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Abstract—In this paper, a procedure is described for tracking 

moving object trajectories from image sequences acquired from a 

microfluidic culture platform. Since particles move along the 

axons, curve structures need to be detected first from the input 

image sequence. A kymograph analysis technique is applied to 

detect axon structures from the consolidated image of the input 

sequence. Horizontally and vertically oriented axons are then 

detected by applying the process twice to the original and the 90-

degree rotated image. Multiple kymographs are generated along 

the detected axons by projecting image intensity variation 

through the time-axis. The trajectory detection process is then 

applied to each kymograph image. To obtain the particle motion 

information from the entire image sequence, an integration 

process is applied to each horizontal and vertical kymograph 

data set. The proposed technique has been applied to image 

sequences in the present application area. It is demonstrated that 

practical results can be obtained using time-lapse image sequence 

data. 
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I. INTRODUCTION 

Time-lapse video of cellular motion in microfluidic culture 
platform consists of microscopic images acquired at fixed time 
intervals [1],[2],[3]. In fluorescence microscopic images, it is 
important to trace cellular motions appearing as a collection of 
irregular movements of small particles. While most organelles 
occupy stationary positions through time, some particles 
exhibit motion. The purpose of the analysis of mitochondrial 
transports is to identify motion trajectories and to detect the 
amounts of motions and speeds of particles. Tracking 
mitochondria in neural time-lapse video is a basic processing 
step in diverse biological research [4],[5]. 

For tracing various intracellular objects in cell imaging, 
multi-target tracking methods [6],[7] have been exploited 
previously. However, in the present application domain, 
tracking-based methods have not been successful for tracing 
mitochondria for several reasons. First, while all objects are 
moving in most other cell image sequences, there are many 
stationary objects in our neural image sequences. Over half of 
the particles are stationary, and some target objects move at 
low speeds. Frequent merging and splitting of stationary and 
moving particles, and sudden starting and stopping of moving 
targets make it hard to trace individual objects. Second, in the 
typical input image, the size of a moving target is very small. A 
target occupies only a few pixels in images. In addition, most 
particles appear as small dots with similar shapes and 

brightness. Thus, it is hard to identify individual particle based 
on shape and brightness information only. 

An important characteristic of moving targets is that they 
are moving only through axons. Thus, once axons are traced 
first in images, the motion of the target object can be traced by 
locating curvilinear trajectories. While input video is a 
collection of images, a kymograph is constructed by combining 
temporal variation of image intensities on a selected axon. A 
kymograph is a time-space plot illustrating the intensity 
changes along an axon as a function of time. It is much easier 
to trace the curve on a 2D kymograph than finding and tracking 
small dots on 3D image sequences. Thus, many previous 
research works on mitochondria tracking have utilized 
kymographs for analysis. Techniques using image correlation 
[8] and Hough transform [9] were proposed for the analysis of 
axonal transports. 

An automated kymograph analysis was proposed for 
tracking secretory granules [10]. As kymograph analysis 
obtains wider acceptance, automated analysis techniques have 
been proposed recently [11],[12],[13],[14]. However, since the 
performance of automated techniques usually depends on the 
characteristics of input images, the application of these 
automated techniques to other application domains have been 
somewhat limited. Recently neural net-based machine learning 
techniques have been applied to biomedical application 
domains as well [15],[16],[17],[18]. U-Net architecture has 
been successful in this application area [15]. An internet-based 
kymograph analysis tool [19] has been proposed using U-Net 
architecture. 

In this paper, an integrated procedure is described for 
tracking moving objects trajectories from image sequences 
acquired from a microfluidic culture platform. The proposed 
approach is based on a kymograph analysis. Since the particles 
move along the axons in this application area, axon structures 
need to be detected first from the input image sequence. This 
process has been typically performed using curve trace 
techniques [20],[10]. In our approach, we apply kymograph 
analysis technique to detect axon structures. Kymograph is an 
image on 2D time-space domain. While the input is a 2D 
image defined on (𝑥, 𝑦)  plane, by regarding the vertical 
direction as the time axis, vertically oriented axons can be 
detected by a kymograph analysis process.   Similarly, 
horizontally oriented axons can be detected by applying the 
kymograph analyzer after rotating the image by 90 degree. 
Once axons are detected from input image sequences, multiple 
kymographs are generated along the detected axons. 
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Using multiple kymographs generated from the image 
sequence, a trajectory detection process is applied to 
kymograph data set. Finally, an integration process is applied 
to each horizontal and vertical kymograph data set to obtain the 
particle motion information from the image sequence. We have 
applied the proposed technique to image sequences in our 
application area. Experimental results will be presented using 
time-lapse image sequence data. 

II. KYMOGRAPH ANALYSIS 

In biomedical image applications, tracking particles on 
complex trajectories has been one of the basic processing tasks 
[4],[6],[7]. In practical applications, low image quality usually 
makes it impractical to track and analyze particle movements 
directly in images. While some methodologies have been 
proposed to detect particle movements directly on images, 
applications to other domains have been limited. 

In time-lapse image sequences obtained from microfluidic 
culture platforms, particle motions usually arise on axons only, 
which remain as stationary curves in images. It is often 
unnecessary to track particles on 3D space. A kymograph is a 
2D image depicting the temporal variations of image intensities 
along an axon curve. Since it is much easier to trace motions of 
target objects in kymographs than in video frames, kymographs 
have been utilized as intermediate target images for object 
tracking. A number of methods have been proposed for 
enabling kymograph analysis, and some methods have 
provided software packages for public access [12],[13],[14]. 
Most of previous methods have somewhat limited applicability, 
depending on the application domains and program usability. 

As deep learning techniques have become successful in 
image recognition and segmentation areas, machine learning 
approaches have been adopted to biomedical applications. 
Currently, U-Net architecture has been the most successful for 
biomedical image analysis [15]. A U-Net based architecture, 
KymoButler [19] has been proposed for kymograph analysis. 
This architecture has a public-accessible implementation, 
providing the analysis results from a kymograph image 
supplied through internet. 

III. METHODS 

A. Kymograph Detection 

In microfluidic image sequences, object particles appear as 
scattered dots on each image frame. Experimental microfluidic 
image sequences consist of 100 images, taken at fixed time 
intervals. The purpose of the analysis is to identify moving 
trajectories and detect lengths and speeds of such motions. 

Fig. 1 illustrates the analysis procedure and the intermediate 
sample images on each step. Fig. 1-A depicts the first image of 
a 100-frame image sequence. At each image, small dark dots 
are object particles, and the analysis is performed to locate 
trajectories of moving particles. It can be seen that axon 
structures are not revealed on the first image. Since a moving 
particle occupies different positions at different frames, when 
the image sequence is summed through time, trajectories of 
moving particles tend to become continuous curves. A 
kymograph is constructed by projecting the image sequence to 
either (𝑥, 𝑡)  or (𝑦, 𝑡)  plane. In order to derive axons, a 
consolidated image is composed using the entire image 
sequence, by taking the minimum value in all image frames at 
each pixel. Here, since moving mitochondria appear on 
different locations, axons tend to become apparent. Fig. 1-B 
shows the consolidated image for Fig. 1-A, and it can be seen 
that each motion trajectory appears as a continuous curve. 

Since there are many moving particles on each image 
sequence, a kymograph is generated separately for each axon 
curve. From the consolidated image in Fig. 1, it can be seen 
that several continuous axons have become apparent. After an 
axon detection algorithm is applied to the consolidated image, 
eleven continuous axons are detected, as shown in Fig. 1-C as 
the red or blue curves. A kymograph analysis tool [19] has 
been applied for the axon detection. Like other kymograph 
analysis tools, this tool tries to detect a continuous curve along 
the vertical (time) axis. We apply the tool twice, once to the 

original image, and once to the 90° rotated image. In Fig. 1-C, 
the red and the blue curves represent the axons detected by the 
two trials applied to the original and the rotated images. 

In general, there may be many moving particles on each 
axon. In order to detect all moving particles on the image 
sequence, each axon needs to be examined separately. 

Fig. 1-D and E are the two kymographs generated along the 
axons marked by small red and blue triangles on Fig. 1-C. Each 
kymograph in Fig. 1-D was generated by composing image 
intensities along the specified axon. Each horizontal scanline 
on the kymograph depicts the image intensity on the axon at 
each time step. Since the orientations of the red and the blue 
triangle axons are near horizontal or vertical, Fig. 1-D and E 
have been obtained by projecting the image sequence to the 
horizontal and vertical directions. On kymograph, a vertical, 
near-straight line represents the image of a stationary particle, 
and a slanted curve shows a trajectory of a moving particle. To 
detect the direction and the speed of moving particle, it is 
necessary to track slanted curves. 

 

Fig. 1. Image Processing Sequence with the Intermediate Results for an Experimental Neural Image Sequence. The Green and the Red Curves at the Rightmost 

Column Images denote the Stationary and the Moving Trajectories, respectively. 
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Two figures in Fig. 1-E show the trajectories obtained from 
images in Fig. 1-D, detected by the kymograph analysis. After 
applying the kymograph analysis, each trajectory is classified 
into stationary and moving curves, as described in Section III-
C. 

B. Analysis Procedure 

The analysis procedure is depicted in Fig. 2. After the 
consolidated image is constructed from the image sequence, 
continuous axons are detected using the kymograph analysis 
process. Axons are then classified into horizontal and vertical 
groups to decide the direction of the kymograph projection. 
Depending on the axon orientation, kymograph projection is 
performed either on (𝑥, 𝑡)  or (𝑦, 𝑡)  plane. The number of 
detected kymographs varies on each axon image. Each 
kymograph is then analyzed separately, and consolidated 
trajectories are composed by combining trajectories from all 
kymographs. 

A kymograph image is analyzed using a kymograph 
analysis tool [19], which can be accessed by supplying each 
kymograph image through the internet. The result of the 

analysis is given by a set of points (𝑠𝑘,𝑖 , 𝑡𝑘,𝑖), 𝑖 = 1, … , 𝑁𝑘 , 𝑘 =
1, … , 𝐾, where K and 𝑁𝑘 denote the number of trajectories and 
the number of points on the k-th trajectory, respectively. 

C. Detection of Moving Trajectories 

As can be seen in Fig. 1-E, detected trajectories consist of 
stationary and moving curves. Since the purpose of the 
kymograph analysis is to extract motion information of moving 
particles, stationary trajectories are not examined and they need 
to be removed in a preliminary stage. First, the motion 
deviation of a trajectory is defined as the difference between 
the maximum and the minimum horizontal positions, i.e. ∆𝑥 or 
∆𝑦. The local speed at each location can be approximated as 

𝑣 ≈
∆𝑠

∆𝑡
, where ∆𝑠 denote the difference of positions between 

neighboring points. Both the motion deviation and the local 
speed can be computed easily using the trajectory values. 

Using the motion deviation and the local speed, the 
differences of moving and stationary trajectories can be defined 
as follows. 

 Stationary trajectories have small motion deviations:  
|∆𝑥| < 𝜏𝐷  or |∆𝑦| < 𝜏𝐷 , where 𝜏𝐷  is a small value 
(such as 5 pixels) 

 The local speed of a point on stationary trajectories is 
small: |𝑣| < 𝜏𝑉, where 𝜏𝑉 is a small speed value. 

D. Integration of Multiple Trajectories 

Each kymograph depicts particle motions on a single axon. 
To find the motion trajectories on the entire image sequence, 
the results from all kymographs need to be integrated. For 
instance, there have been 11 axons on Fig. 1-C. Since there are 
kymographs projected into horizontal and vertical directions, 
the trajectory integration is performed twice through the 
horizontal and the vertical directions. The integration of the 
detected trajectories along two orientations is performed as 
follows. 

 Perform trajectory analysis for each kymograph. 

 Integrate trajectories from kymographs along the 
horizontal and the vertical directions separately. 

From the integrated trajectory information, it is 
straightforward to derive the motion information including the 
number of moving particles at each time, the speed of each 
particle, the variation of speeds, etc. 

IV. EXPERIMENTAL RESULTS 

In this research, experiments have been performed using a 
set of real image sequences, acquired from a microfluidic 
culture platform using a confocal microscopy. Each 
experimental video consists of one-hundred 256x256 images, 
acquired at fixed time intervals. The purpose of the analysis is 
to detect the trajectories of moving particles. From the 
trajectories, motion parameters can be computed including the 
number of moving particles, the length of motion, the widths of 
motions, and so on. 

Each video was analyzed through the procedure depicted in 
Fig. 2. A consolidated image was composed from the video to 
reveal the mitochondria trajectories. Since axons have 
structures similar to kymographs, we have applied the 
kymograph analysis software available through the internet, to 
detect axon structures. An example of detected axon structures 
is illustrated in Fig. 1-C. Since several axons are usually 
present in a single consolidated image, it is necessary to 
generate a separate kymograph for each axon. Moving 
trajectories are detected from each kymograph. The whole 
motion information is obtained by combining the motion 
information obtained from the kymograph analysis applied to 
each separate axon. 

 

Fig. 2. Proposed Kymograph Analysis Procedure. 
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A. Accuracy Evaluation of the Trajectory Detection 

In order to measure the accuracy of the kymograph analysis 
technique in this application area, a set of test images were 
analyzed manually, and ground truth trajectory data were 
prepared. The performance of the trajectory detection was 
quantified using the ground truth particle position data 
prepared manually by tracing the trajectory lines on each 
kymograph. The detected particle locations were compared 
with the ground truth positions. A detected point was classified 
as a true positive match, if there is a corresponding point on the 
ground data. Since a small amount of deviation may arise in 
point location, a point on the same time position located within 

3-pixel horizontal distance was classified as a matched 

correspondence. A detected point with no ground 
correspondence is classified as a false match. 

Ground truth data were prepared for four representative 
kymographs obtained from four different image sequences. 
Since the complexity of the input image sequences tend to be 
similar on different image sequences, similar levels of the 
analysis performance have been observed on other sequence 
images.  

Ground truth and detected trajectories are shown in Fig. 3. 
Since only motion information is utilized in this research, only 
moving trajectories are denoted in the ground truth images.  
expressed as time-position pair. Notice that each trajectory 
curve looks like a collection of discrete points rather than a 
continuous curve, since the trajectory consists of a separate 
point representing each time-position location. The detected 
points can be seen at the bottom row of Fig. 3. 

The accuracy of the trajectory detection is measured using 
two parameters, Recall and Precision, defined as follows. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑛 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 𝑝𝑜𝑖𝑛𝑡𝑠
                (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑛 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 𝑝𝑜𝑖𝑛𝑡𝑠
               (2) 

Recall and Precision for the test kymographs are shown on 
Table I. Since Recall is approximately above 85%, it can be 
seen that most moving particles are detected correctly. 

The results of the kymograph analysis are a sequence of 
time-position data pair. In Fig. 3, the stationary and the moving 
trajectories are denoted using different colors. This 
classification was carried out using the motion detection rules 
described in Section III-C, that motion trajectories have narrow 
widths in stationary curves. It can be seen that Precision is 
lower than Recall. The reason for this phenomenon can be 
observed by comparing ground truths and detection results in 
Fig. 3, where it can be seen that some segments are mixtures of 
stationary and moving parts, while only moving parts are 
marked in the ground truth data. Since the purpose of the 
analysis is to detect the moving parts, the value of Recall is 
more important than that of Precision. 

B. Integration of the Detected Kymograph Trajectories 

To find the motion trajectories from the entire image 
sequence, the results from all kymographs detected from 
multiple axons are integrated. There have been 11 axons on 
Fig. 1-C. Fig. 4 and 5 depict the detected trajectories from the 
horizontally (red) and the vertically oriented (blue) axons in 
Fig. 1-C. Here, moving and stationary trajectories are denoted 
using the red and the green colors, respectively. It can be seen 
that moving trajectories have been detected correctly. From the 
detected trajectories, motion parameters including the amount 
of movement and the speed can be computed. 

TABLE I. DETECTION RATES 

Kymograph Kymo 1 Kymo 2 Kymo 3 Kymo 4 

# Detected points on 
ground truth (A) 

378 283 445 129 

# Ground truth points 
(B) 

405 331 447 142 

# Detected points (C) 481 389 593 222 

Recall (A/B) 0.933 0.855 0.996 0.908 

Precision (A/C) 0.786 0.728 0.750 0.581 

 

Fig. 3. Comparison of the Detected Trajectories and Ground Truth Data. The Vertical Axis of each Image Denotes the Time Axis. 
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Fig. 4. Results for the Horizontally Oriented Kymographs Generated from the Axons in Fig. 1. 

 

Fig. 5. Results for the Vertically Oriented Kymographs Generated from the 

Axons in Fig. 1. 

V. CONCLUSION 

An integrated procedure has been described for tracking 
moving object trajectories from image sequences acquired 
from a microfluidic culture platform. The proposed approach is 
based on the kymograph analysis. Since particles move along 
the axons in this application, the axon structures need to be 
detected first from the input image sequence. We apply a 
kymograph analysis technique to detect axon structures from 
the consolidated image of the input image sequence. While the 
input is a 2D planar image, by regarding the vertical direction 
as the time axis, vertically oriented axons can be detected by a 
kymograph analysis process.   Similarly, horizontally oriented 
axons can be detected by applying the kymograph analyzer 
after rotating the image by 90 degree. Once axons are found 
from input image sequences, multiple kymographs are 
generated along the detected axons. 

A trajectory detection process is then applied to each 
kymograph data set. To obtain the particle motion information 
from the entire image sequence, the integration process is 
applied to each horizontal and vertical kymograph data set. The 
proposed technique is applied to image sequences in our 
application area. It has been demonstrated that practical results 
can be obtained using time-lapse image sequence data, where 
the detection accuracy is comparable to other kymographic 
analysis. 
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