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Abstract—Establishing patient-specific finite element analysis
(FEA) models for computational fluid dynamics (CFD) of double
stenosed artery models involves time and effort, restricting
physicians’ ability to respond quickly in time-critical medical
applications. Such issues might be addressed by training deep
learning (DL) models to learn and predict blood flow character-
istics using a dataset generated by CFD simulations of simplified
double stenosed artery models with different configurations.
When blood flow patterns are compared through an actual double
stenosed artery model, derived from IVUS imaging, it is revealed
that the sinusoidal approximation of stenosed neck geometry,
which has been widely used in previous research works, fails
to effectively represent the effects of a real constriction. As a
result, a novel geometric representation of the constricted neck
is proposed which, in terms of a generalized simplified model,
outperforms the former assumption. The sequential change in
artery lumen diameter and flow parameters along the length of
the vessel presented opportunities for the use of LSTM and GRU
DL models. However, with the small dataset of short lengths
of doubly constricted blood arteries, the basic neural network
model outperforms the specialized RNNs for most flow properties.
LSTM, on the other hand, performs better for predicting flow
properties with large fluctuations, such as varying blood pressure
over the length of the vessels. Despite having good overall
accuracies in training and testing across all the properties for
the vessels in the dataset, the GRU model underperforms for
an individual vessel flow prediction in all cases. The results
also point to the need of individually optimized hyperparameters
for each property in any model rather than aiming to achieve
overall good performance across all outputs with a single set of
hyperparameters.
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I. INTRODUCTION

Cardiovascular diseases (CVDs) are the most common
causes of death around the world. Heart attacks are typically
sudden occurrences caused by the narrowing and blockage of
blood vessels1. A stenosed artery refers to the narrowing of a
blood vessel caused by the deposition of atherosclerotic plaque
on the inner walls of the arterial lumen [2, 3]. These cholesterol

1https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-
(cvds)

and fatty deposits lead to a swollen and inflamed inner arterial
wall which restricts the flow of oxygenated blood cells, nutri-
ents, and other essential substances from reaching the heart
muscles [4, 5]. Cholesterol have been shown to accelerate
the formation of plaque in arteries, eventually obstructing the
bloodstream and altering hemodynamics [6]. When the plaque
ruptures, the accumulated fatty acids, platelets, and dead cells
may coagulate, resulting in thrombosis formation [7]. In the
case of a coronary or cerebral artery, the blood clot may have
fatal consequences since it will also cut off the blood flow to
the cerebral region of the brain or the myocardial heart wall [8].
The likelihood of developing thrombosis is highly dependent
on the thickness of the plaque, the characteristics of infected
blood, and blood pressure [9].

Numerous studies observed pulsing flow behavior and
constant dampening of its oscillations, which they attributed to
the flexibility of blood vessels [10]. Coronary artery disorder
is critical in hemodynamics because it alters the flow pattern,
resulting in variations in the wall pressure and shear stress
of the arteries. As a result, health researchers must determine
the flow velocity and amount of shear stress in arteries. A
substantial part of the published research [11] focused on the
physiological origins of the disease as they relate to blood
vessels. However, few have made strides in understanding the
underlying physics of the illness in order to better understand
the cause and, as a result, paving the way to less invasive and
more long-term treatments. Medical imaging can be utilized to
visualize the areas of fatty deposits inside artery walls, but it is
not capable of providing numerical data in the same way that
computational fluid dynamics (CFD) simulations are capable
of providing. According to Kompatsiaris et al. [12] and Liu
et al. [13], computational simulations can offer an in-depth
evaluation of flow resistance owing to wall shear stress (WSS)
on blood vessel walls, blood flow rates, and pressure changes.
CFD results generated by modeling vessels in the relevant re-
gions may be compared to the reliability of mathematical data.
It is possible to develop a less invasive dependable method for
medical diagnosis by integrating physician expertise with data
derived from realistic computational fluid dynamics models.
Owing to the vessel’s small dimensions, in vitro, and in vivo
flow field experiments are not representative and accurate.
Thus, with improved software development and computer
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efficiency, CFD may replace such experimental approaches.
CFD has been already used in several studies involving blood
flow through vessels. Fazlay et al. [14] used CFD to show that
following a double stenosed region in an artery, blood flow
is hampered significantly at maximum systolic velocity and
acceleration. Jianhuang et al. [15] coupled transient blood flow
with elastic artery to evaluate unsteady flow characteristics
along its length using computational fluid dynamics. Mukesh
et al. [1] used an in-house CFD solver to verify and simulate
blood flow via a stenosed artery. Mehdi et al. [17] compared
several turbulent models from blood flow through vessels and
concluded that inaccuracies are introduced by assuming the
flow to be laminar.

Setting up patient-specific finite element analysis (FEA)
models for CFD takes time and effort, limiting quick response
to physicians in time-sensitive medical applications. As such,
Liang et al. [18] created deep learning (DL) algorithm to pre-
dict aortic stress distributions. The DL model was developed to
use FEA data and directly produce aortic wall stress distribu-
tions, skipping the FEA calculation step entirely. Arzani et al.
[19] proposed a Physics-informed neural networks framework
for predicting near-wall blood flow and wall shear stress from
sparse velocity data concentrated in an interest region. Gao
et al. [20] proposed a deep neural network approach that
allows machines to recognize fractional flow reserve values
directly from static coronary CT angiography images. Such
progressions in computer science open up new horizons for
further development. For instance, if the diameters of the
stenosed aortic vessel are considered at regular intervals, a
special kind of artificial neural network called recurrent neural
network (RNN) can be implemented. RNN’s internal memory
allows them to comprehend sequential data. Their ability to
retain crucial details about the preceding step, such as aortic
diameter, could enable them to predict occurrences in the next
step such as WSS, blood pressure or flow velocity more accu-
rately. Previously RNN has been successfully implemented for
malware classification [21], 3D shape generation [22], traffic
forecasting [23], and speech enhancement [24]. While former
research works explored various aspects of blood flow through
arteries and investigated the predictive capabilities of several
DL models, they overlooked such sequential trends in the
variation of aortic diameter that occurs within the vessels.
As such, it is unclear what effects these specialized RNNs
might have on the fast prediction of blood flow characteristics
through the arteries. A double stenosed artery is of particular
interest in this study since it not only provides wide variations
in aortic diameters within a short length but also poses serious
health hazards within the human body, so much so that stenting
might be required. Thus predicting the flow within them
quickly might aid medical researchers with stent improvements
and deployment. However, there are several hurdles that must
be addressed before such analysis can be performed. As a
result, the paper is divided into the following sections in order
to discuss them further:

• Section II explains the computational fluid dynamics
simulations.

• Section III describes the deep learning models utilized
in this study.

• Section IV demonstrates the data source and the
organization of the dataset.

• Section V presents the hyperparameters that were fine-
tuned in this study.

• Section VI discusses the results obtained.

• Section VII presents the conclusion that can be drawn
from the findings.

II. COMPUTATIONAL FLUID DYNAMICS SIMULATIONS

Several data are necessary to construct a dataset in order
to implement artificial intelligence (Ai). The lack of sufficient
medical data on blood flow patterns in doubly stenosed arteries
necessitates the use of computational approaches to generate
the data. This allows for the exploration and visualization of
the variations in blood flow behavior induced by several com-
binations of stenosis at varying distances apart. This section
describes the processes used to set up CFD simulations and
compares a couple of simplified models to identify which one
best depicts the real flow characteristics, using an actual double
stenosed artery model as a reference.

A. Governing Equations

If the Navier–Stokes equation is interpreted as the sum of
an average and an oscillating component for each variable, then
the continuity and Reynolds averaged Navier–Stokes equations
(RANS) are as follows:

∂ūi

∂xi
= 0 (1)
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where µ represents the summation of laminar µ0 and turbulent
µT viscosities:

µ = µ0 + µT (3)

For K-ε standard turbulence model, µT is computed as:

µT = ρcρ
K2

ε
(4)

where K represents the turbulence kinetic energy and ε denotes
the rate of turbulence dissipation.

A straight double stenosed artery can be simply modeled
as a tube with a diameter D with stenosed necks S1 and S2

separated by a distance of L. The degree of obstruction of the
stenosed regions can be expressed as follows:

%S =
D − d

D
× 100% (5)

where d is the lumen diameters at neck S. The fraction of
lumen opening at the neck then can be addressed as:

Fraction of lumen opening = 1−%S/100 (6)
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B. Simulation Setup

Solidworks is used to model the arteries for this study.
The blood vessels are assumed to be rigid with the no-slip
condition at the arterial wall. Ansys Fluent software is used to
set up the simulation and solve the RANS equations utilizing
the finite volume method (FVM). The second-order upwind
scheme was employed to spatially discretize the governing
equations and the SIMPLE method was used to manage the
pressure-velocity decoupling [16]. Blood is considered to be
an incompressible fluid with a density of 1050 kg/m3 and a
viscosity of 0.0033 Pa.s [17]. The inlet flow velocities are
obtained from the velocity profile presented by Fazlay et al.
[14]. The authors pointed out five particular velocities from
the waveform: 0.21 m/s, 0.33 m/s, 0.28 m/s, 0.14 m/s,
and 0.09 m/s at maximum systolic acceleration, systolic ve-
locity, systolic deceleration, diastolic velocity, and at minimum
systolic velocity respectively. Due to the presence of plasma,
platelets, and suspended cells, blood has the characteristics of
non-Newtonian fluid [16]. However, numerous previous CFD
research treated blood as a Newtonian fluid [14, 17, 25]. In
fact, Ku et al. [26] observed that for Reynolds numbers (Re)
ranging from 110 to 850 in big arteries, the non-Newtonian
impact of blood is insignificant. As such, blood is deemed
Newtonian in this analysis since Re stays within this range.
The simulations are carried out with a time step of 0.0001 s
and a mesh element size of 0.112 mm.

Fig. 1 shows the velocity profile for the sinusoidal stenosed
artery model presented by Fazlay et al. [14] at a distance equal
to the vessel’s diameter D away from the stenosed neck using
the aforementioned blood flow characteristics and the K-ε
standard turbulence model. The velocity curve closely matches
the velocity profile of the model suggested by Mehdi et al.
[17] and has a good agreement with the experimental results
of Ahmed and Giddens [27]. As a result, further simulations
are performed using this particular turbulence model.

Fig. 1. Validation Test Comparing Velocity Profile of Present Simulation
with Simulation Result of Mehdi et al. and Experimental Results of Ahmed
and Giddens at a Distance Equal to the Vessel’s Diameter D Away from the

Stenosed Neck.

C. Modeling Double Stenosed Artery

Fig. 2 illustrates the modeling of a straight section of
an actual doubled stenosed artery obtained via intravascular
ultrasound (IVUS) imaging using a 3 fr catheter and a 1 mm
guidewire, with a pullback rate of 1 mm/s. It has an average
non-stenosed hydraulic diameter of approximately 4 mm, with
40.25% and 32% stenosis situated 10 mm apart. Fig. 3 shows
two simplified representations of the actual artery with similar
stenoses. Unlike the sinusoidal equation-generated model [14]
for a similar configuration, the actual model exhibits a gradual
decrease in lumen diameter, as visible from Fig. 4, while
Fig. 4 illustrates the variation in blood flow patterns through
them. This simplification has a significant effect on the flow
characteristics of blood. As demonstrated by Fig. 4, the steep
sinusoidal stenosed edges exhibit a wide variation in average
velocity (Vavg), wall shear stress (WSS), and pressure from
those obtained from the actual model simulation for input
velocity of 0.3 m/s. As such, a more representative model
is required. Fig. 3 presents another model denoted as the
splined model. This model features a 25% stenosis region
5 mm upstream and 5 mm downstream of the main stenosed
neck. When such circular cross-sections are joined with spline
guidelines, the simplified model captures the actual model’s
naturally formed gradual stenosis characteristics. This results
in a WSS curve that is more similar to that of the actual artery
model as can be seen in Fig. 4. The Vavg curve also shows
a similar trend but is visibly higher due to the absence of
surface irregularities to retard the flow as in the actual model.
On the other hand, both simplified models fail to represent the
actual model’s pressure fluctuations effectively, especially at
the diverging sections following the stenosed necks.

Fig. 2. Modeling of an Actual Double Stenosed Artery from IVUS Images.
For Clarity, Only a Few IVUS Images are Shown.

Fig. 5 illustrates the aforementioned flow characteristics vi-
sually. The graphic clearly illustrates the influence of naturally
produced uneven surfaces on the actual model. Initially, the
blood pressure is rather high in all three models. As the blood
reaches the first stenosed neck, the pressure gradually drops to
or below zero. According to Bernoulli’s principle, the decrease
in pressure induces an increase in flow velocity in the stenosed
region, as also visible from the figure. This results in a sig-
nificant rise in WSS at the constriction site. According to the
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Fig. 3. Comparison Between the Sinusoidal and Splined Representation of
Stenosed Neck Geometry in a Simplified Model of the Actual Double

Stenosed Artery.

continuity equation, when blood travels further into the first di-
verging section, the increase in the cross-sectional area results
in a reduction in flow velocity. As a consequence, pressure rises
and WSS falls. As the blood approaches the next stenosed
neck, the velocity increases again but to a lower magnitude
due to less constriction there. The pressure decreases once
again, along with a slight rise in WSS. Further downstream,
the velocity attains equilibrium, and both pressure and WSS
approach near-zero values. Although not perfect, Fig. 4 and
Fig. 5 indicate that the splined model would be a better match
than the sinusoidal model for the artificial intelligence (Ai)
implementation in the next section. Such is the cost of creating
a generalized simplified model without being patient-specific.
From these discussions, it is also apparent that the progressive
change in the cross-sectional diameter of the stenosed aortic
vessel gradually affects blood flow characteristics. This enables
the generation of a sequential dataset by taking into account
the diameters and flow properties at regular intervals along
the length of the blood vessel. The mesh independence test,
as illustrated in Fig. 6, demonstrates that changing the mesh
element size has a minor influence on the flow characteristics
of blood through the splined double stenosed artery model.
Between 0.099 mm and 0.112 mm, the variation in simulation
results is significantly less. As such, it is more reasonable to
adopt a mesh element size of roughly 0.112 mm throughout
this study to achieve high CFD simulation accuracy without
being too computationally expensive.

III. DEEP LEARNING MODELS

A recurrent neural network (RNN) is a special kind of Ai
network with internal memory that enables it to comprehend
sequential data. However, the basic RNN is afflicted by a
phenomenon known as vanishing gradient [28]. Long short-
term memory (LSTM) and gated recurrent units (GRU) are
special kinds of RNN networks developed to mitigate the
problem. Their capacity to retain crucial details from the
preceding step, such as aortic diameter, would allow them to
effectively forecast occurrences in the following step, such as
wall shear stress (WSS), average velocity (Vavg) of blood,
and pressure. Three techniques are employed in this study to

Fig. 4. Comparison of Flow Characteristics Through the Actual and
Simplified Double Stenosed Artery Models.

predict these flow properties: Gated Recurrent Unit (GRU),
Long short-term memory (LSTM), and Neural Network (NN)
models. All three models used inlet velocity and percentage
lumen openings at eleven locations along the 50 mm long
blood artery at regular 5 mm intervals to predict the blood
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Fig. 5. Visualization of Flow Properties Through the Actual and Simplified Double Stenosed Artery Models.

Fig. 6. Mesh Independence Test with Various Sizes of Mesh Elements.

flow characteristics at those positions. This section highlights
each of the three deep learning models.

A. Gated Recurrent Unit Model

Gated Recurrent Unit (GRU) [29] is a special kind of
recurrent neural network that consists of an update gate and a
reset gate. GRU’s update gate determines how much data from
previous units must be passed on. The update gate computes
zt for time step t using the formula:

zt = σ(Wz.[ht−1, xt]) (7)

where zt is update gate output at the current timestamp,
Wz is weight matrix at update gate, ht−1 information from
previous units, and xt is input at the current unit.

The model used the reset gate to determine how much
information from previous units should be erased. This is

calculated using the following formula:

rt = σ(Wr.[ht−1, xt]) (8)

where rt is reset gate output at current timestamp, Wr is
weight matrix at reset gate, ht−1 information from previous
units, and xt is input at the current unit. The relevant data
from earlier units were stored in the current memory content
using this formula:

h̃t = tanh(W.[rt ∗ ht−1, xt]) (9)

where ht is current memory content, W is weight at current
unit, rt is reset gate output at current timestamp, ht−1 is
information from previous units, and xt is input at the current
unit.

Final memory at the current unit was a vector that stored
and conveyed the current unit’s final information to the next
layer. This was computed using the following formula:

ht = (1− zt) ∗ ht−1 + zth̃t (10)

where ht is final memory at the current unit, zt is update
gate output at current timestamp, ht−1 is information from
previous units, and ht is current memory content.

B. Long Short-term Memory Model

Another sort of RNN is the Long short-term memory
(LSTM) [30]. In contrast to the GRU, the LSTM contains
three gates: the forget gate, the update gate, and the output
gate. The LSTM gates’ formulae are as follows:

it = σ(Wi[ht−1, xt] + bi) (11)

ft = σ(Wf [ht−1, xt] + bf ) (12)

ot = σ(Wo[ht−1, xt] + bo) (13)
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where it represents input gate, ft represents forget gate, ot
represents output gate, σ represents sigmoid function, Wx

represents weight of the respective gate(x) neurons, ht−1

represents output of previous LSTM block at timestamp t−1,
xt represents input at current timestamp and bx represents
biases for the respective gates(x).

Both GRU and LSTM models utilized the many-to-many
combination, with an 11 node dense layer as the output,
to predict the Vavg , WSS, or blood pressure at the eleven
positions, taking the aforementioned inputs. These models are
depicted in Fig. 7. The hyperparameters of these models were
varied in order to maximize the prediction accuracies across
all three flow properties.

Fig. 7. Illustration of LSTM / GRU Ai Models in Many-to-Many
Configuration.

C. Neural Network Model

The other aspect of the present study is the neural net-
work (NN) as shown in Fig. 8. It is defined as a collection
of algorithms that are capable of correctly recognizing the
underlying connections between a set of data via a method
that replicates the way the human brain works. They are
not limited to sequential data and are composed of nodes
with assigned weights. Through the forward and backward
propagation processes using labeled data, the network is able
to fine-tune the weights to make accurate predictions. It also,
applied the same inputs as the previous two models to predict
the same flow features. The hyperparameters were also varied
for this model to improve its accuracy.

IV. DATASET

Since the present study involves a newly proposed doubled
stenosed artery model, a dataset of CFD simulation results
relating to it is unavailable. As such, a custom dataset con-
taining 180 data points was constructed. To create the dataset,
several configurations of fractions of lumen opening at each
stenosed neck, gaps between them, and inlet velocities, as
previously mentioned in the simulation setup section, were
used. In particular, stenosis severity levels of 25%, 50%, and
75% were applied at individual necks, with 10 mm, 15 mm,
20 mm, and 25 mm spacing between them. 90% of the total
data were utilized for training, while the remaining 10% was

Fig. 8. Illustration of Neural Network (NN) Ai Model.

used for validation. A different test set containing 18 datapoints
was also constructed using configurations that were absent in
the main dataset, such as different inlet velocities and stenosis
severity levels of 70%, 60%, 40%, 30%, etc. Due to the
lack of additional IVUS images with similar double stenosis
conditions, the blood vessel employed is a generalized form
of a patient-specific actual model. Overcoming such hurdles,
as well as including CFD simulations of curved vessels in the
future could make the dataset even more beneficial.

V. HYPERPARAMETERS

In order to improve the accuracy of these three models,
several hyperparameters were tuned. Table I summarizes the
ranges of the parameters varied. Firstly, different units for the
LSTM / GRU models and different numbers of hidden layers
(HL), containing 12 nodes in each, for the NN model were
tested to determine the conditions that performed well for
predicting all three flow properties. Subsequently, the number
of epochs and the learning rates were optimized to maximize
the accuracies of the deep learning models. Other parameters
such as the loss function, activation functions, and optimizer
were kept uniform in all models to provide a fair comparison.
Initially, min-max normalization was used to ensure that all of
the data in the dataset was within the range of 0 to 1.

To compute the loss, each model utilized the Mean squared
error (MSE) function which is represented by the formula:

L(y, ŷ) =
1

N

N∑
i=0

(y − ŷi)
2 (14)

where ŷ is the predicted value, N is the number of data
points, and y is the observed value. MSE in particular can
penalize large errors more than smaller ones, making it a good
choice for achieving multiple accurate predictions. Each dense
layer utilized the sigmoid activation function, which produces
a probabilistic output that exists exclusively between 0 and 1,
following the equation:

ϕ(z) =
1

1 + e−z
(15)
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For its capability of achieving excellent results quickly and
effectively, the Adam [31] optimizer was implemented in all
of the models.

TABLE I. HYPERPARAMETERS ADAPTED IN DIFFERENT MODELS

GRU LSTM Neural Network

units: 12 units: 12 HL: 1

Units / Hidden Layer(HL) units: 48 units: 48 HL: 2

units: 84 units: 84 HL: 3

units: 120 units: 120 HL: 4

50000 50000 50000

Epochs 100000 100000 100000

150000 150000 150000

200000 200000 200000

0.01 0.01 0.01

Learning Rate 0.001 0.001 0.001

0.0001 0.0001 0.0001

0.00001 0.00001 0.00001

VI. RESULT AND DISCUSSION

Training and testing accuracies were used to assess the
three suggested Deep Learning approaches. These accuracies
indicated the degree to which each model could correctly pre-
dict Vavg , WSS, or blood pressure during testing or training.
The variance in the accuracies for varying the number of units
in the GRU and LSTM models, as well as for different the
number of hidden layers in the NN model is represented in
Table II. In these cases, the number of epochs and learning rate
were kept constant at 100000 and 0.0001 respectively. Owing
to a small dataset, the LSTM model with 84 units overall
performed well across all flow properties for both training and
test sets, as visible in the table. In contrast, the GRU model
did well throughout both sets with only 48 units. Extending the
units beyond these ideal values seems to degrade the efficacy
of both models. On the other hand, the NN model shows an
overall decreased effectiveness in predicting the flow properties
for both sets as compared to the other two models with
the same number of epochs and learning rate. Nonetheless,
testing with different numbers of hidden layers reveals that
the smaller number of data prefers a shallower architecture
with 2 intermediate layers only, having good accuracies on
most occasions. Pressure values in the dataset were either very
large or very small at certain points along the length of the
vessel, as also visible from Fig. 4. As a consequence, when
these numbers were normalized, tiny values were transformed
to near-zero values, while bigger values were changed to near-
one values. As such, each model only needed to learn either
of these two extreme quantities at certain locations, leading to
much higher accuracies for both training and test sets.

To further tune the hyperparameters and improve the accu-
racies of the models, the number of epochs was varied from

50000 to 200000 while keeping the learning rate constant at
0.0001. Based on the previous evaluations, the number of units
for LSTM, GRU, and the number of hidden layers for the NN
model is set to 84, 48, and 2 respectively. The results of these
evaluations are reported in Table III. It can be seen that for
the LSTM model, the highest accuracy for Vavg is obtained
at 200000 epochs, whereas pressure achieves the greatest
accuracy at 150000 epochs. The predicting effectiveness for
WSS remains unchanged from 100000 to 200000 epochs.
However, the average testing accuracies across three properties
are much lower above and below 100000 epochs, indicating
the model cannot generalize well in those rangers. The GRU
on average also performs very well at 100000 epochs using
both sets of data. The training dataset for the NN model clearly
prefers the higher epochs but the peak average test set accuracy
at 150000 epochs indicates non generalizing effect beyond this
value.

Finally, the learning rates of each model are tuned, setting
the other hyperparameters to their predetermined optimum
values. The results of these investigations are shown in Table
IV. The table suggests that LSTM performs very well in
predicting the flow properties for learning rate in between 0.01
to 0.0001, whereas GRU is most accurate for a rate of 0.001.
NN model on the other hand prefers a learning rate between
0.001 and 0.0001. In certain cases the larger learning rate
overshoots, destabilizes the training process, and fails to reach
optimum accuracy, for example, NN for predicting pressure of
the flow. It also tends to overfit the data from both LSTM and
NN models. Too small learning rate isn’t beneficial either since
it also lowers the overall accuracies of all the models across
the three flow properties. Although not the most accurate in
every instance, a learning rate of 0.001 that can generalize well
is preferred by all three models to reasonably predict each of
the flow properties from both datasets.

Fig. 9 compares the predicted flow characteristics obtained
with the optimized hyperparameters to the CFD simulation
results obtained with the real and splined models for the
identical configuration with 40.25% and 32% stenosis located
10 mm apart. In the case of average velocity, the LSTM
model overestimates, while the GRU model underestimates,
and therefore fails to effectively estimate the flow pattern.
On the other hand, the NN model is far more accurate at
forecasting flow velocity patterns and is comparable to the
simulation results achieved with the splined model. Again, for
WSS, the NN models perform well and closely track the sim-
ulation outcomes. Interestingly, the prediction imperfections
put the LSTM model’s WSS pattern prediction closer to the
actual model’s simulation outcomes without even training on
that model. Nevertheless, both LSTM and GRU models fail
to predict the WSS pattern entirely. Then again, the LSTM
model performs much better at predicting pressure fluctuations,
while the GRU model’s simplicity prevents it from learning the
pressure changes effectively from the small dataset. Unlike the
other two properties, the NN model seems to be less capable
of comprehending flow pressure variation. Thus, Fig. 9 further
demonstrates that tuning the hyperparameters to generalize
the models for predicting all flow properties leads to their
overall diminished performance. As such, although more effort
is necessary, optimizing the models based on each of the
flow characteristics individually would be more beneficial.
Additionally, the graphic illustrates the NN model’s supremacy
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TABLE II. ACCURACIES ACHIEVED BY DIFFERENT MODELS BY VARYING THE NUMBER OF UNITS FOR THE GRU AND LSTM MODEL AND CHANGING
THE NUMBER OF HIDDEN LAYERS FOR THE NEURAL NETWORK MODEL

Model Units/HL Epoch Learning Training Testing
Rate Vavg WSS Pressure Vavg WSS Pressure

12 0.8500 0.8778 0.8278 0.7778 0.7222 0.8889
LSTM 48 0.8611 0.9833 0.9722 0.8333 0.7778 0.7778

84 0.8778 0.9778 0.9889 0.8889 0.8889 0.8889
120 0.9111 0.9722 0.9444 0.9444 0.7222 0.8333
12 0.7944 0.7667 0.9500 0.8333 0.7222 0.9444

GRU 48 0.9000 0.9722 0.9722 0.9444 0.7778 0.9444
84 100000 0.0001 0.8833 0.9556 0.9556 0.7778 0.8333 0.9444

120 0.8389 0.9667 0.9611 0.9444 0.8889 0.9999
1 0.8444 0.9500 0.7167 0.8333 0.8333 0.7222

NN 2 0.8222 0.9722 0.9389 0.8333 0.7778 0.9999
3 0.8222 0.9667 0.8778 0.7778 0.7222 0.9999
4 0.8167 0.8278 0.9333 0.8889 0.5556 0.9999

TABLE III. ACCURACIES ACHIEVED BY DIFFERENT MODELS BY VARYING THE NUMBER OF EPOCHS

Model Units/HL Epoch Learning Training Testing
Rate Vavg WSS Pressure Vavg WSS Pressure

50000 0.8667 0.9389 0.7000 0.7778 0.7222 0.5000
LSTM 84 100000 0.8778 0.9778 0.9889 0.8889 0.8889 0.8889

150000 0.8944 0.9778 0.9944 0.7778 0.7222 0.9999
200000 0.9222 0.9778 0.9722 0.7778 0.7778 0.7222
50000 0.8389 0.9389 0.8222 0.8333 0.9444 0.7778

GRU 48 100000 0.9000 0.9722 0.9722 0.9444 0.7778 0.9444
150000 0.0001 0.8667 0.9556 0.9667 0.8889 0.7778 0.9999
200000 0.8944 0.9667 0.9778 0.8889 0.8889 0.9999
50000 0.8500 0.9333 0.6444 0.8333 0.8333 0.6667

NN 2 100000 0.8222 0.9722 0.9389 0.8333 0.7778 0.9999
150000 0.8222 0.9389 0.9778 0.8333 0.9444 0.9999
200000 0.8556 0.9778 0.9999 0.7778 0.8333 0.9999

TABLE IV. ACCURACIES ACHIEVED BY DIFFERENT MODELS BY VARYING THE LEARNING RATE

Model Units/HL Epoch Learning Training Testing
Rate Vavg WSS Pressure Vavg WSS Pressure

0.01 0.8611 0.9944 0.9944 0.9444 0.7778 0.8889
LSTM 84 100000 0.001 0.9500 0.9778 0.9778 0.7778 0.8889 0.9999

0.0001 0.8778 0.9778 0.9889 0.8889 0.8889 0.8889
0.00001 0.8833 0.9500 0.500 0.8333 0.7222 0.6111

0.01 0.8389 0.9722 0.9778 0.8333 0.5556 0.9999
GRU 48 100000 0.001 0.9333 0.9833 0.9833 0.9444 0.8333 0.9444

0.0001 0.9000 0.9722 0.9722 0.9444 0.7778 0.9444
0.00001 0.8611 0.9111 0.7778 0.8889 0.6667 0.8333

0.01 0.8944 0.9833 0.3611 0.7778 0.6111 0.2778
NN 2 150000 0.001 0.8111 0.9944 0.9999 0.8889 0.8333 0.9999

0.0001 0.8222 0.9389 0.9778 0.8333 0.9444 0.9999
0.00001 0.7111 0.6111 0.4222 0.6111 0.5556 0.4444

in predicting short lengths of sequential data from a small
dataset.

VII. CONCLUSION

The present study explored the faithfulness of simpli-
fied models’ flow characteristics to that of the actual model
derived from IVUS imaging. The model with a sinusoidal
representation of stenosed geometry, which has been widely
used in earlier research, entirely fails to portray the actual
model’s fluctuations in flow property patterns. Although not
fully perfect, owing to non-circular cross-sections of the actual
model, the newly proposed splined model stands out as a
better representation for the construction of a database with
various percentage stenoses with varying gaps between them,

for implementation of artificial intelligence. The sequential
nature of the input and subsequently the flow properties opened
up opportunities for specialized RNNs to be implemented. As
it turns out, the short lengths of the vessel and small dataset
prefer a simpler, less sophisticated conventional neural network
model with shallow architecture for efficiently predicting most
flow parameters, such as average velocity and wall shear stress.
On the other hand, the considerable variation in pressure
along the short length of the vessel favors the computationally
expensive LSTM model with a large number of units. The
simpler GRU model, although generalized well in terms of over
accuracies across both training and test sets, fails to generate
better predictions than the other two Ai models for any
individual double stenosed artery. This highlights the fact that
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Fig. 9. Comparison Between Predicted Flow Characteristics with Optimized
Hyperparameters and Simulated Results of Actual and Splined Artery

Models.

instead of aiming to achieve overall good performance across
all outputs with a single set of hyperparameters, each property
needs to be addressed and models optimized individually. The
major limitation of this study has been its small dataset. With
more CFD simulations featuring stenosis configurations in

between those used in this training dataset, as well as with
more inlet blood flow velocities within the relevant range it
might be possible to improve the efficiencies of the Ai models.
Future work on this subject might involve simulating and
forecasting flow characteristics for curved vessels in order to
make it an even better representation of the arteries naturally
found in the human body. In addition, new Ai models might
be developed to generate images directly from input fraction
lumen opening data in order to better analyze blood flow pat-
terns through double stenosed arteries. Such advancements, as
well as the current findings, would allow medical researchers to
swiftly estimate the severity of blood flow obstructions through
constricted arteries, thereby assisting in stent development and
deployment.
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