
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

182 | P a g e

www.ijacsa.thesai.org

Effective ANN Model based on Neuro-Evolution

Mechanism for Realistic Software Estimates in the

Early Phase of Software Development

Ravi Kumar B N
1

Dept. of Computer Science and Engineering

BMS Institute of Technology and Management

Bangalore, India

Dr. Yeresime Suresh
2

Dept. of Computer Science and Engineering

Ballari Institute of Technology and Management

Ballari, India

Abstract—There is no doubt that the software industry is one

of the fastest-growing sectors on the planet today. As the cost of

the entire development process continues to rise, an effective

mechanism is needed to estimate the required development cost

to control better the cost overrun problem and make the final

software product more competitive. However, in the early stages

of planning, the project managers have difficulty estimating the

realistic value of the effort and cost required to execute

development activities. Software evaluation prior to development

can minimize risk and upsurge project success rates. Many

techniques have been suggested and employed for cost

estimation. However, computations based on several of these

techniques show that the estimation of development effort and

cost vary, which may cause problems for software industries in

allocating overall resources costs. The proposed research study

proposes the artificial neural network (ANN) based Neural-

Evolution technique to provide more realistic software estimates

in the early stages of development. The proposed model uses the

advantages of the topology augmentation using an evolutionary

algorithm to automate and achieve optimality in ANN

construction and training. Based on the results and performance

analysis, it is observed that software effort prediction using the

proposed approach is more accurate and better than other

existing approaches.

Keywords—Software cost estimation; COCOMO-II; neuro-

evolution; artificial neural network; genetic algorithm

I. INTRODUCTION

The software industry is undoubtedly one of the greatest
innovations in the modern world [1]. The software
development process broadly requires various discrete actions
such as understanding the client requirements, analysis,
preparing the user requirement specification, technical
requirement specification, software requirement specification,
and hardware requirement specification in the initial stages [2].
Further actions architecture design of the software, design of
the modules, coding, integration, testing, and debugging. The
overall development cost estimation depends on the individual
cost and efforts required for each of the actions involved in the
SDP. However, estimating the cost in software development
has been a challenge facing researchers and professionals in
software engineering over the past few years. The purpose of
cost estimation is to help with decisions made during the
development of a software project. Many factors affect the

accuracy of cost estimation. If the cost is underestimated, the
project may be delayed, lack implemented features, or not be
completed. On the other hand, an overestimated cost can lead
to higher software costs, a waste of resources, and even loss of
opportunities for competing markets [3]. These factors can
have negative consequences for the project, the development
organization, and the customers. Thus, the quality of estimates
can affect the quality of the software project.

Many software cost estimation models have been
developed and improved, which can be categorized into
algorithmic and non-algorithmic models [4]. In algorithmic
cost model (ACM), typically a mathematical model or
expressions are formulated using factors like i) source line of
codes (SLOC), ii) risk calculation, and iii) skill levels obtained
from the historical records; however, it fails to enumerate
many vital factors including i) complexities, ii) reliability and
experiences of the projects and due to this, it leads to the
imprecise estimation. The constructive cost model- COCOMO
is the most popular method in this category [5]. Further, it has
evolved as COCOMO-II and has been widely used to design
software cost predictors with various strategies considering
basic cost indicators like lines of codes (LOC) and the function
points [6-7]. The non-algorithmic approach is basically
concerned with soft-computing approaches that overcome the
limitations of the algorithmic model. The soft-computing
approaches handle a better approximation of the solutions of
the complex problems where many nonlinear and uncertain
parameters are involved. Table I highlights the comparison of
algorithmic and non-algorithmic models. Specifically, the
existing approaches for the estimation, such as COCOMO and
iii) function point-based model, all lack providing desirable
accuracy as they ignore many of the critical drivers. So, these
methods limit their applicability in the real-time scenario. In
order to address these challenges, the soft-computing
approaches are being extensively attracted the focus of the
researchers by including approaches either individual or by
hybrid techniques like- swarm optimization, fuzzy logic,
genetic algorithm, machine learning, and neural network [8-
10]. The advantage of the soft-computing approach is that it
approximates the solutions created by the mess due to
nonlinear factors that are uncertain and imprecise. In recent
years, neural networks have gained prominence in software
development. However, the literature presents several studies
on applying neural networks and machine learning techniques

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

183 | P a g e

www.ijacsa.thesai.org

to estimate cost [11-12]. However, there is no consensus on
which method best predicts software costs. The neural network
architecture involves different configuration and
hyperparameters such as layers, neuron nodes, transfer
function, and learning parameters (weights and biases).
Generally, the design of the learning model is specific to the
particular data set and problem context. If the same model is
introduced with a different dataset, it may not perform
similarly. Therefore, the parameters mentioned above affect
network performance. However, the evolution of models that
produce good results in different environments is still a driving
force for current research work. This paper suggests a unique
approach to software development cost estimation based on
Neuro-evolution. The proposed Neuro-evolution approach
implements a mechanism of artificial intelligence (AI) that
employs an evolutionary algorithm to generate optimal
Artificial Neural Network (ANN) architecture. Further, the
constructed ANN model in the proposed work is trained to
adopt characteristics of software attributes using the previous
dataset to produce accurate software estimates.

TABLE I. ANALYSIS OF ALGORITHMIC AND NON-ALGORITHMIC

TECHNIQUES

Techniques Category Advantages Limitations

Analogy

N
o
n
-A

lg
o

ri
th

m
ic

Independent of new

resources

Dependent on past
information

& huge data

requirement.

Expert-based
Highly responsive
and fast process

Biased outcome

Bottom-Up Stable
Inaccurate timings &

needs huge data

Top-Down Faster & low cost
less stable outcome

& decisions

COCOMO

A
lg

o
ri

th
m

ic
 Flexible analysis,

input modification, &

clear outcomes

Inaccurate estimates

& practically

infeasible

Function

Point
Tool independent Not good enough

Neural

Network

Machine

learning

Precise predictive

estimates

Highly dependent on
the dataset and no

standard rule for
implementation

The ANN model constructed is a feedforward neural
network utilizing backpropagation learning mechanisms. The
entire configuration and learning parameter is realized with the
evolutionary algorithm, particularly a genetic algorithm (GA)
implemented via the Neuro-evolution concept. The proposed
study aims to achieve:

 A unique ANN model with an optimal selection of its
parameters, including the size of hidden layers, number
of neuron units at each layer, and transfer functions,
from the given interval (linear, Relu, and sigmoid).

 The stable training process of the constructed ANN
model that supports large training data samples.

 Self-adjustment in the weight and biases in an optimal
manner from the training samples.

 Enhanced generalization in the training phase and
efficient identification of dependencies of the predicted
values from the input observations.

 Higher accuracy in the prediction to achieve realistic
estimates of the cost required for the software
development compared to the existing techniques.

The remaining sections of this paper are organized in the
following manner: Section-II presents the review of the
literature in the context of software cost and effort estimations;
Section III discusses the material and methodology adopted in
the proposed work; Section IV presents the system design and
implementation procedure adopted in the proposed system;
Section V presents the outcome and discusses the performance
of the proposed system concerning its scope and effectiveness
compared to the existing approaches, and finally, the entire
contribution of the proposed work is summarized in
Section VI.

II. RELATED WORK

Currently, the literature consists of several types of
techniques and schemes for software cost estimation and
prediction. This section discusses some of the recent research
works carried in the context of enhancing prediction of the cost
required for software development.

A. Algorithmic Approaches

The algorithmic approaches are concerned with
mathematical models or expressions for cost predictions. To
date, various methods have been suggested based on the
algorithmic approaches. Work carried out by Kumawat, and
Sharma [13] focuses on estimating the size metric for
computing the cost required for the software project
development (SPD). The authors have used the function point
analysis (FPA) technique to compute cost estimates. The work
of Khan et al. [14] suggested a cost estimation model by
customizing features of the COCOMO-II that integrates
additional cost drivers for computing the estimates of actual
cost and effort required for SDP. Similarly, the study of Keil et
al. [15] has introduced a different version of COCOMO-II to fit
in the context of global software development (GSD). Two
additional cost drivers are added in this version of cost drivers
concerning collaboration and communication among different
sites. The researchers in the above-discussed literature have
tried to provide a significant contribution. All the factors are
determined and devised based on the literature analysis and
researchers' knowledge. However, there is a lack of empirical
support, effective benchmarking, and validation of the scope of
the suggested schemes. The authors in the study of Menzies et
al. [16] have introduced a tool that encompasses case studies
and previous experience to reduce the execution time, the effort
required, and the number of defects in the project's
development. Their results were obtained from small data sets,
and they recommend conducting other tests where large
volumes of information are handled. They do not explicitly use
control indicators from other areas of knowledge, for example,
to measure human and logistical resources. In the existing
literature, few extensions to COCOMO were suggested,
including dynamic multistage models to meet the analytical
needs of prototyping SPD models. These models consider the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

184 | P a g e

www.ijacsa.thesai.org

dynamics of varying requirements, system design, and other
strategies, but all lack desirable accuracy as they ignore many
critical drivers. So, these methods limit their applicability with
varied IDEs models, languages, and tools.

B. Non-Algorithmic Approaches

The non-algorithmic approach generally implies the soft-
computing techniques that handle ambiguity and nonlinearity
in the cost estimation techniques. The previous section
discusses the conventional approaches regarding software cost
and effort estimation. However, software project requirements
constantly change over time, which also causes the estimates of
cost and effort to change. The researchers realized the need for
soft computing approaches that include machine learning
techniques, fuzzy logic, and various metaheuristic method.
This section discusses the existing soft computing approaches
for software effort and cost estimation to analyze the current
research trend. Nandal and Sangwan [17] a hybrid Bat and
Grautational algorithm is used to estimate the effort of
software, whereas fuzzy regression models are used to
overcome the problem of imprecise in the dataset for the
prediction software effort (Nassif et al. [18]). All these
approaches provide a good solution but at the cost of huge
computational complexity. The application of evolutionary
algorithms like GA is used in the study of Zaidi et al. [19] and
Reena et al. [20] to optimize the coefficients of different
estimation models in the presence of nonlinear data. The
approach of intelligent techniques like the neural network deals
with the complexities and uncertainty in the software effort
estimation is presented in Venkataiah et al. [21] [22]. Few
recent research studies have also focused on applying the
hybrid approach in the SPD process. The joint approach of
nature-inspired algorithm and ML is adopted by authors in [23-
25] to compute the estimates of effort in project development.
The work of Singh et al. [26] evaluated different ML techniques
in the software effort estimation. The outcome reported in this
study showed better performance achieved by LR in terms of
error percentage analysis. A neural network approach [27-28]
has also been widely accepted in software cost estimation. In
the work of Choetkiertikul et al. [29], a long short-term
memory (LSTM) and recurrent highway network (RHN) are
employed to estimate the effort required for completing user
stories or issues. Also, Bayesian Network is used to estimate
the work time required in the SPD process [30].

C. Motivation of the Research

A wide range of schemes and techniques have been
described in the literature for predicting SPD's costs. The
recent literature has been observed more focused on applying
metaheuristic techniques, neural networks, and machine
learning algorithms. Building a model based on the dataset is
difficult due to the complexity and nonlinearity involved in the
data attributes. Also, the learning model's design is affected by
a variety of factors concerned with network parameters, data
modeling, and feature engineering. Apart from this, the factors
that determine the connectivity among nodes are complicated
to analyze before the training phase to develop an ideal
network. Generally, the building and training of the learning
model involves a lot of human effort and is specific to the
particular context, which is a significant concern as software
attributes vary over time. However, even small changes in

parameters can dramatically alter the result of the trained
model.

A unique model with accurate estimation is presented based
on the neuro-evaluation augmenting topology to evolve with an
optimized ANN architecture to address and overcome these
problems. This type of approach for the cost estimation
problem has not yet been applied to the software cost
estimation problem. The proposed study aims to explore the
effectiveness of augmenting the topology mechanism to
automate the construction and training of the ANN model that
generates better solutions.

III. MATERIALS AND METHODOLOGY

The material used for evaluating the proposed model is the
COCOMO dataset. The methodology used for designing and
developing the proposed ANN model for cost estimation is
based on the Neuro-evolution AI technique, which constructs
an optimal ANN model using a genetic algorithm. This section
briefly highlights the dataset and methodology adopted in the
proposed system.

A. Dataset

The COCOMO (Constructive Cost Model) is a widely
known software estimation model introduced by Barry Boehm
[31]. This model utilizes an approach of statistical correlation
between software attributes and lines of the code. In other
words, it basically adopts regression analysis with the
responsible parameters that are representative of the estimates
of the cost required in software development. In the current
research work, the study uses the COCOMO NASA-2 dataset
publicly accessible at the promise software engineering
repository. This dataset consists of a total of 24 vital cost
attributes from 93NASA projects.

B. Artificial Neural Network

In recent years, ANN has received wide attention to address
complex nonlinear problems in various fields such as computer
vision, image processing, natural language processing, and
many more. ANN can be viewed as a function approximator
that takes an input from observation state and maps to the
output state (decision), such that: () . Typically, the
function approximators consist of neurons, often referred to as
cells or units, composed of summation and activation
functions. The typical function of ANN cell is described in
Fig. 1 as follows:

Fig. 1. Typical Function of ANN Cell.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

185 | P a g e

www.ijacsa.thesai.org

In Fig. 1, the architecture of the basic ANN cell is
described where x is the n input such that: ,
 indicates synaptic weight, such that:
 . Each weight ' ' are associated with input
sample both together served as input to the cell function,
where all is multiplied with and are summed with biased
(b) using summation function as described as follows:

 () () () (1)

Equation 25 describes the dot product of vector and
vector and their summation is given in equation 26 as
follows:

∑ (2)

The weights' ' can be considered as a strength of the
association between cells, and it also decides how much
influence the given input will have on the cell's output. Another
essential component of the ANN cell is the offset value added
to the summation of dot product . This offset value is
often called a bias that allows shifting the phenomenon of the
nonlinear activation function to produce the expected result
correctly to the output state. Moreover, the w and b are also
often called learning parameters of the ANN model; the
relationship between w and b can be numerically represented
as follows:

() (3)

Equation 3 is then passed to the nonlinear function, which
is generally a sigmoid function that enables nonlinearity in the
ANN cell as numerically represented as follows:

 () (4)

Where denotes the output of the cell and nonlinear
sigmoid function. Sigmoid or Logistic: takes a real-valued
input and returns output in the range [0,1]. The ANN cells are
arranged into several layers, typically classified as input layers,
hidden layers and output layers all interconnected to each
other.

Usually, the topological structure of the artificial neural
network is selected based on empirical analysis, and the
learning parameters are determined using the training process,
which is related to the trial-and-error process. Therefore,
developing an ANN model is not a big problem. However,
training ANN models to accomplish certain tasks is a real
challenge. In this regard, Neuro-Evolution can be an effective
mechanism for determining the optimal topology of neural
networks and learning parameters (weights and biases) to
construct an ideal ANN model.

C. Neuro-Evolution of Augmenting Topologies

Neuro-Evolution of Augmenting Topology (NEAT) is a
neuroevolutionary AI technology that deals with topology
augmentation to automate the construction and training of
ANN models using evolutionary algorithms (EA) [32]. The EA
in NEAT is a kind of genetic algorithm (selection, crossover,
and mutation), which allows the evolution of ANN units,
learning parameters (weight and biases), and structure, trying
to determine stability between the fitness of the obtained

solution and assortment. Fig. 2 shows a sample visualization of
the topology construction of ANN using the NEAT algorithm.

(a) Initial Architecture of AN (b) Augmented Topologies of ANN.

Fig. 2. Topology Construction of ANN using NEAT.

In the above Fig. 2, visualization of initial topology (a) and
final topology construction of ANN model (b) after several
iterations is shown using NEAT. The flow process of topology
augmentation in the construction and training of the ANN
model is shown in Fig. 3.

The mechanism of topology augmentation for the optimal
ANN model requires the initialization of variables concerning
network hyperparameter and loss function. The initialization of
hyperparameter variables (such as learning rate and the number
of neurons) is crucial to determine the training performance of
the network during the crossover and mutation process of EA.
On the other hand, the loss function determines the optimality
of the neuron genes (bias) and synapse genes (weight) in the
learning phase. The loss function in NEAT is also regarded as
a fitness function, and a set of neuron genes and synapse genes
are called genomes.

Fig. 3. Flow Process of Topology Augmentation using NEAT.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

186 | P a g e

www.ijacsa.thesai.org

The algorithm generates a genome considering single input
and output layer during the initialization of an initial set of
solution candidates (population). Therefore, in the first
generation, the genomes only vary in weights and biases but
not network topology. After assessing the fitness value of each
genome, the algorithm stops if the termination criterion is met.
Otherwise, it generates a new set of solution candidates by
executing crossovers phase y between genomes and then
performs mutations in the subsequent offspring. All these
processes are carried out randomly, and prior to computing the
fitness of neuron genes and synapse genes, i.e., optimality of
weight and biases, the algorithm splits the set of solution
candidates into species (a particular class with the common
characteristics) based on the computation of the genetic
distance between each set of neuron weight and biases. The
computation of the genetic distance is carried out using the
following numerical equation:

 (5)

The above equation 6 represents the computation of
distance (d) based on the summation of neuron ()
and synapse (). The computation of the and
 are shown in equations 6 and 7 as follows:

 (() ())
 (6)

 (() ())
 (7)

Where and are the user-defined variables for fine-
tuning the model parameters.

IV. PROPOSED COST ESTIMATION MODEL

This section discusses the proposed cost estimation
implementation procedure based on the ANN model
determined using the NEAT algorithm discussed in the
previous section. In the proposed study, the cost estimation
problem is being studied as a regression problem rather than an
optimization problem to predict kilo line of code (KLOC). The
proposed cost estimation model design involves three core
modules; namely, i) data exploration module ii) data
preprocessing, and iii) design of ANN Model.

A. Dataset Exploration

In the current study, the data is available on the NASA
website. The data is downloaded by sending an HTTP GET
request to the respective URLs. When the request is sent, the
data can be retrieved in the form of an a.arff file. However, this
is not readable readily by our system. Hence, the data is sub-set
from the 'Arff file', which contains 10 parts, including {Title,
Past Usage, Relevant Information, Number of instances,
Number of attributes, Attribute information, Missing attributes,
Class distribution, Data}. The sub-set extracts only the Data.
The Data Store stores the data in the form of a simple CSV file.
Each column is separated by a (delimiter), and a new line
character separates each sample. Many data science platforms
can read and process this format, including pandas used in the
current study. The data imported into the numerical computing
environment (NCE) describes 124 entries ranging from the
index number 0 to 123 with 24 columns. The dataset consists
of 24 variables with type numeric and two categorical

variables. The memory taken to upload the data is more than
25 KB. Table II presents a statistical description of all the 25
predictors and an output KLOC. The closer shows that the
counts of all the parameters are identical to the number of
samples, which indicates there are no missing values. The
differential between the consecutive pair between {0, 25%},
{25%, 50%}, {50%, 75%} and {75%, 100%} sometimes are
not less than standard deviation () that means there is the
presence of outliers in the data, as well if RMSE and MAE of
the model have a difference more than mean KLOC then
outliers need to be corrected. Another important observation on
the dataset is that certain parameters show a specific
correlation with the effort. The correlations are either negative
correlation or positive correlation. In positively correlated
parameters, the effort decreases with a decrease in the
parameter's values, whereas, in negatively correlated
parameters, the effort decreases if the parameters increase. The
positively correlated parameters are the cost drivers (CD)
 {acap, pcap}, and negatively correlated parameters such that
CD {rely, Cplx, data, time, stor, sced}. Further, on the
analysis of co-efficient using linear regression analysis, it is
found that reduced reusability (ruse) and 'site' have a higher
multiplier effect on cost/effort compared to other CDs, as
evident in Fig. 4. It is clear that the correlation of data points
with the actual effort is highly non-uniform in nature.
Therefore, a custom feature engineering process for the
proposed ANN-based CEM is being carried out.

B. Preprocessing

In this section, the preprocessing operation is carried out
from the perspective of the feature engineering task and the
extraction of suitable input for the proposed learning model.
The core module in this stage contains i) correlation analysis
and ii) dataset normalization. In the correlation analysis, the
relationships between various variables are analyzed using a
mathematical approach that helps find correlations between
various cost drivers. The formula for correlation is shown in
the equation as follows:

∑() ()

√∑() ∑()
 (8)

Where, and denotes cost drivers, and are means
values of the cost drivers and is the correlation factor

between x and y that ranges from -1 to +1. As it can be
observed from the formula if x y, which means that x = ky,
then the following outcome is achieved when the same is
substituted in equation 9.

∑() ()

√∑() ∑()
 (9)

∑ ()

 √(∑())
 (10)

 ∑()

 ∑()
 (11)

 (12)

The above equation 12 proves that when the two cost
drivers are proportional, the correlation between them is one.
Similarly, when one cost driver reduces and another cost driver

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

187 | P a g e

www.ijacsa.thesai.org

increases, in other words, x=k-ly, then the correlation is said to
be -1 and considered as an ideal scenario when there is a
perfect linear relationship between two CDs. However, a zero
correlation refers to total randomness and no relation between
two CDs. The correlation plot for among CDs is given in
Fig. 5. It can be analyzed that there is a strong correlation

between the 'prec', 'flex', 'resl' and 'team'. As it can be observed
that except for exponential CDs such that {'prec', 'flex, 'resl',
'team' and 'pmat'} all other CDs have (>10%) correlation.
Hence, all variable turns out to be significant while building an
ANN model.

TABLE II. DESCRIPTIVE STATISTICS

Cost Drivers count mean std min 25% 50% 75% max

ACT_EFFORT 124.0 563.334677 1029.227941 6.00 71.50 239.500 581.750 8211.00

prec 124.0 3.110000 1.292409 0.00 2.48 2.480 4.9600 4.960000

flex 124.0 2.618952 1.041618 0.00 103 2.030 4.0500 5.070000

resl 124.0 3.688871 1.403707 0.00 2.83 2.830 5.6500 6.010000

team 124.0 1.837097 1.094185 0.00 1.10 1.100 3.2900 4.660000

pmat 124.0 5.602984 1.288265 2.84 4.68 4.680 6.2400 7.800000

relay 124.0 1.078522 0.103427 0.85 1.00 1.100 1.1000 1.740000

Cplx 124.0 1.189892 0.163256 0.87 1.17 1.170 1.2125 1.740000

Data 124.0 1.014919 0.117179 0.90 0.90 1.000 1.1400 1.280000

Ruse 124.0 0.996935 0.014605 0.95 1.00 1.000 1.0000 1.070000

Time 124.0 1.124516 0.184476 1.00 1.00 1.000 1.2900 1.630000

Stor 124.0 1.107097 0.163149 1.00 1.00 1.000 1.1700 1.460000

Pvol 124.0 0.927406 0.095456 0.87 0.87 0.870 1.0000 1.150000

Acap 124.0 0.880276 0.101079 0.71 0.85 0.850 1.0000 1.016667

Pcap 124.0 0.918817 0.085625 0.76 0.88 0.895 1.0000 1.000000

pcon 124.0 1.000544 0.035766 0.81 1.00 1.000 1.0000 1.205000

Apex 124.0 0.925712 0.083496 0.81 0.88 0.880 1.0000 1.220000

Plex 124.0 1.004590 0.080974 0.91 0.91 1.000 1.0000 1.190000

ltex 124.0 0.966781 0.089415 0.91 0.91 0.910 1.0000 1.200000

Tool 124.0 1.115847 0.078542 0.83 1.09 1.170 1.1700 1.170000

Sced 124.0 1.043065 0.063760 1.00 1.00 1.000 1.1400 1.140000

Site 124.0 0.925040 0.017623 0.86 0.93 0.930 0.9300 0.947500

docu 124.0 1.024940 0.057830 0.91 1.00 1.000 1.1100 1.230000

Physical Delivered KLOC 124.0 103.443901 141.455891 0.00 20.00 51.900 131.7500 980.000000

Fig. 4. Representation of Cost Multiplier.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

188 | P a g e

www.ijacsa.thesai.org

Fig. 5. Correlation Plot among CDs and KLOC.

In order to provide an input to a learning model, the input
data is required to be in a vector form. Feature vectorization
refers to converting a row of values into a usable vector. In this
phase of implementation, the data is normalized with the help
of the Min-Max scaling method. Further, each row is
transposed and fed to neural networks. The typical formula for
data normalization for feature vectors is numerically expressed
in equation 13.

 ()

 () ()
 (13)

Where, is the input data, i.e., original CDs feature
samples, which is normalized using min and max function and

rescaled in the range of [0,1], and normalized CDs feature
samples which are further fed to the proposed learning model.

C. Design of the Proposed ANN Model

This section discusses the ANN model design and its
implementation procedure with the support of the algorithmic
steps. The implementation procedure utilizes the NEAT library
of python executed in the Anaconda distribution. The dataset is
split into training and testing sets, where 80% of the dataset is
kept for the model training, and 20% of the dataset is kept for
model testing. The design configuration of the proposed ANN
model is carried out using neural evolution mechanisms, where
the features from the input observation are considered for
determining weights and biases. In this process, the optimality
of the ANN architecture is determined through topology
augmentation using a genetic algorithm. The configuration
parameters considered in the ANN construction consist of
hidden layers, neurons unit at each hidden layer, and a set of
transfer functions. The proposed study considers three transfer
functions: linear, Relu, and nonlinear sigmoid. On the other
hand, mean square error (MSE) is considered a fitness
function. Since the proposed study has considered MSE, the
fitness evaluation is carried out based the less error. Therefore,
the inverse roulette selection (IRS) technique is considered for
the proportionate fitness selection. The core configuration and
training process of ANN construction using topology
augmentation is shown in Fig. 6. The topology augmentation
begins with the initialization of population (a set of candidate
solutions), basically a pool of random neural networks. The
process iterates several times, which is also called a generation
where the algorithm chooses the optimal ANN based on the
fitness value, which is then further cross overed according to
the selection/decision process.

Fig. 6. Generation of Optimal ANN Model using Neuro-evolution Technique.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

189 | P a g e

www.ijacsa.thesai.org

Afterward, a new ANN model is generated, and after
mutation, an evolved version of the ANN model is further
carried out for the training process. All these processes
continue until the termination criteria are met. This termination
criterion is based on the specified number of generations,
wherein each generation, the trained model is evaluated and
selected according to the prediction performance. The
implementation steps for the above-discussed procedure are
mentioned as follows:

Algorithm:1 Neuro evolution training

Step 1. Create population pool

In this step, the population pool is generated, a set of random

neural networks with random layers and neurons and random

activation functions. Inputs to the algorithm are given in the

form of a finite number of layers and neurons and, at the same

time, a set of activation functions. The activation functions

allowed are, Sigmoid, Linear, and relu.

Step 2. Evaluate fitness of the population

The MSE fitness function measures the fitness of the

population. The MSE of the input data is considered with the

output in the training set.

Step 3. Select the fittest individual to reproduce
The inverse Russian roulette process selects the individuals for

the repopulation pool. The lower the fitness function value,

the higher the probability of the selection. The following

equation decides the probability of selection.

∑

 (14)

Step 4. Repopulate using copies of the fittest network

Most fit individuals among the population are selected and

used for further processing. The crossover of these individuals

is made here, and also mutation is applied according to the

mutation probability.

Step 5. Introduce normally distributed mutations to the

network weights

The neural networks are finalized in this step, and the newly

formed networks are introduced to the population pool.

V. RESULT AND PERFORMANCE ANALYSIS

This section discusses the performance metrics followed by
outcome analysis to justify the scope and effectiveness of the
proposed system.

A. Neuro Evolution Model Parameters

The design and development of the proposed system are
done using python programming language and execution on
Anaconda. The parameters considered for executing proposed
neuroevolutionary technique for obtaining optimal ANN model
is mentioned in Table III.

The parameter namely population size is the total number
of offspring (networks) present in each generation and total
number of generations is number of times the fitness is
measured. In 15% of the cases a new neuron is added to the
network. In 10% of the cases an existing neuron is deleted
from the network. Addition and deletion of neurons happen
within a single generation. Either relu, sigmoid or linear

activation functions are chosen. Initial bias is assigned
according to the normal distribution. Maximum value of
weights and bias are set to 30 however the minimum weight is
set to 0 in order avoid negative values. At the same time,
minimum bias is set to -5 in order to cancel out certain values.

Mutation probability is 5%. This is necessary to display the
stochastic nature of the system. After successful execution of
the neuro-evolution training, the proposed algorithm returns
optimal ANN model discussed in Table IV.

The architecture of the obtained ANN model is shown in
Fig. 7. After evolution through several iteration, the neuro-
evolution algorithm provides optimal number of layers and
number of neurons unit at each layer as mentioned in Table IV.

TABLE III. NEURO-EVOLUTION HYPERPARAMETERS

Parameters Values

Population size 200

Number of generations 100

Probability of adding a new neuron 0.15

Probability of deleting a neuron 0.1

Activation function Sigmoid, Relu, Linear

Initial bias according to normal distribution

Mutation probability 0.5

Minimum neuron bias -5

Maximum neuron bias 30

Minimum weight 0

Maximum weight 30

Weight mutation probability 0.5

TABLE IV. CONFIGURATION DESCRIPTION OF OBTAINED OPTIMAL ANN

MODEL

Layer
Number of

neurons
Trainable parameters

Layer 1 (input) 24 N/A

Layer 2 10 (24*10) + 10 = 250

Layer 3 5 (10 * 5) + 5 = 55

Layer 4 (output) 1 (5 * 1) + 1 = 7

Loss Function (MSE) - -

Activation Function (Relu) - -

Total neurons:

40

Total trainable parameters:

312

Fig. 7. Architecture of Optimal ANN Model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

190 | P a g e

www.ijacsa.thesai.org

B. Performance Metrics

1) MMRE (Mean Magnitude of Relative Error): The

MMRE performance metric is the most common basis for the

assessment of the effort estimation process. The matric

MMRE is computed for the given dataset of software projects

whose estimated efforts are compared with their actual efforts.

The estimation process with minimum MMRE is considered

to be the most accurate. The formula for calculating MMRE is

given as Eq. 15.

 ∑

⌊()⌋

 (15)

Where, y is the actual effort, and denotes estimated work
effort for project pi, and is the total project (PI) under
consideration. Mathematically, MMRE gives an average
percentage of error between y and .

2) MSE (Mean Squared Error): MSE is being calculated

in proposed implementations to analyze the performance of

proposed methods over other LR and SVR. MSE is more

critical function while building better models while optimizing

the learning model. The formula for calculating MSE is given

as Eq. 16.

∑ ()

 (16)

Where y is the actual effort, and denotes estimated work
effort for project pi, and is the total number of the project
under consideration.

3) RMSE (Root Mean Square Error): Since the unit of

MSE is squared, RMSE is the square root of MSE used since

the unit of MSE is where is the number of lines of code

in the project. Though MSE is significant for optimizing the

model, it would make no sense to human beings. Hence, the

study considers RMSE √ . Since the unit of RMSE is

 , it can be assumed that the most probable range for y can

be . The computation of RMSE can be

numerically represented as follows in eq. 17:

 √

∑ ()

 (17)

4) MAE (Mean Absolute Error): This is similar to

MMRE, representing average absolute error instead of

providing average percentage error. In MAE abs function is

used to remove the error from simple error, and the average is

calculated. Due to this, some of the extreme points, like

outliers, will provide less significance; hence this measure is

less sensitive to outliers. MAE can be numerically represented

as follows in eq. 18:

 ∑ ⌊()⌋

 (18)

Since the unit of MAE and output (actual cost) is the same,
MAE represents total cost overrun or underrun.

5) Pred: PRED is the de facto standard for cost model

accuracy measurement. It is called the percentage of

predictions falling within the K% of the actual known value.

The formula for PRED calculation is shown in equation 19:

∑ |

|

 (19)

Where k% is the percentage error between AE and EE,
PRED represents the percentage of a number of projects whose
cost overrun or underrun is below 25% in some researches
30%.

C. Outcome Analysis

This section discusses the outcome obtained for the
proposed system based on the comparative analysis. The
proposed study implements two machine learning algorithms
for the comparative analysis such as Linear regression (LR)
and supports vector regression (SVR). In order to compare
ANN with LR and SVR, the performance metrics MSE,
RMSE, and MAE are considered. To justify the scope of the
proposed optimal ANN model, the study also considers
performance analysis with similar existing approaches such as
estimation technique based on fuzzy-genetic [33] and based
Dolphin optimization technique [34], Bat optimization [34],
and combined Dolphin-BAT [34], the performance metric
PRED and MMRE is used. The quantitative outcome obtained
for the proposed system and its comparison is shown in
Table V.

As it can be observed in Table V, that LR, SVR is
associated with 151% and 128% errors, respectively, which
means the predicted/estimated value could be more than twice
as big as the actual value; therefore, making LR and SVR unfit
for real-world implementations. However, even the most basic
benchmarked algorithms (GA) are giving 29.9% error which is
below 30%, which is an acceptable cost overrun ratio for
software projects in general. It is also far below 77%, which is
the average cost overrun ratio of the NASA project from which
the dataset is collected. The overall numerical outcome shows
the proposed ANN's effectiveness regarding the cost overrun
ratio. Performance analysis regarding MAE is shown in
Table VI.

TABLE V. QUANTITATIVE OBSERVATION IN TERMS OF MMRE

Methods Performance Metrics

LR 1.510457

SVR 1.281522

GA 0.299469

BAT 0.1698

DOLPHIN 0.1665

DOLPHIN-BAT 0.14576

ANN 0.113518

TABLE VI. QUANTITATIVE OBSERVATION IN TERMS OF MAE

Methods Performance Metrics

LR 119.266357

SVR 81.872095

ANN 22.151230

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

191 | P a g e

www.ijacsa.thesai.org

The performance metric MAE is used to calculate the
performance of proposed methods over other LR and SVR.
Since the unit of MAE is in , the MAE value 22.15 obtained
for ANN represents a number of lines of codes in the projects
that may vary by 22,151 lines in ANN. An average developer
writes 250 lines of production code per week (40 hours of
working per week). An extra 22151 lines represent 88 weeks of
work (3520-man hours). Considering that an average developer
in the USA earns approximately $34 per hour, the total cost
overrun might come to $119,680. In the cases of LR and SVR,
the cost overrun is quite more than ANN, which is impractical
for real-time implementation? The performance of the learning
models implemented in this study regarding MSE is shown in
Table VII.

The metric MSE is being considered in proposed
implementations to assess the performance of the proposed
ANN over other LR and SVR. MSE represents the overall
training of the algorithm as it is used for optimization. Even
though the MSE does not directly represent the algorithm's
performance, it does represent the quality and level of training
given to the algorithm. Lower MSE represents higher
knowledge of the algorithm. More trainable parameters can
store more knowledge among them. The MSE score is higher
in both LR and SVR as they contain fewer trainable parameters
than ANN. The quantified outcome indicates that ANN is less
associated with error compared to LR and SVR. Therefore, it
can be concluded that SVR and LR are subjected issue of
underfitting. The performance analysis in terms of RMSE is
mentioned in Table VIII.

Similarly, the metric RMSE is considered to evaluate the
training performance of the learning models. The RMSE also
helps to understand the requirement re-training model by the
preprocessing step. From the quantified outcome, the proposed
ANN scored 39.33 % RMSE and 22.15% MAE from Table VI,
i.e., a difference of 17.18 % compared to mean KLOC of all
projects, i.e., 103.44. This indicates minor variation with 16%-17%,
which is within the acceptable limit of 20 %. The performance
analysis regarding PRED is shown in Table IX.

PRED represents the ratio of projects which has less than a
threshold percentage of cost overrun. Hence, this performance
measurement is more practical than the other metrics since it
represents the number of projects that will fall below the
acceptable cost overrun ratio. In most of the studies, the
threshold is set to 30%. In this study, 25% of the threshold
value is considered to perform comparative analysis. From
Table IX, it can be observed that the proposed model ANN
achieved a higher PRED value, i.e., 68.91, compared to other
ML methods and existing approaches. Bat, Dolphin, hybrid
Dolphin-Bat, and the proposed ANN are more practical to
implement as they have PRED value much higher than GA.
But among them, the proposed ANN method has the highest
PRED value, which indicates its suitability and scope in the
real-world system. The following analysis mentions the overall
improvement (%) of ANN concerning MMRE in Fig. 8 and
PRED in Fig. 9 over other implemented ML models and
existing approaches.

TABLE VII. QUANTITATIVE OBSERVATION IN TERMS OF MSE

Methods Performance Metrics

LR 42545.810081

SVR 29240.145478

ANN 1547.247493

TABLE VIII. QUANTITATIVE OBSERVATION IN TERMS OF RMSE

Methods Performance Metrics

LR 206.266357

SVR 170.997501

ANN 39.335067

TABLE IX. QUANTITATIVE OBSERVATION IN TERMS OF PRED

Methods Performance Metrics

LR 2.335234

SVR 5.297425

GA 11.66

BAT 61.66

DOLPHIN 61.66

DOLPHIN-BAT 66.66

ANN 68.91522

Fig. 8. MMRE Improvement (%) of ANN over SVR, LR and existing

Methods.

Fig. 9. PRED Improvements (%) of ANN over SVR, LR and Existing

Methods.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

192 | P a g e

www.ijacsa.thesai.org

The analysis from Fig. 8 shows ANN has achieved 92.4%
improvement over LR, 91.14% improvement over SVR, and
62.09%, 33.15%, 31.82%, 22.12% over Fuzzy-GA, BAT,
Dolphin, and Dolphin-Bat, respectively. The analysis from
Fig. 9 shows that ANN has achieved 96.91% improvement
over LR, 92.31% improvement over SVR, and 83.08%,
10.53%, 10.53%, 3.27% over Fuzzy-GA, BAT, Dolphin, and
Dolphin-Bat, respectively. Hence, it can be seen that the
proposed offers a good result regarding software cost
estimates. The overall analysis shows effectiveness of the
proposed neuro-evolution algorithm towards devising suitable
learning model for achieving realistic estimates of the cost
required in the initial stage of the software development
process. Hence, the proposed research work suggested a
technically-efficient method acquainted with recent trends and
technologies to benefit real-world applications.

VI. CONCLUSION

The development of software projects involves various
phases like initial planning, risk assessment, effort, and cost
estimation. Among these, cost estimation is the key concern in
the software industry. The conventional approaches do not
provide accurate estimation due to the lack of precise system
and cost drivers modeling. In this paper, the study has
presented a novel and unique approach to predict realistic
estimates of the cost needed to develop a software project. The
proposed study applied a mechanism of neural evolution in
conjunction with evolutionary technique, namely genetic
algorithm top construct ANN, which predicts actual estimates
of the cost required to develop a software. The application of
neural evolution in ANN modeling proves its effectiveness and
scope that it can compete with the existing techniques in terms
of realistic estimates of the cost and effort. Once developed and
trained, the proposed ANN can estimate the development costs
in real-time as it computes cost estimates based on the
responsible attributes required in the development of the
software. The execution complexity grows linearly with the
problem context and size of data samples. Based on the result
analysis, it is observed that the proposed ANN is producing
better results than other previously proposed algorithms and
other machine learning models being implemented. The
existing works adopted global optimization algorithms that
require huge computing resources due to recursive operation in
parallel. However, the proposed ANN model is constructed
optimally using the mechanism of augmenting topology, and it
better adopts generalization of the feature from the input
observations, therefore, providing accurate estimates of the
cost compared to the existing approaches.

REFERENCES

[1] Alt, R., Leimeister, J.M., Priemuth, T. et al. Software-Defined Business.
Bus Inf Syst Eng 62, 609–621 (2020).

[2] Trendowicz, A., 2013. Software Cost Estimation, Benchmarking, and
Risk Assessment: The Software Decision-Makers' Guide to Predictable
Software Development. Springer Science & Business Media.

[3] Mittas, N. and Angelis, L., 2013, September. Overestimation and
underestimation of software cost models: Evaluation by visualization. In
2013 39th Euromicro Conference on Software Engineering and
Advanced Applications (pp. 317-324). IEEE.

[4] Khan, B., Khan, W., Arshad, M. and Jan, N., 2020. Software Cost
Estimation: Algorithmic and Non-Algorithmic Approaches. International

Journal of Data Science and Advanced Analytics (ISSN 2563-4429),
2(2), pp.1-5.

[5] Kaushik, A., Chauhan, A., Mittal, D. and Gupta, S., 2012. COCOMO
estimates using neural networks. International Journal of Intelligent
Systems and Applications, 4(9), pp.22-28.

[6] Singh, B.K., Tiwari, S., Mishra, K.K. and Punhani, A., 2021. Extended
COCOMO: robust and interpretable neuro-fuzzy modelling. International
Journal of Computational Vision and Robotics, 11(1), pp.41-65.

[7] Coelho, E. and Basu, A., 2012. Effort estimation in agile software
development using story points. International Journal of Applied
Information Systems (IJAIS), 3(7).

[8] Bedi, R.P.S. and Singh, A., 2017. Software Cost Estimation using Fuzzy
Logic. Indian Journal of Science and Technology, 10, p.3.

[9] Singh, B.K. and Misra, A.K., 2012. Software effort estimation by genetic
algorithm tuned parameters of modified constructive cost model for nasa
software projects. International Journal of Computer Applications, 59(9).

[10] Nassif, A.B., Azzeh, M., Capretz, L.F. and Ho, D., 2016. Neural network
models for software development effort estimation: a comparative study.
Neural Computing and Applications, 27(8), pp.2369-2381.

[11] Tayyab M.R., Usman M., Ahmad W. (2018) A Machine Learning Based
Model for Software Cost Estimation. In: Bi Y., Kapoor S., Bhatia R. (eds)
Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016.
IntelliSys 2016. Lecture Notes in Networks and Systems, vol 16.
Springer, Cham.

[12] Sakhrawi, Z., Sellami, A. & Bouassida, N. Software enhancement effort
estimation using correlation-based feature selection and stacking
ensemble method.

[13] Kumawat P., Sharma N. (2019) Design and Development of Cost
Measurement Mechanism for Re-Engineering Project Using Function
Point Analysis. In: Kamal R., Henshaw M., Nair P. (eds) International
Conference on Advanced Computing Networking and Informatics.
Advances in Intelligent Systems and Computing, vol 870. Springer,
Singapore.

[14] J. A. Khan, S. U. R. Khan, T. A. Khan and I. U. R. Khan, "An Amplified
COCOMO-II Based Cost Estimation Model in Global Software
Development Context," in IEEE Access, vol. 9, pp. 88602-88620, 2021.

[15] P. Keil, D. J. Paulish, and R. S. Sangwan, "Cost estimation for global
software development," in Proc. Int. Workshop Econ. Driven Softw. Eng.
Res. (EDSER), 2006, pp. 7–10.

[16] Menzies T, Brady A, Keung J, Hihn J, Williams S, El-Rawas O, Green P,
Boehm B. Learning project management decisions: a case study with
case-based reasoning versus data farming. IEEE Transactions on
Software Engineering. 2013 Sep 16;39(12):1698-713.

[17] D. Nandal and O. P. Sangwan, "Software cost estimation by optimizing
COCOMO model using hybrid BATGSA algorithm," Int. J. Intell. Eng.
Syst., vol. 11, no. 4, pp. 250–263, 2018.

[18] A. B. Nassif, M. Azzeh, A. Idri, and A. Abran, "Software development
effort estimation using regression fuzzy models," Comput. Intell.
Neurosci., vol. 2019, pp. 1–17, Feb. 2019.

[19] Zaidi SA, Katiyar V, Abbas SQ (2017) Development of a framework for
software cost estimation: design phase. Int J Tech Res Appl 5(2):68–72.

[20] Reena, Bhatia PK (2017) Application of genetic algorithm in software
engineering: a review. Int Refereed J Eng Sci 6(2):63–69.

[21] V. Venkataiah, R. Mohanty, M. Nagaratna, Prediction of software cost
estimation using spiking neural networks, in: Smart Intell. Comput. Appl.
Smart Innov. Syst. Technol., Springer, Singapore, 2019, pp. 101–112,
http: //dx.doi.org/10.1007/978-981-13-1927-3_11.

[22] V. Venkataiah, R. Mohanty, M. Nagaratna, Prediction of software cost
estimation using spiking neural networks, Smart Innov. Syst. Technol.
105 (2019) 101–112, http://dx.doi.org/10.1007/978-981-13-1927-3_11.

[23] S. Kumari, S. Pushkar, Cuckoo search based hybrid models for improving
the accuracy of software effort estimation, Microsyst. Technol. 24 (2018)
4767–4774, http://dx.doi.org/10.1007/s00542-018-3871-9.

[24] M. Pandey, R. Litoriya, P. Pandey, Validation of existing software effort
estimation techniques in context with mobile software applications,
Wirel. Pers. Commun. 110 (2020) 1659–1677, http://dx.doi.org/10.1007/
s11277-019-06805-0.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

193 | P a g e

www.ijacsa.thesai.org

[25] S. Goyal, P.K. Bhatia, Feature selection technique for effective software
effort estimation using multi-layer perceptrons, Lect. Notes Electr. Eng.
605 (2020) 183–194, http://dx.doi.org/10.1007/978-3-030-30577-2_15.

[26] A.J. Singh, M. Kumar, Comparative analysis on prediction of software
effort estimation using machine learning techniques, SSRN Electron. J.
(2020) 1–6, http://dx.doi.org/10.2139/ssrn.3565822.

[27] M. Qin, L. Shen, D. Zhang, L. Zhao, Deep learning model for function
point based software cost estimation -an industry case study, in: Proc. -
2019 Int. Conf. Intell. Comput. Autom. Syst. ICICAS 2019, 2019, pp.
768–772, http://dx.doi.org/10.1109/ICICAS48597.2019.00165.

[28] V. Resmi, S. Vijayalakshmi, Kernel fuzzy clustering with output layer
self-connection recurrent neural networks for software cost estimation, J.
Circuits, Syst. Comput. 29 (2019) 1–17, http://dx.doi.org/10.1142/
S0218126620500917.

[29] M. Choetkiertikul, H.K. Dam, T. Tran, T. Pham, A. Ghose, T. Menzies,
A deep learning model for estimating story points, IEEE Transactions on

Software Engineering, 45 (2019), 637–656,
http://dx.doi.org/10.1109/TSE.2018.2792473.

[30] Dragicevic, S., Celar, S., & Turic, M. (2017). Bayesian network model
for task effort estimation in agile software development. Journal of
Systems and Software, 127, 109- 119. DOI: 10.1016/j.jss.2017.01.027.

[31] http://promise.site.uottawa.ca/SERepository/datasets/cocomonasa_v1.arff

[32] Stanley, K.O., Miikkulainen, R., 2002a. Evolving neural networks
through augmenting topologies. Evolutionary Computation 10 (2), 99–
127.

[33] X Chhabra, S., Singh, H. Optimizing design parameters of fuzzy model
based COCOMO using genetic algorithms. Int. j. inf. tecnol. 12, 1259–
1269 (2020). https://doi.org/10.1007/s41870-019-00325-7.

[34] A. A. Fadhil, R. G. H. Alsarraj and A. M. Altaie, "Software Cost
Estimation Based on Dolphin Algorithm," in IEEE Access, vol. 8, pp.
75279-75287, 2020, doi: 10.1109/ACCESS.2020.2988867.

