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Abstract—Random-valued impulse noise removal from 
images is a challenging task in the field of image processing and 
computer vision. In this paper, an effective three-step noise 
removal method was proposed using local statistics of grayscale 
images. Unlike most existing denoising algorithms that assume 
the noise density is known, our method estimated the noise 
density in the first step. Based on the estimated noise density, a 
noise detector was implemented to detect corrupted pixels in the 
second step. Finally, a modified weighted mean filter was utilized 
to restore the detected noisy pixels while leaving the noise-free 
pixels unchanged. The noise removal performance of our method 
was compared with 10 well-known denoising algorithms. 
Experimental results demonstrated that our proposed method 
outperformed other denoising algorithms in terms of noise 
detection and image restoration in the vast majority of the cases. 
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I. INTRODUCTION 
Image noise is an inevitable consequence of some intrinsic 

(e.g., sensor) and/or extrinsic (e.g., environment) factors such 
as imperfections in capturing instruments, bit errors in analog-
to-digital conversations, malfunctions in camera sensors, and 
interference in transmission channels. The existence of noise 
not only degrades the visual quality of images but also 
adversely affects the performance of image processing and 
computer vision tasks, like classification, detection, and 
segmentation. Thus, image denoising is often an essential 
preprocessing task in the field of image processing and 
computer vision. The goal of an ideal image denoising method 
is to remove the noise while maintaining fine structures of 
images such as edges or corners. 

Depending on the sources of noise, image noise can be 
classified into different categories such as impulse noise, 
Poison noise, and Gaussian noise. Two common types of 
impulse noise are the salt-and-pepper (SAP) and random-
valued impulse noise (RVIN). In an 8-bit/pixel image, noisy 
pixels in images corrupted by SAP can take on either the 
minimum or maximum intensity (i.e., 0 or 255), while for 
contaminated images by RVIN, corrupted pixels can take any 
values between 0 and 255. Therefore, detecting noisy pixels 
contaminated by RVIN is a challenging task. Another 
challenging issue in detecting the noisy pixels is distinguishing 
between image edge pixels and corrupted pixels. The big 
difference between the intensity of image edge and their 
neighboring pixels might cause noise detectors to falsely detect 
the image edge pixels as noisy pixels. 

Although many algorithms have been proposed for the 
noise removal problem, there is still room for improvement 
[1]–[4]. Particularly, for the RVIN removal problem, various 
methods have been proposed in the literature. The standard 
median filter (MF) [5], [6] is a widely used nonlinear filter due 
to its simplicity and high computational efficiency; however, it 
does not work well for high levels of noise and eliminates fine 
structures of images, and this leads to blur. In order to improve 
its performance, some modifications to MF have been 
proposed. The weighted median filter (WMF) [7] gave more 
weight to some pixels within the sliding window. It allowed a 
degree of control of the smoothing by which more image 
details could be preserved; however, finding suitable weights 
for different images was not an easy task. Center weighted 
median filter (CWMF) [8] was a special case of WMF which 
gave more weights only to the central pixel of the sliding 
window. The adaptive weighted median filter (AWMF) [8] 
was another modification to MF in which the filter weights 
were adapted accordingly based on the local statistics. AWMF 
could suppress multiplicative noise as well as additive white 
and impulse noise. Adaptive median filter (AMF) [9] was 
another method with variable sliding window size. 

One characteristic of RVIN is that depending on the noise 
density, only some parts of image pixels are corrupted while 
the rest are noise-free. The main drawback of the 
aforementioned filters is that they restore the entire image by 
processing all pixels without considering whether the pixel is 
noisy or not. As a result, they eliminate fine details of images 
like edges or corners, and this leads to blur. In order to 
overcome this drawback, several two-step methods have been 
proposed that are integrated with noise detectors. In the first 
step, the noise detector determines whether the pixel is 
corrupted or not. In the second step, only the noisy pixels are 
restored while other pixels remain unchanged. By doing so, 
more image details can be preserved and in turn the quality of 
restored images can be improved. It should be noted that the 
performance of these methods heavily depends on the proper 
detection of noisy pixels that is a challenging task for RVIN. 

The switching median filter (SMF) [10] calculated the 
absolute value of difference between the center pixel of the 
sliding window and the median. If the difference was greater 
than a predefined threshold, it detected the pixel as noisy and 
restored it by using the median filter; otherwise, it left the pixel 
unchanged. The first drawback of SMF is that it uses a fixed 
threshold to detect noisy pixels. The second drawback is that it 
restores corrupted pixels using the median value of the current 
sliding window that might include other noisy pixels, so its 
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performance for high levels of noise can be deteriorated. 
Several modifications have been developed to improve the 
performance of SMF. Noise adaptive soft-switching median 
filter (NASM) [11] used fuzzy logic to categorize image pixels 
into four categories named uncorrupted pixel, isolated impulse 
noise, non-isolated impulse noise and edge pixel. Then, 
depending on the pixel’s characteristic, an appropriate filter 
(i.e., MF or proposed fuzzy WMF) was utilized to restore 
corrupted pixels. Adaptive impulse noise detector using CWM 
(ACWM) [12] utilized the differences between the center pixel 
of the sliding window and the output of CWM with varied 
center weights to detect corrupted pixels. In [13], an impulse 
noise detection technique for SMF was proposed (SWM) that 
was based on the minimum absolute value of four convolutions 
obtained using one-dimensional Laplacian operators. SMF with 
boundary discriminative noise detection for extremely 
corrupted images [14] used two boundaries by which image 
pixels were classified into three groups named lower intensity 
impulse noise, uncorrupted pixels, and higher intensity impulse 
noise. Then, a modified NASM was utilized to restore 
corrupted pixels. Directional weighted median filter (DWM) 
[15] detected the noisy pixels based on the difference between 
the center pixel and its neighbors aligned with four main 
directions. Then, WMF was applied iteratively to restore the 
noisy pixels. In each iteration, the threshold decreased until the 
maximum number of iterations was reached. In [16], SMF was 
modified by adding one more noise detector based on the rank 
order arrangement of pixels in the sliding window. Adaptive 
switching median filter (ASMF) [17] was another modification 
to SMF in which the threshold was computed locally from 
pixels inside the sliding window. 

In recent years, some effective noise removal algorithms 
with local statistics-based impulse noise detectors have been 
developed. A new statistic based on the Rank-Ordered 
Absolute Difference (ROAD) [18] was introduced that 
represented how impulse-like a pixel was in the sense that the 
larger the impulse, the greater the ROAD value. Then, by 
incorporating this statistic into a bilateral filtering, a new 
nonlinear filter was proposed (trilateral filter) which could 
remove both Gaussian and impulse noise. The Rank-Ordered 
Logarithmic Difference (ROLD) [19] was developed to 
improve the performance of the ROAD statistic by identifying 
more noisy pixels with less false hits. By combining it with an 
edge-preserving regularization (EPR), ROLD-EPR method was 
implemented to remove RVIN. A partial differential equation-
based image denoising method for random-valued impulse 
noise (NSDD) [20] was proposed in which two controlling 
functions were used to distinguish between edge pixels, noisy 
pixels, and interior pixels. In [21], a detection algorithm for 
RVIN (ODM) was developed that calculated the standard 
deviation in different directions in the filtering window. Once 
the optimal direction was found, a pixel was detected as noise-
free if it was similar to pixels in the optimum direction. A 
fuzzy weighted NLM filter (FWNLM) [22] was implemented 
that was able to remove RVIN and mixed Gaussian-RVIN. 
Based on the fuzzy weighting function, the more a pixel was 
contaminated, the less it was used to restore images. In [23], a 
new WMF with a two-phase noise detector was proposed. In 
the first phase, the Rank-Ordered Difference of ROAD (ROD-
ROAD) was introduced in which a fuzzy rule was used to 

detect noisy pixels. In the second phase, another image statistic 
(minimum edge pixels difference) was proposed to distinguish 
between edge pixels and noisy candidates. To restore the 
corrupted images, an iterative denoising algorithm was utilized 
by combining the proposed two-phase noise detector and the 
new WMF. A new image denoising method (ℓ0TV-PADMM) 
[24] was implemented that was based on the total variation 
(TV) with ℓ0-norm data fidelity. Since the resulting 
optimization problem was non-convex and non-smooth, it was 
first reformulated as an equivalent mathematical program with 
equilibrium constraints and then it was solved using a proximal 
Alternating Direction Method of Multipliers (PADMM). In 
[25], a new two-phase denoising algorithm (DPC-INR) was 
implemented using dissimilar pixel counting. In the detection 
phase, the average difference scheme was used to distinguish 
whether two neighboring pixels were similar or not, and then 
the number of dissimilar pixels was compared with a threshold 
to determine whether the current pixel was noisy. In the 
filtering phase, an extended trilateral filter was utilized to 
restore noisy images. An adaptive rank-ordered impulse 
detector based on local statistics (AROPD-EPR) [26] was 
introduced in which a piecewise power function was applied to 
the rank-ordered statistic to enlarge the difference between 
noisy pixels and noise-free pixels. By combining the noise 
detector with an improved EPR filter, an effective two-stage 
iterative denoising algorithm was implemented to remove 
RVIN. 

In this paper, an efficient RVIN removal method was 
proposed that consisted of three steps (i.e., noise density 
estimation, noise detection, and image restoration). We made 
two main contributions one of which was the noise density 
estimation. As opposed to most existing denoising methods 
that assume the noise density is known, our method estimated 
the noise density with high accuracy. The second contribution 
was proposing an effective RVIN detector using local statistics. 
Based on the estimated noise density, a noise detector was 
implemented to detect corrupted pixels. Finally, a modified 
weighted mean filter was utilized to restore the detected noisy 
pixels while leaving the noise free pixels unchanged. 

The rest of the paper is organized as follows: Section II 
briefly reviews the ROAD statistic for detecting RVIN. The 
proposed method is described in Section III. Section IV 
presents the experimental results and draws a comparison with 
other state-of-the-art image denoising methods. Finally, 
Section V provides the conclusion. 

II. REVIEW ON THE RANK-ORDERED ABSOLUTE 
DIFFERENCE STATISTIC 

The RVIN model with noise probability p can be described 
as follows where 𝑢𝑖𝑗  and  𝑜𝑖𝑗  denote the pixel intensity at 
location (i, j) of the noisy image and original image, 
respectively, and 𝑛𝑖𝑗  denotes the value of the noisy pixel at 
location (i, j). 

𝑢𝑖𝑗 = �
 𝑜𝑖𝑗  ,   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  1 − 𝑝
𝑛𝑖𝑗  ,   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑝                   (1) 

Unlike SAP noise that takes on either the minimum or 
maximum intensity, RVIN can take any values between the 

2 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 13, No. 2, 2022 

minimum and maximum intensity with equal probability. Thus, 
detecting noisy pixels corrupted by RVIN is much more 
difficult than SAP. 

The ROAD statistic [18] is a widely used local image 
statistic for detecting RVIN. Let 

Ω𝑖,𝑗(𝑁) = {(𝑖 + 𝑠 , 𝑗 + 𝑡)|−𝑁 ≤  𝑠, 𝑡 ≤ 𝑁}           (2) 

denote the set of image coordinates in a (2𝑁 + 1) ×
(2𝑁 + 1) window centered at (𝑖, 𝑗) for some positive integer 
𝑁 . Let Ω𝑖,𝑗0 = Ω𝑖,𝑗\(𝑖, 𝑗)  be the same as Ω𝑖,𝑗(𝑁)  without its 
center coordinate. For each coordinate in Ω𝑖,𝑗0 , define d𝑠,𝑡�𝑢𝑖,𝑗� 
as the absolute difference in intensity of the pixels 𝑢𝑖+𝑠 ,𝑗+𝑡 and 
𝑢𝑖,𝑗, i.e., 

d𝑠,𝑡�𝑢𝑖,𝑗� = �𝑢𝑖+𝑠 ,𝑗+𝑡 −  𝑢𝑖,𝑗�,    𝑓𝑜𝑟 − 𝑁 ≤  𝑠, 𝑡 ≤ N.         (3) 

After sorting the values of d𝑠,𝑡�𝑢𝑖,𝑗� in ascending order, the 
ROAD statistic can be defined as follows: 

𝑅𝑂𝐴𝐷𝑚�𝑢𝑖,𝑗� = ∑ 𝑟𝑘�𝑢𝑖,𝑗�𝑚
𝑘=1             (4) 

where 2 ≤ 𝑚 ≤ (2𝑁 + 1)2 − 2  and 𝑟𝑘�𝑢𝑖,𝑗�  is the kth 
smallest value of d𝑠,𝑡�𝑢𝑖,𝑗�. 

There should be a big difference between the intensity of 
most corrupted pixels by RVIN and their neighbors while the 
intensity of most uncorrupted pixels (even edge pixels) should 
be close to at least half of their neighboring pixels. Therefore, 
the ROAD value of noisy pixels should be larger than that of 
noise-free pixels. As a result, the Road value can be used to 
detect corrupted pixels by RVIN. For a 3×3 window (i.e., 
𝑁 = 1), it is suggested to set the value of 𝑚 to 4 while for a 
5×5 window (i.e., 𝑁 = 2) it is recommended to set the value of 
𝑚 to 12 [18]. 

III. PROPOSED METHOD 
The proposed method consists of three steps. The first step 

is the noise density estimation in which RVIN density is 
estimated with high accuracy. In the second step, a noise 
detector is utilized to detect corrupted pixels based on the 
estimated noise density. In other words, the parameters of the 
noise detector are determined specifically for each noise level. 
Finally, in the last step, a modified weighted mean filter 
(MWMF) is used to restore the detected noisy pixels. Each step 
is explained in detail in the following sections. It is worth 
mentioning that there are some parameters in each step whose 
values are determined by using an evaluation dataset that 
contains 20 images. The evaluation dataset is a subset of 
BSDS68 dataset [27]. In order to compare the performance of 
the proposed method with other denoising algorithms, a 
different dataset, containing 49 images [28], is used. 

A. Noise Density Estimator 
In the proposed method, a 3×3 sliding window with 𝑚 = 4 

is used to calculate the ROAD value of image pixels. If the 
ROAD value of a pixel is larger than a pre-defined threshold, 
the pixel will be considered as noisy; otherwise, the pixel will 
be considered as noise-free. The evaluation dataset is used to 
determine the value of the threshold to distinguish between 
noisy and noise-free pixels. The value of the threshold (𝑇 =

78) is found by trial and error. By sliding the window over the 
entire image and counting the number of corrupted pixels, the 
estimated noise density can be easily computed. For instance, if 
the number of detected noisy pixels in a 512×512 grayscale 
image is 52,430, the estimated noise density is about 20%. 

B. RVIN Detection 
In order to decide whether an image pixel 𝑢𝑖,𝑗 is noisy, all 

24 neighboring pixels within a 5×5 window, centered at 𝑢𝑖,𝑗, 
are considered in two stages. In the first stage, we decide 
whether the center pixel 𝑢𝑖,𝑗 is a noise candidate or noise-free 
pixel. All detected noise candidates are considered in the 
second stage to make sure that they are not edge pixels, falsely 
detected as noise. 

The underlying logic of distinguishing between noisy and 
edge pixels is that in a 5×5 window that does not contain edge 
pixels, clean pixels should have close intensities while the 
intensities of contaminated pixels by RVIN vary considerably. 
In other words, in a smooth area of an image that does not 
contain edge pixels, there is only one group of clean pixels 
whose intensities are close together; however, if 5×5 window 
contains some edge pixels, there could be two groups of pixels 
whose intensities might differ greatly and yet both groups 
could be clean pixels. 

In the first stage of the proposed method, we first sort the 
values of all 24 neighboring pixels in ascending order, and then 
compute the difference between each two successive elements 
to generate a vector called diff_sort_vec. We then find two 
biggest groups in diff_sort_vec whose elements are smaller 
than a threshold (T1). We consider the first biggest group as 
clean pixels, called first_clean_pxls, because all the 
corresponding pixels to this group have close intensities. If 
there are at least six pixels in the second biggest group, we 
consider it as the second clean pixels group, called 
second_clean_pxls, which means the 5×5 sliding window 
might contain some edge pixels. Now, if the center pixel, ui,j, 
satisfies any of four following conditions, we detect it as a 
noise candidate in the first stage. The first condition is that the 
center pixel, ui,j, is not within the range of the first clean pixels 
group (i.e., first_clean_pxls). The second condition is that the 
ROAD value of the center pixel (N = 2 and m = 10) be larger 
than or equal to a threshold (T2). For the third condition, let 
n5by5  denotes the number of neighboring pixels, within the 
5×5 window, whose absolute difference from the center pixel 
is smaller than a threshold (T3). The third condition is met if 
n5by5  is smaller than another threshold ( T3′ ). The only 
difference between the third and fourth conditions is that we 
consider the neighboring pixels within a 3×3 window (n3by3), 
instead of a 5×5 window, and use different thresholds (T4 and 
T4′) in the fourth condition. 

In the second stage, if detected noise candidates satisfy all 
of four following conditions, their status will be changed to 
noise-free pixels. In other words, the detected noise candidates 
in the first stage could be edge pixels (i.e., noise-free pixels). 
The first condition is that the center pixel, ui,j, is within the 
range of the second clean pixels group (i.e., second_ 
clean_pxls). The second condition is that the ROAD value of 
the center pixel be smaller than a threshold (T5). To meet the 
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third and fourth conditions, n5by5  and n3by3  must be greater 
than two thresholds (T6 and T7). The RVIN detection algorithm 
can be summarized as follows: 

Proposed RVIN detection algorithm: 

Input: 5×5 window (𝑤) 
Output: 𝑑 ∈ {0,1} 
First stage: 
1. Remove the center pixel (𝑤(3,3)) of the 5×5 window. 
2. Vectorize and sort the remaining 24 pixels in ascending order to 
generate a vector that we call sorted_w. 
3. Calculate the difference between each two successive elements in 
sorted_w to generate a vector called diff_sort_vec 
4. Find two biggest groups of elements in diff_sort_vec whose 
elements are smaller than a threshold (𝑇1 ). The first and second 
biggest groups are called first_clean_pxls and second_clean_pxls, 
respectively.   
5. Calculate the ROAD value of the center pixel with 𝑁 = 2 𝑎𝑛𝑑 𝑚 =
10 
6. Find the number of neighboring pixels (𝑛5𝑏𝑦5 ), within the 5×5 
window, whose absolute difference from the center pixel is smaller 
than a threshold (𝑇3). 
7. Find the number of neighboring pixels (𝑛3𝑏𝑦3 ), within the 3×3 
window, whose absolute difference from the center pixel is smaller 
than a threshold (𝑇4). 
8. If [𝑤(3,3)  ∉  𝑓𝑖𝑟𝑠𝑡_𝑐𝑙𝑒𝑎𝑛_𝑝𝑥𝑙𝑠] OR [ROAD ≥ 𝑇2] OR [𝑛5𝑏𝑦5 ≤ 
𝑇3′ ] OR [𝑛3𝑏𝑦3  ≤ 𝑇4′ ], then 𝑑 = 1, i.e., the center pixel is a noise 
candidate. 
Second stage: 
9. If [𝑑 = 1] AND [length(second_clean_pxls) ≥ 6] AND [𝑤(3,3)  ∈
 second_clean_pxls] AND [ROAD ≤ 𝑇6 ] AND [𝑛5𝑏𝑦5  ≥ 𝑇6′ ] AND 
[𝑛3𝑏𝑦3 ≥ 𝑇7′], then 𝑑 = 0, i.e., the center pixel is a noise-free pixel. 

C. Image Restoration Method 
In this paper, we slightly adapted the modified mean filter 

(MMF) proposed in [29] to restore contaminated pixels by 
RVIN. If the estimated noise density is less than 35%, 
contaminated images were restored once; otherwise, they were 
restored twice to improve their visual quality. In the original 
MMF method, the center value of a 3×3 sliding window is 
replaced by the mean of its four horizontal and vertical 
neighbors aligned with the four main directions, if only each of 
which is a noise-free pixel. If all neighbors of a center pixel are 
noisy, it is necessary to move toward the defined directions 
shown in Fig. 1 to reach closest four noise-free pixels that we 
call 𝑎, 𝑏, 𝑐, and 𝑑. If a pixel is noisy, it will be replaced with 
another noise-free pixel according to the flowchart that is 
shown in Fig. 2. Thereafter, the value of center pixel can be 
simply calculated as the mean of these noise-free pixels, i.e. 

𝑃0 =  𝑎+𝑏+𝑐+𝑑
4

              (5) 

We make two modifications to the original MMF. The first 
modification is that instead of taking the mean of four noise-
free pixels, we take the weighted average of four pixels 
according to the weights proposed in Fig. 3. In the original 
MMF, the neighboring pixels can be picked more than once. 
The second modification is that each neighboring pixel cannot 
be picked more than once. 

 
Fig. 1. Four Directions for Selecting Noise-Free Pixels [29]. 

 
Fig. 2. Flow Chart for Selecting Noise-free Pixels [29]. 

 
Fig. 3. Assigned Weights to Neighboring Pixels. 

IV. RESULTS AND DISCUSSION 
To compare the performance of our RVIN removal 

algorithm with other methods, an image dataset [28] consisting 
of 49 8-bit/pixel grayscale images of size 512×512 are used. 
Our method is compared with 10 well-known RVIN removal 
methods all of which are discussed in the introduction. These 
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methods are ACWM [12], SWM [13], DWM [15], ROLD-EPR 
[19], NSDD [20], ODM [21], FWNLM [22], ℓ0TV-PADMM 
[24], DPC-INR [25], and AROPD-EPR [26]. 

Three well-known metrics (i.e., recall, precision, and F1-
score) are used to evaluate the performance of the detection 
algorithm. Recall (R) is the ratio of correctly detected noisy 
pixels to the actual noisy pixels while precision (P) is the ratio 
of correctly detected noisy pixels to all pixels detected as 
noisy. F1-score is the harmonic mean of precision and recall 
that is widely used in the field of information retrieval. Note 
that higher values of F1-score are better that requires both 
recall and precision be high. The best value for F1-score is one 
that can be reached only when both recall and precision are 
equal to one. These metrics can be calculated using the 
following formulas. 

𝑅 = 𝑇𝑁
𝑇𝑁 + 𝐹𝐹

              (6) 

𝑃 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑁

              (7) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2
1
𝑅 + 1𝑃

             (8) 

where TN is the number of pixels that are correctly detected 
as noisy, FF  is the number of noisy pixels that are falsely 
detected as noise-free, and FN  is the number of noise-free 
pixels that are falsely detected as noisy. 

Restoration results are quantitatively measured by the peak 
signal-to-noise ratio (PSNR), mean absolute error (MAE), and 
two-dimensional correlation coefficient (COR) calculated 
using the following equations. 

𝑃𝑆𝑁𝑅 = 10 log10 �
2552

𝑀𝑆𝐸
�             (9) 

𝑀𝑆𝐸 = 1
𝑀𝑁

∑ ∑ �𝑈𝑛(𝑖, 𝑗) −  𝑈𝑑(𝑖, 𝑗)�2𝑁
𝑗=1

𝑀
𝑖=1          (10) 

𝑀𝐴𝐸 = 1
𝑀𝑁

∑ ∑ |𝑈𝑛(𝑖, 𝑗) −  𝑈𝑑(𝑖, 𝑗)|𝑁
𝑗=1

𝑀
𝑖=1          (11) 

𝐶𝑂𝑅 =
∑ ∑ (𝑈𝑛(𝑖,𝑗)− 𝑈𝑛����)𝑁

𝑗=1 (𝑈𝑑(𝑖,𝑗)− 𝑈𝑑����)𝑀
𝑖=1

��∑ ∑ (𝑈𝑛(𝑖,𝑗)− 𝑈𝑛����)2𝑁
𝑗=1

𝑀
𝑖=1 ��∑ ∑ (𝑈𝑑(𝑖,𝑗)− 𝑈𝑑����)2𝑁

𝑗=1
𝑀
𝑖=1 �

         (12) 

where 𝑈𝑛  and 𝑈𝑑  are the noisy and de-noised images of 
size 𝑀 × 𝑁, respectively. 

A. Noise Estimation Results 
Table I shows the average noise density estimation over 20 

images of the evaluation dataset for each noise level. 
Evaluation dataset is a subset of BSDS68 dataset [27] that is 
used to determine the values of the parameters (e.g., 
thresholds). Table II demonstrates the average noise density 
estimation over 49 images of the test dataset [28]. As can be 
seen, the proposed method is able to estimate the noise density 
with high accuracy. 

TABLE I. THE AVERAGE NOISE DENSITY ESTIMATION OVER 20 IMAGES 
OF THE EVALUATION DATASET 

Actual noise density 20% 30% 40% 50% 60% 

Estimated noise density 19.3% 28.3% 38% 48.6% 59.7% 

TABLE II. THE AVERAGE NOISE DENSITY ESTIMATION OVER 49 IMAGES 
OF THE TEST DATASET 

Actual noise density 20% 30% 40% 50% 60% 

Estimated noise density 21.3% 30.2% 39.7% 50% 60.7% 

B. Noise Detection Results 
The performance of RVIN removal methods with noise 

detector heavily depends on the proper detection of noisy 
pixels which is not an easy task for RVIN. We compare the 
performance of our proposed noise detection algorithm with 
ACWM, SWM, ROAD, ROLD, ECROAD, and AROPD. The 
average recall, precision, and F1-score for the images of the 
test dataset for five noise levels are shown in Fig. 4(a), 4(b), 
and 4(c), respectively. The results of other methods for noise 
detection, restoration, and run time comparison are taken from 
[26] in which the parameters are selected as they are suggested 
in the original papers. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Comparison of different RVIN Detectors: (a) Average Recall, (b) 
Average Precision, (c) Average F1-score. 
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As can be seen from Fig. 4(a), the average recall of our 
method is lower than that of ECROAD method, but ECROAD 
method achieved the lowest average precision (Fig. 4b) which 
means it falsely detects a large number of noise-free pixels as 
noisy. Similarly, ROAD method achieves the highest average 
precision and very low average recall which means it wrongly 
detects a large number of noisy pixels as noise-free. Thus, it is 
important to consider the F1-score to seek a balance between 
the recall and precision. As can be seen from Fig. 4(c), except 
for one noise level (30%), our method achieves the highest 
average F1-score for all other noise levels indicating the 
superiority of our noise detection method over other 
algorithms. 

C. Restoration Resultsd 
Three well-known metrics (i.e., PSNR, COR, and MAE) 

are used to quantitatively compare the performance of image 
restoration. Note that higher values of PSNR and COR are 
better, whereas lower values of MAE are better. Table III 
demonstrates the average PSNR of different methods on 49 test 
images corrupted by five noise densities varying from 20% to 
60% with increments of 10. The best average PSNR for each 
noise density is highlighted in bold. For four noise densities, 
our method achieved the highest average PSNR while for other 
noise density (i.e., 60%), it achieved the second best average 
PSNR. The average COR and MAE are shown in Tables IV 
and V, respectively. In terms of average COR, our method 
obtained the best average COR for three noise densities (20%, 
30%, and 40%) while for the rest of noise densities, its result is 
comparable with other methods that achieved higher values for 
average COR. In terms of average MAE, our method 
outperformed all other methods for two noise densities (20% 
and 30%) while for other noise densities, it achieved the 
second best results. Fig. 5 and 6 demonstrate visual comparison 
between noise removal methods for the “butterfly” and 
“bridge” test images corrupted by 55% and 20% RVIN, 
respectively. It can be seen that our method can remove noise 
from corrupted images and preserve sharp edges and fine 
details of the images that yield visually pleasant restoration 
results. 

TABLE III. IMAGE RESTORATION COMPARISON FOR DIFFERENT NOISE 
DENSITIES OVER 49 TEST IMAGES IN TERMS OF AVERAGE PSNR (DB) 

 Noise density 

Method 20% 30% 40% 50%  60% 

ACWM 27.69 26.10 24.36 22.18 19.67 

SWM 24.13 21.95 20.08 18.32 16.61 

DWM 27.38 26.55 25.60 24.35 22.43 

ROLD-EPR 28.23 26.34 25.47 24.75 23.91 

NSDD 26.82 26.13 25.24 23.96 22.25 

ODM 24.84 24.25 23.61 22.95 22.22 

FWNLM 27.60 26.63 25.73 24.83 23.62 

ℓ0TV-PADMM 22.92 22.16 21.44 20.67 19.89 

DPC-INR 26.35 25.40 24.62 23.22 21.00 

AROPD-EPR 28.32 26.87 25.73 24.92 23.91 

Our Method 28.44 26.92 26.08 24.97 23.82 

TABLE IV. IMAGE RESTORATION COMPARISON FOR DIFFERENT NOISE 
DENSITIES OVER 49 TEST IMAGES IN TERMS OF AVERAGE COR 

 Noise density           

Method 20% 30% 40% 50%    60% 

ACWM 0.9567 0.9469 0.9290 0.8920 0.8183 

SWM 0.9263 0.8901 0.8395 0.7678 0.6689 

DWM 0.9526 0.9486 0.9405 0.9257 0.8936 

ROLD-EPR 0.9602 0.9441 0.9352 0.9269 0.9151 

NSDD 0.9542 0.9476 0.9394 0.9233 0.8965 

ODM 0.9273 0.9209 0.9115 0.8998 0.8845 

FWNLM 0.9563 0.9493 0.9408 0.9305 0.9128 

ℓ0TV-PADMM 0.9438 0.9305 0.9156 0.8966 0.8727 

DPC-INR 0.9466 0.9363 0.9282 0.9079 0.8560 

AROPD-EPR 0.9600 0.9493 0.9397 0.9303 0.9153 

Our Method 0.9606 0.9498 0.9410 0.9287 0.9118 

TABLE V. IMAGE RESTORATION COMPARISON FOR DIFFERENT NOISE 
DENSITIES OVER 49 TEST IMAGES IN TERMS OF AVERAGE MAE 

 Noise density           

Method 20% 30% 40% 50%    60% 

ACWM 4.4238 5.5550 7.1848 9.9144 14.722 

SWM 5.8205 8.4421 11.801 16.349 22.491 

DWM 4.9712 5.7273 6.7776 8.3646 11.153 

ROLD-EPR 4.2650 6.1811 7.3081 8.3750 9.6881 

NSDD 7.1198 8.1127 9.0755 10.745 13.562 

ODM 6.2370 7.1332 8.2456 9.5681 11.208 

FWNLM 5.0753 6.0803 7.2792 8.5974 10.172 

ℓ0TV-PADMM 12.394 13.362 14.439 15.689 17.156 

DPC-INR 4.5945 6.6458 7.5319 9.1382 12.530 

AROPD-EPR 4.0431 5.3842 6.4563 7.6499 9.2648 

Our Method 3.9906 5.2600 6.5046 7.9772 9.6501 

D. Run Time 
The average run time of the denoising methods on 49 test 

images is shown in Table VI. All experiments were performed 
on computers equipped with 3.40 GHz CPU. Although the run 
time of our method is longer than some other methods, it 
should be noted that it achieved better noise detection and 
image restoration results in the vast majority of the cases. The 
run time for heavy noise corruption (i.e., 40%, 50%, and 60%) 
is about twice longer than that of the low levels of noise 
corruption because in our method, highly contaminated images 
were restored twice to improve the quality of restored images. 
It is worth noting that the noise detection stage of our method 
took the significant portion of the run time, so future work 
would be to implement the noise detection algorithm in an 
optimized and faster way to reduce the run time. Another way 
to reduce the run time would be running our algorithm in 
parallel (i.e., parallel computing). 
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(a)                                      (b)                                      (c) 

   
(d)                                      (e)                                      (f) 

    
(g)                                      (h)                                      (i) 

   
(j)                                      (k)                                      (l) 

 
(m) 

Fig. 5. Comparison of Image Restoration Results of different Methods for 
Image “Butterfly” Corrupted by 55% RVIN: (a) Clean Image, (b) Noisy 

Image (55% RVIN), (c) ACWM, (d) SWM, (e) DWM, (f) ROLD-EPR, (g) 
NSDD, (h) ODM, (i) FWNLM, (j) ℓ0TV-PADMM, (k) DPC-INR, (l) 

AROPD-EPR, (m) our Method. 

   
(a)                                      (b)                                      (c) 

   
(d)                                      (e)                                      (f) 

   
(g)                                      (h)                                      (i) 

   
(j)                                      (k)                                      (l) 

 
(m) 

Fig. 6. Comparison of Image Restoration Results of different Methods for 
Image “Bridge” Corrupted by 20% RVIN: (a) Clean Image, (b) Noisy Image 
(20% RVIN), (c) ACWM, (d) SWM, (e) DWM, (f) ROLD-EPR, (g) NSDD, 
(h) ODM, (i) FWNLM, (j) ℓ0TV-PADMM, (k) DPC-INR, (l) AROPD-EPR, 

(m) our Method. 

TABLE VI. COMPARISON OF RUN TIME IN SECONDS 

 Noise density           

Method 20% 30% 40% 50%    60% 

ACWM 5.53 5.66 5.60 5.60 5.60 

SWM 4.56 4.56 4.48 4.69 4.57 

DWM 46.98 45.55 44.82 44.83 46.67 

ROLD-EPR 1.63 4.16 5.07 5.52 7.75 

NSDD 0.62 0.63 1.31 3.76 5.71 

ODM 15.58 14.35 14.46 14.88 15.50 

FWNLM 276.39 268.56 277.34 274.38 271.71 

ℓ0TV-PADMM 1.38 1.39 1.43 1.49 1.55 

DPC-INR 9.15 13.54 14.32 14.71 14.78 

AROPD-EPR 1.76 2.82 4.74 7.12 11.25 

Our Method 7.16 7.33 13.89 14.19 14.27 
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V. CONCLUSION 
In this paper, we presented an efficient three-step noise 

removal method for grayscale images corrupted by RVIN. In 
the first step, we estimated the noise density of corrupted 
images with high accuracy. Based on the estimated noise 
density, a noise detector found corrupted pixels that were 
restored by using a modified weighted mean filter. In order to 
evaluate the performance of the proposed method, we drew a 
comparison with 10 denoising algorithms. In the vast majority 
of the cases, our method outperformed other algorithms which 
indicated the effectiveness of the proposed method. Future 
work would be to implement the noise detection algorithm in a 
faster way to reduce the run time. 
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