LAYERS:[1-15]

Hyper
Parameters

Validation Accuracy
(%)

Test Accuracy
(%)

Time
(mins)

LR - 0.001 Epoch - 30
Mini Batch Size- 64 88.93 87.18 97.21
Mini Batch Size- 32 88.07 85.08 111.29

LR - 0.0001 Epoch - 30
Mini Batch Size- 64 79.33 78.26 98.70
Mini Batch Size- 32 85.02 82.54 113.11

TABLE VI. DARKNET-53 – FREEZING LAYERS:[1-14]

Hyper
Parameters

Validation Accuracy
(%)

Test Accuracy
(%)

Time
(mins)

LR - 0.001 Epoch - 30
Mini Batch Size- 64 Error@19/30 (Out of Memory)
Mini Batch Size- 32 89.89 86.62 207.13

LR - 0.0001 Epoch - 30
Mini Batch Size- 64 Error@19/30 (Out of Memory)
Mini Batch Size- 32 90.58 86.76 203.30

such as Table III-SqueezeNet, Table IV-GoogleNet, Table
V-ShuffleNet, Table VI-Darknet-53 and Table VII-Inception-
V3, including the hyperparameters such as mini-batch size,
learning rate (LR), epoch as well as the validation accuracy
and testing accuracy with the elapsed time to complete the
training progress. The experimental findings made it possible
to emphasise the following outcomes,

• Epoch-30 was chosen for further comparison based on
the experimental findings, and the results were quite
promising.

• When it comes to mini batch sizes, batch 32 has
shown to be more promising than batch 64. Also, with
Darknet-53, batch 64 displayed an error due to a lack
of RAM (out of memory); hence batch 32 was chosen
for further evaluation and comparison.

• With the exception of Darknet-53, LR-0.001 yielded
favourable results when compared to LR-0.0001. For
the subsequent studies, LR-0.001 findings were chosen
for the other four networks, and LR-0.0001 results for
Darknet-53.

• Out of the five pre-trained networks, Inception-V3
produced the best results, with the most layers, while
SqueezeNet produced the unpleasant results, with the

TABLE VII. INCEPTION-V3 – FREEZING LAYERS:[1-41]

Hyper
Parameters

Validation Accuracy
(%)

Test Accuracy
(%)

Time
(mins)

LR - 0.001 Epoch - 30
Mini Batch Size- 64 92.78 91.60 165.16
Mini Batch Size- 32 93.42 92.46 201.10

LR - 0.0001 Epoch - 30
Mini Batch Size- 64 80.29 76.54 165.80
Mini Batch Size- 32 87.53 83.86 206.70
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fewest layers.

B. Performance Evaluation using Confusion Matrix

The ratio between the number of right predictions made
and the total number of predictions produced is known as
classification accuracy [18]. The learning performance of the
pre-trained deep neural networks is assessed using a standard
confusion matrix method. A confusion matrix is a summary of
classification problem prediction outcomes. It provides insight
into correct and incorrect classifications, as well as the types of
errors made, for each specific class. In image classification, the
confusion matrix is primarily used to compare the classification
to the actual measurement value in order to intuitively and
accurately describe the accuracy of model classification [36].
The confusion matrix can be used to directly identify the
performance of deep CNN models, and the evaluation metrics
are listed below:

ACC =
TP + TN

TP + TN + FP + FN
(1)

where ACC stands for accuracy, which is defined as the
percentage of correctly classified samples when a measured
value is compared to a known value.

PREC =
TP

TP + FP
(2)

where PREC is the precision used to determine the model’s
ability to correctly classify positive values.

SENS =
TP

TP + FN
(3)

where SENS is the sensitivity, also known as recall, which
is the frequency with which the model correctly predicts
positive values. It’s used to figure out how well the model
can predict positive values.

SPEC =
TP

TN + FP
(4)

where SPEC denotes the specificity with which the model’s
ability to predict negative values.

F1− Score =
2 ∗ PREC ∗ SENS

PREC + SENS
(5)

whereas the harmonic mean of the precision and sensitivity
is the F1-score, also known as the balanced F-score or F-
measure.

In MATLAB, the predicted class is represented by the
rows, while the true class is represented by the columns.
The diagonal cells relate to accurately classified observations.
The off-diagonal cells correspond to observations that were
inaccurately classified. The number of accurately and inac-
curately classified observations for each predicted class are
displayed as percentages of the total number of observations in
the respective predicted class in a column-normalized column
summary. The number of accurately and inaccurately classified
observations for each true class are displayed as percentages
of the total number of observations for that true class in a
row-normalized row summary.

Fig. 4. Confusion Matrix of Inception-v3 - LR-0.001.

(a) SqueezeNet (b) GoogleNet

(c) ShuffleNet (d) Darknet-53

Fig. 5. Confusion Matrices for LR-0.001|Batch-32.

The Fig. 4 demonstrates the confusion matrix for the pre-
trained network Inception-V3 and the Fig. 5 represents the
confusion matrices for networks such as (a) SqueezeNet, (b)
GoogleNet, (c) ShuffleNet and (d) Darknet-53 for the mini-
batch 32 and LR-0.001. The Fig. 6 describes the confusion
matrix for the pre-trained network Darknet-53 and the Fig.
7 represents the confusion matrices for networks such as (a)
SqueezeNet, (b) GoogleNet, (c) ShuffleNet and (d) Inception-
V3 for the mini-batch 32 and LR-0.0001. When it came to
learning rates, among the selected five pre-trained networks
LR-0.0001 was outperformed by LR-0.001. Under LR-0.001,
almost all of the networks performed well in classifying the
images and prediction, however under LR-0.0001, most of the
networks struggled to predict the positive values. Based on the
confusion matrices, the following inferences were discovered,
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Fig. 6. Confusion Matrix of Darknet-53 - LR-0.0001.

(a) SqueezeNet (b) GoogleNet

(c) ShuffleNet (d) Inception-v3

Fig. 7. Confusion Matrices for LR-0.0001|Batch-32.

• In terms of LR – 0.001, Inception-V3 outperformed
the rest of the pre-trained networks in the model’s abil-
ity to predict positive values followed by GoogleNet
and Darknet-53. With Inception-V3, all five classes
were correctly classified with an overall accuracy
of above 90%. Among the classes deer class made
the highest score whereas 957 out of 1000 images
were classified correctly. When it comes to prediction,
the horse class scored high of correctly predicting
98.9% of the positive values. For all the five classes,
GoogleNet scored 80% or higher, with the horse class
getting the highest prediction score, predicting 97.5%
of positive values. Darknet-53 scored the highest
among the networks a prediction score of 96.2% in
the horse class but got a very least score of only
76.1% in the cat class. ShuffleNet had a mediocre

TABLE VIII. EVALUATION RESULTS OF THE PRE-TRAINED NETWORKS

Pre-Trained
Models

ACC
(%)

PREC
(%)

SENS
(%)

SPEC
(%)

F1-Score
(%)

LR - 0.001 Epoch - 30
SqueezeNet 91.56 80.53 78.90 94.73 79.16
GoogleNet 95.53 89.16 88.82 97.21 88.85
ShuffleNet 94.03 86.15 85.08 96.27 85.13
Darknet-53 94.65 87.15 86.62 96.65 86.68
Inception-V3 96.98 92.63 92.46 98.12 92.49
LR - 0.0001 Epoch - 30
SqueezeNet 90.51 77.89 76.28 94.07 76.14
GoogleNet 94.44 86.14 86.10 96.53 86.06
ShuffleNet 93.02 82.76 82.54 95.63 82.57
Darknet-53 94.70 88.29 86.76 96.69 86.70
Inception-V3 93.54 84.55 83.86 95.96 83.91

performance, scoring 94.7% in the horse class and a
very low prediction score of 73.1% in the bird class.
SqueezeNet had the lowest classification performance
of all the networks, with a prediction score of 95.3%
in the horse category and 64.5% in the cat category.

• In terms of LR – 0.0001, Darknet-53 outperformed the
rest of the pre-trained networks in the model’s ability
to predict positive values followed by Inception-V3
and GoogleNet. If compared with LR 0.001, Darknet-
53 scored the maximum classification accuracy under
LR 0.0001 with the highest score of 97% among all
the networks. With prediction, scored the highest of
98.9% in horse class and 75.9% in cat class. The
bird class received the highest classification score of
93% in Inception-V3, with 930 out of 1000 images
correctly classified, whereas the model struggled to
predict the positive values of the bird class, accounting
for 77.1%. In GoogleNet among the five classes, horse
class got the highest prediction score of 91.1% and cat
class got the lowest score of 81.7%. ShuffleNet had
an average classification compared to other networks
whereas horse class got the highest prediction score
of 91.5% and cat class got the lowest score of 76.1%.
SqueezeNet had the lowest performance among all
other networks with the lowest prediction score of
66.0% for the bird class whereas got the highest score
of 90.7% for the horse class.

The results of the classification metrics evaluation of the
five pre-trained networks for both the Learning Rates of 0.001
and 0.0001 are summarized in Table VIII. According to the
evaluation results it is evident that the networks performed
well on the LR-0.001 in compared to LR-0.0001 except
for Darknet-53. Darknet-53, in compared to the other four
networks, showed promising results with a LR-0.0001, whilst
the other networks’ performances were on the decline.

C. Pre-Trained Networks Performance Comparison

The performance comparison of the five pre-trained net-
works, encompassing both LRs, is shown in Table IX. Based
on the performance comparison of the pre-trained networks,
Inception-V3 has achieved the highest accuracy of 96.98%, as
well as other metrics such as precision, sensitivity, specificity,
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TABLE IX. PERFORMANCE COMPARISON OF THE PRE-TRAINED
NETWORKS

Pre-Trained
Models

ACC
(%)

PREC
(%)

SENS
(%)

SPEC
(%)

F1-Score
(%)

SqueezeNet 91.56 80.53 78.90 94.73 79.16
GoogleNet 95.53 89.16 88.82 97.21 88.85
ShuffleNet 94.03 86.15 85.08 96.27 85.13
Darknet-53 94.70 88.29 86.76 96.69 86.70
Inception-V3 96.98 92.63 92.46 98.12 92.49

and f1-score. The other networks produced somewhat lower
results than Inception-V3, but altogether, all five pre-trained
networks attained an accuracy of 90% or higher.

Transfer learning using a pre-trained CNN model is a better
option for classification with the availability of only small
datasets. In many of the previous studies, different pre-trained
CNN models were compared using medical images and other
relevant datasets. The results showed that the performance
of the pre-trained models were mainly based on the dataset.
With the limited computing resources, only five classes of the
benchmark CIFAR-10 dataset are selected, but still managed to
accomplish the aim of this study in the selection of a suitable
model for image classification, Inception-V3. Even though
one of the CNN model darknet-53 produced an error (out
of memory) over batch-64, the current study shows that pre-
trained networks with the highest number of layers (Darknet-
53 and Inception-V3) provided the maximum scores in the
prediction of classes with best accuracy. The current study
proves that transfer learning can be useful for various computer
vision problems, especially for the ones with small datasets.
With the availability of proper datasets, deep CNN models
have the capabilities to take medical imaging technology
further, providing a higher level of automation in medical
imaging, including image processing and analysis.

V. CONCLUSIONS

In this study, we experimented with the performance of five
pre-trained networks, such as SqueezeNet, GoogleNet, Shuf-
fleNet, Darknet-53, and Inception-V3 with different epochs,
learning rates, and mini-batch sizes. We performed the entire
training process in MATLAB R2021a where we can view
the complete network architecture of the CNN models, which
helped us in the selection of freezing the initial layers. The
final layers of the pre-trained CNN models are replaced either
with a fully connected layer or convolutional layer and a new
classifier replacing the classification layer. The initial layers
are frozen to keep the weights intact and after the training,
each model was evaluated using a confusion matrix. The
experimental findings show that each pre-trained network pro-
duced different results with different hyper-parameters in the
prediction of positive values. The results demonstrate that all
the five pre-trained networks yielded promising results over the
mini batch size-32, and epoch-30. In terms of LR, Darknet-53
delivered impressive results with LR-0.0001, achieving a max-
imum accuracy of 94.70%. Overall, the Inception-V3 model
with LR-0.001 achieved the highest accuracy of 96.98%, as
well as other evaluation metrics including precision, sensitivity,
specificity, and f1-score of 92.63%, 92.46%, 98.12%, and
92.49%, respectively.

VI. FUTURE WORK

We presented a transfer learning-based performance com-
parison between the selected five pre-trained networks in this
study. The freezing of network layers was selected based
on the network depth, size, and number of layers. Only the
initial layers were frozen; however, different sets of layers
can be frozen. In the future, focus will be given to freeze
multiple set of layers and to compare the results of frozen
and non-frozen layers of the pre-trained networks. For further
evaluation and comparison, different datasets and other pre-
trained deep neural networks can also be explored.
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