
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 2, 2022 

171 | P a g e  

www.ijacsa.thesai.org 

Implementation of Password Hashing on Embedded 

Systems with Cryptographic Acceleration Unit 

Holman Montiel A, Fredy Martínez S, Edwar Jacinto G 

Facultad Tecnológica 

Universidad Distrital Francisco José de Caldas 

Bogotá, Colombia 
 

 

Abstract—In this modern world where the proliferation of 

electronic devices associated with the Internet of Things (IoT) 

grows day by day, security is an imperative issue. The criticality 

of the information linked to the various electronic devices 

connected to the Internet forces developers to establish 

protection mechanisms against possible cyber-attacks. When 

using computer equipment or servers, security mechanisms can 

be applied without having problems with the number of 

resources associated with this activity; the opposite is the case 

when implementing such mechanisms on embedded systems. The 

objective of this document is to implement password hashing on a 

FRDM-K82F development board with ARM® Cortex™-M4 

processor. It describes the basic criteria necessary to aim at 

moderate levels of security in specific purpose applications; that 

can be developed taking advantage of the hardware 

cryptographic acceleration units that these embedded systems 

have. Performance analysis of the implemented hash function is 

also presented, considering the variation in the number of 

iterations performed by the development board. The validation 

of the correct functioning of the hashing scheme using the SHA-

256 algorithm is carried out by comparing the results obtained in 

real-time versus an application developed in Python software 

using the PyCryptodome library. 

Keywords—Cryptography; password hashing; embedded 

systems; cryptographic acceleration hardware; SHA-256 

I. INTRODUCTION 

One of the current priorities with the boom and great 
demand for devices associated with the Internet of Things 
(IoT) [1], in the face of multiple interconnectivity 
environments is security [2],[3]. While it is true that day by day 
the development of specific solutions or electronic control units 
associated with communication processes; establishes a great 
demand by this society interconnected to the web [4]; as 
developers, it must be considered that there are a wide variety 
of tools both software and hardware [5]; which allow to 
improve and optimize security against the handling of critical 
information [6],[7]. The possible vulnerability and impact on 
the integrity of the information make security a key point in 
any electronic development; thus, establishing a primordial 
factor in the selection criteria of the possible users of these 
technological solutions [8]. 

A fundamental characteristic that must be considered when 
implementing IoT on embedded systems is that most of these 
devices have limitations associated with computational power 
and speed [9], [10]. Although this could be a limitation when 
developing electronic control units with cryptographic 

functions [11]; many applications are being developed that 
make use of hardware coprocessors that facilitate the 
implementation of various cryptographic algorithms and hash 
functions [12], [13]. This allows the use of these embedded 
systems to be applied not only in encryption and decryption 
tasks [14], but also in hashing and authentication in complex 
environments with limited computing resources [15],[16]. The 
current literature shows us a great variety of security 
implementations on embedded systems in which performance 
analysis is performed for both symmetric and asymmetric 
algorithms [17], [18]; this shows us that cryptographic 
hardware continues in a constant process of evolution due to 
the great demand for efficient [19], reliable, portable [20], and 
secure IoT technological products [21]. 

In this complex scenario of IoT interconnectivity, some 
organizations have fallen prey to cyber-attacks in which they 
have been exposed thanks to vulnerabilities exploited by poor 
password protection practices. The exploitation of this 
vulnerability has managed to expose many user accounts and 
credentials; significantly affecting the reliability of the use of 
web applications and embedded solutions used in home 
automation and industrial areas [6],[12],[14]. One way to 
counteract this phenomenon and at the same time guarantee a 
high level of security related to user accounts is through the 
implementation of password hashing schemes (PHS) [13]. 

Considering the above, this work aims to show the 
implementation and validation of a password hashing on the 
FRDM-K82F embedded system. The document intends to 
develop in a simple and practical way a first approach to the 
use of Arm Mbed TLS libraries; thus, providing a basic and 
functional solution for those who make their first approach to 
the use of processors with cryptographic acceleration units. A 
performance analysis associated with the variation in the 
number of iterations used for the generated summary function 
is also shown. 

This contribution is presented in the following sections, 
which are organized as follows: Section II describes the basic 
theoretical concepts associated with the use of embedded 
systems with cryptographic acceleration unit. Section III 
describes the implementation and development of the proposal. 
Section IV presents the results obtained, and finally, the 
conclusions and future work are presented in Section V. 

II. METHODOLOGY 

The constant evolution of digital devices in terms of their 
cryptographic modules has allowed a lot of opportunities; 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 2, 2022 

172 | P a g e  

www.ijacsa.thesai.org 

associated with the linking of security parameters in the 
development of specific purpose applications. Using the 
FRDM-K82F development platform, a step-by-step 
implementation of password hashing is carried out, making use 
of the Cryptographic Acceleration Unit (CAU). The validation 
and verification of the SHA-256 algorithm and the respective 
results are performed by means of the Python PyCryptodome 
library; this to verify the correct operation of the proposed 
solution on the embedded system used. 

A. Cryptographic Acceleration Unit 

A wide variety of embedded systems can be found in the 
market that has this type of module incorporated in their 
architecture, see Fig. 1. In general, terms, the Cryptographic 
Acceleration Unit (CAU) is a ColdFire® coprocessor that is 
accessed by the CPU using specialized hardware operations 
[21], [22]. The purpose of this unit is to increase the 
performance of software-based hashing and encryption 
functions, thus guaranteeing acceleration and high performance 
when using algorithms such as DES, 3DES, AES, MD5, SHA, 
among others. 

Also available are some Kinetis® MCU processors that 
have the memory-mapped cryptographic acceleration unit 
(mmCAU), a coprocessor that is connected to the processor's 
private peripheral bus (PPB), as shown in Fig. 2. These units 
are focused on improving the performance of software-based 
security encryption/decryption operations. 

B. Password Hashing 

One way to increase security in any communication and 
information transfer process associated with applications that 
link user accounts with their respective access passwords; is to 
move from storing passwords in plain text to using a hash 
function on the respective password, as shown in Fig. 3. A 
hash function makes it possible to encrypt a password by 
taking advantage of the fact that this type of algorithm; takes 
any size of data and converts it into a fixed length of 
information [13]. To be more precise, the aim is to make it 
impossible to recover the password from the generated hash. 

 

Fig. 1. Block Diagram of the CAU Module [22]. 

 

Fig. 2. mmCAU Block Diagram [23]. 

 

Fig. 3. Suggested Password Storage. 

As a good security practice, it is not recommended to store 
passwords in unencrypted text; since any attacker could access 
them and obtain all the information directly. By storing the 
hash of these passwords and taking advantage of the fact that 
these functions are not reversible, the security vulnerability of 
the respective system is significantly reduced. The validation 
process of this technique is simple; initially, the input data is 
taken, the same hash function is executed, and then it is 
analyzed if this result matches the information stored in the 
password store, see Fig. 4. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 2, 2022 

173 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 4. Password Validation. 

III. IMPLEMENTATION 

Initially, use is made of the PyCryptodome libraries, which 
is an autonomous package of low-level cryptographic 
primitives supported by Python. This software tool allows an 
external validation of the operation of the cryptographic 
process to be implemented. It can be said that first the 
operational validation of the process will be performed by 
means of software simulation; to later compare the results 
obtained with the implementation on hardware with the 
FRDM-K82F platform, see Fig. 5. 

 

Fig. 5. Source Code used in Python for Validation of Results. 

As the fundamental objective of the application is to make 
use of the cryptographic acceleration unit (CAU) of the 
FRDM-K82F card; which has an ARM® Cortex®-M4 core 
running at up to 150 MHz, with KB256 of Flash and 256 KB 
of RAM. The source code is developed using the Mbed OS 
compiler, which provides a comprehensive SSL/TLS solution 
called Arm MbedTLS [24]. This library simplifies the 
integration of cryptographic solutions because it is compact 
and generic; it should be noted that it can only be used in 
ColdFire and Kinetis devices with CAU or mmCAU hardware 
coprocessors. The following encryption/decryption algorithms 
and hash functions can be used with this library: AES128, 
AES192, AES256, DES, 3DES, MD5, SHA1, and SHA256. 

This implementation was carried out using the Mbed-
Studio compiler; this has a large repository of examples 
associated with the security schemes [25]. It must be 
considered that at the moment of creating the source code and 
loading the libraries; the compiler must initially evaluate if the 
processor has the cryptographic acceleration unit required for 
the use of the respective libraries; based on this concept, some 
components of the source code would be as follows: 

#include "mbed.h" 

#include "mbedtls/sha256.h" /* SHA-256 only */ 

#include "mbedtls/md.h" /* generic interface */ 

#include < cstdio> 

#if DEBUG_LEVEL > 0 

#include "mbedtls/debug.h" 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 2, 2022 

174 | P a g e  

www.ijacsa.thesai.org 

#endif 

#include "mbedtls/platform.h" 

#include < string.h> 

The call to the Hash function is quite simple, the definition 
of the respective input and output variables must be 
considered; for this case it must be considered that the output 
associated to a SHA256 function is of 32 bytes, with respect to 
the input it must be remembered that it can be of any length. 
The parameters and input variables would be: 

static const char dato_input[] = "passwordHMA5m8k@q1$"; 

static const unsigned char *input_buffer = (const unsigned 

char *) dato_input; 

static const size_t dato_len = strlen(dato_input); 

With respect to the execution of the SHA function, four 
functional requirements must be considered. These are: Data 
buffer, buffer length, Output buffer and a parameter defining 
whether to use the full SHA-256 or the SHA-224 variant. In 
this case, this value must be 0 (to use SHA-256). 

unsigned char output1[32]; /* SHA-256 outputs 32 bytes */ 

unsigned char output2[32]; 

t.start(); 

mbedtls_sha256(input_buffer, dato_len, output1, 0); 

for (int i=1; i<=99999; i++){ 

mbedtls_sha256(output1, 32, output1, 0); 

    } 

    t.stop(); 

IV. RESULTS 

To validate the effectiveness of the password hashing 
implementation on the selected hardware, we proceeded to 
compare the result obtained with the implementation done 
entirely on the PC using pyCryptodome, (see characteristics in 
Table I). The execution times were measured both in the PC 
implementation and in the embedded system, performing a 
variation between the number of iterations associated with the 
selected hash function. 

As general concepts, a test password of 11 bytes in length 
was used, encrypted with a SHA256 algorithm (password + 
salt). The salt used was eight bytes long. For the information 
associated with the salt, a test constant was used and there was 
no code segment associated with its generation by the 
embedded system. The validation and verification were 
performed by comparing the output of the simulation 
performed in Python versus the result given by the serial port 
of the development board. Comparisons of up to 100,000 
iterations were performed, demonstrating the full functionality 
of the implementation, see Fig. 6 and Fig. 7. 

TABLE I.  CHARACTERISTICS OF THE DEVICES USED 

Characteristics of the processors used 

Platform: Embedded System PC 

Reference: FRDM-K82F ROG GL553VD 

Processor: 
Kinetis MK82FN256VLL15 

(ARM® Cortex™-M4) 

Intel® Core™ 

i7-7700HQ 

Clock frequency: 150 MHz 2.8 GHz 

RAM:  256 KB 12 GB 

 

Fig. 6. Comparison of Software vs. Hardware Results. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 2, 2022 

175 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 7. Execution Time on the FRDM-K82F Board. 

V. CONCLUSION AND FUTURE WORK 

This document presents simply and easily a password 
hashing scheme that can be implemented on any embedded 
system with cryptographic acceleration hardware; it provides 
the key concepts so that people who are starting in the subject 
of embedded cryptography can begin to incorporate these 
security measures for their respective developments. It shows 
that it is possible to make use of a technological solution that 
offers a moderate level of security using electronic devices 
with limited computational resources. Although in most IoT 
applications, communication between devices is short term and 
there is not a high rate of information transfer; the protection of 
session passwords becomes a fundamental objective in terms 
of security. It is hoped that this type of examples will 
encourage developers to incorporate new methodologies for 
protecting information on the design of IoT devices. 

As future work, we intend to develop specific application 
hardware to enable digital signatures by implementing hash 
functions and lightweight encryption algorithms. 

ACKNOWLEDGMENT 

This work was supported by the Universidad Distrital 
Francisco José de Caldas, in part through CIDC, and partly by 
the Technological Faculty. The views expressed in this paper 
are not necessarily endorsed by the university. The authors 
thank the research group ARMOS for supporting the 
development of the code and the implementation on hardware. 

REFERENCES 

[1] S. Surendran, A. Nassef and B. D. Beheshti, "A survey of cryptographic 
algorithms for IoT devices," 2018 IEEE Long Island Systems, 
Applications and Technology Conference (LISAT), pp. 1-8, 2018. 

[2] B. Vinayaga Sundaram, Ramnath M., Prasanth M. and Varsha Sundaram 
J., "Encryption and hash based security in Internet of Things," 2015 3rd 
International Conference on Signal Processing, Communication and 
Networking (ICSCN), pp. 1-6, 2015. 

[3] M. El-Haii, M. Chamoun, A. Fadlallah and A. Serhrouchni, "Analysis of 
Cryptographic Algorithms on IoT Hardware platforms," 2018 2nd Cyber 
Security in Networking Conference (CSNet),  pp. 1-5, 2018. 

[4] P. Flood and M. Schukat, "Peer to peer authentication for small 
embedded systems: A zero-knowledge-based approach to security for 
the Internet of Things," The 10th International Conference on Digital 
Technologies 2014, pp. 68-72, 2014. 

[5] C. Profentzas, M. Günes, Y. Nikolakopoulos, O. Landsiedel and M. 
Almgren, "Performance of Secure Boot in Embedded Systems," 2019 
15th International Conference on Distributed Computing in Sensor 
Systems (DCOSS), pp. 198-204, 2019. 

[6] R.V. Rashmi and A. Karthikeyan, "Secure boot of Embedded 
Applications - A Review," 2018 Second International Conference on 

Electronics, Communication and Aerospace Technology (ICECA), pp. 
291-298, 2018. 

[7] A. Mundra, A., & H. Guan, “Secure Boot on Embedded Sitara 
Processors”. Texas Instrument, 2018. 

[8] N. B. Silva, D. F. Pigatto, P. S. Martins, & K.C.Branco, “Case studies of 
performance evaluation of cryptographic algorithms for an embedded 
system and a general purpose computer”, Journal of Network and 
Computer Applications, Vol. 60, pp. 130-143, 2016. 

[9] N. J. G. Saho, & E. C. Ezin, “Survey on Asymmetric Cryptographic 
Algorithms in Embedded Systems”, IJISRT, vol 5, no. 12, pp. 544-554, 
2020. 

[10] A. J. Acosta, T. Addabbo, & E. Tena‐Sánchez, “Embedded electronic 
circuits for cryptography, hardware security and true random number 
generation: an overview”, International Journal of Circuit Theory and 
Applications, vol. 45, no. 2, pp.145-169, 2017. 

[11] Z. Musliyana, T. Y. Arif, & R. Munadi, “Security enhancement of 
advanced encryption standard (AES) using time-based dynamic key 
generation”, ARPN Journal of Engineering and Applied Sciences, vol 
10, no. 18, pp. 8347-8350, 2015. 

[12] W. Wang et al. “XMSS and Embedded Systems”. In: Paterson K., 
Stebila D. (eds) Selected Areas in Cryptography – SAC 2019. SAC 
2019. Lecture Notes in Computer Science, vol 11959. Springer, Cham, 
pp. 1-33, 2020. 

[13] G. Hatzivasilis, I. Papaefstathiou, C. Manifavas, I. Askoxylakis, 
“Lightweight Password Hashing Scheme for Embedded Systems”, In: 
Akram R., Jajodia S. (eds) Information Security Theory and Practice. 
WISTP 2015. Lecture Notes in Computer Science, vol 9311. Springer, 
Cham, 2015. 

[14] A. Flores-Vergara, E. Inzunza-González, E. E. García-Guerrero, O. R. 
López-Bonilla, E. Rodríguez-Orozco, J. M. Hernández-Ontiveros, E. 
Tlelo-Cuautle, “Implementing a chaotic cryptosystem by performing 
parallel computing on embedded systems with 
multiprocessors”, Entropy, vol. 21, no. 3, pp. 1-28, 2019. 

[15] M. Mozaffari-Kermani, K. Tian, R. Azarderakhsh and S. Bayat-
Sarmadi, "Fault-Resilient Lightweight Cryptographic Block Ciphers for 
Secure Embedded Systems," in IEEE Embedded Systems Letters, vol. 6, 
no. 4, pp. 89-92, Dec. 2014. 

[16] P. Branco, L. Fiolhais, M. Goulão, P. Martins, P. Mateus, and L. Sousa, 
“ROTed: Random Oblivious Transfer for embedded devices”, TCHES, 
vol. 2021, no. 4, pp. 215–238, Aug. 2021. 

[17] L. Baldanzi, L. Crocetti, F. Falaschi, M. Bertolucci, J. Belli, L. Fanucci, 
and S. Saponara, "Cryptographically Secure Pseudo-Random Number 
Generator IP-Core Based on SHA2 Algorithm" Sensors, vol. 20, no. 7, 
1869, pp. 1-13, 2020. 

[18] S. Falas, C. Konstantinou and M. K. Michael, "A Hardware-based 
Framework for Secure Firmware Updates on Embedded Systems," 2019 
IFIP/IEEE 27th International Conference on Very Large Scale 
Integration (VLSI-SoC), pp. 198-203, 2019. 

[19] Z. He, W. Chen, X. Xu, L. Harn, & M. Wan, “Reliable and efficient 
PUF‐based cryptographic key generator using bit self‐tests”, Electronics 
Letters, vol. 56, no.16, pp. 803-806, 2020. 

[20] Z. Gu, G. Han, H. Zeng and Q. Zhao, "Security-Aware Mapping and 
Scheduling with Hardware Co-Processors for FlexRay-Based 
Distributed Embedded Systems," in IEEE Transactions on Parallel and 
Distributed Systems, vol. 27, no. 10, pp. 3044-3057, 1 Oct. 2016. 

[21] K. Q. Ye, M. Green, N. Sanguansin, L. Beringer, A. Petcher, and A. W. 
Appel, “Verified Correctness and Security of mbedTLS HMAC-
DRBG”. Proceedings of the 2017 ACM SIGSAC Conference on 
Computer and Communications Security (CCS '17), 2017. 

[22] L. Casado, “Soluciones de seguridad de Freescale parte III: aceleradores 
criptográficos en la familia de procesadores Coldfire”, Revista española 
de electrónica, (649), pp.  76-80, 2008. 

[23] Freescale, “Kinetis MCUs Securing the Internet of Tomorrow”, Rev2,  
pp. 1-12, 2015. 

[24] ARM mbed,“mbed TLS v2.16.1 source code documentation”, 2021. 

[25] ARM mbed, “Tutorial and official examples”, Repository Mbed OS 6, 
2021. 


