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Abstract—Software bug localization is an essential step within 

the software maintenance activity, consuming about 70% of the 

time and cost of the software development life cycle. Therefore, 

the need to enhance the automation process of software bug 

localization is important. This paper surveys various software 

bug localization techniques. Furthermore, a running 

motivational example is utilized throughout the paper. Such 

motivational example illustrates the surveyed bug localization 

techniques, while highlighting their pros and cons. The 

motivational example utilizes different software artifacts that get 

created throughout the software development lifecycle, and sheds 

light on those software artifacts that remain poorly utilized 

within existing bug localization techniques, regardless of the rich 

wealth of knowledge embedded within them. This research thus 

presents guidance on what artifacts should future bug 

localization techniques focus, to enhance the accuracy of bug 

localization, and speedup the software maintenance process. 
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I. INTRODUCTION 

Software maintenance is considered a continuous process 
in software projects. However, software maintenance is one of 
the most expensive stages in the software development life 
cycle [1]. According to Erlikh [2], maintenance consumes 70% 
and maybe up to 90% of the time of any product's life cycle. In 
addition to that, Hunt et al. [3] presented that the maintenance 
process takes above 50% of the software life cycle. Also, 
Lientz and Swanson [4] claimed that software maintenance 
spending from 20% to 70% of the efforts exerting on 
maintenance. Software Maintenance is defined by Sommerville 
[5] as "the modification of a software product after delivery to 
correct faults, to improve performance or other attributes". 
Software maintenance must be applied to improve the design, 
implement enhancements, and interface with other legacy 
software [6] to build a new one with some updates or solve 
bugs. 

A different view of software maintenance [7] defines it as 
"error, flaw, or fault in a computer program or system that 
produces unexpected results or behavior". Once the bug 
occurs, the bug triaging and localization process is applied to 
solve the bug [7]. The process involves: (i) understanding the 
bug, (ii) assigning a maintainer, and (iii) bug localization 
within the source code, and (iv) bug fixing. The bug 
localization process is the action of determining the location 
of the bug in the software program [8]. However, locating the 
bug manually could be time consuming, cost consuming, and 
infeasible [10]. 

Several techniques have been utilized to localize bugs 
automatically, including: information retrieval [9], machine 
learning. [10], program spectrum [11], and program slicing 
[12]. Those techniques use different software artifacts like bug 
reports, stack traces, source code files. However, such 
techniques do not necessarily benefit from all the information 
present within those artifacts. For instance, techniques that 
utilize source code do not use the structural relationships 
between source code elements to locate bugs, although such 
information could improve the accuracy of bug localization. 
Hence, a review is conducted to identify the different artifacts 
utilized by bug localization techniques, and how well such 
artifacts’ information gets utilized. 

Furthermore, a motivational example is introduced. Within 
such motivational example, we present a running example that 
includes different software artifacts and a set of injected bugs. 
We applied various existing bug localization techniques that 
utilized subsets of the included artifacts, to locate the injected 
bugs within such example, and assessed various bug 
localization techniques on those bugs. What difference in this 
review that the process of motivational example helps in 
identifying the limitations of those bug localization. Besides it 
gives perspective for better utilization of the different software 
artifacts to increase the quality of the results of such bug 
localization techniques. 

The rest of this paper is structured as follows. Section II 
will present the related works to software bug localization 
techniques. Section III presents the motivational example and 
its software artifacts. Three categories of bug localization 
techniques: information retrieval, machine learning, and 
program spectrum will be explained, and applied to the 
motivation example within Sections IV, V, and VI 
respectively. Section VII discusses the findings and concludes 
the review. 

II. RELATED WORK 

A. Related Work on Information Retrieval 

An information retrieval technique called (BLIA) bug 
localization using integrated analysis [9] proposed by Klaus 
Changsun et al. to illustrate the technique besides showing 
limitations. Such work utilizes different software artifacts like 
stack traces, comments, bug reports, and the history of code 
modifications are features utilized in the work. 

Klaus Changsun et al. evaluated their work on three open-
source projects: Aspect-oriented extension to Java (AspectJ), 
Widget toolkit for Java (SWT), and Barcode image processing 
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library (Zxing). The number of bugs and source files that they 
worked on are as follows: AspectJ (284 bugs, 5188 source 
files), SWT (98 bugs, 738 source files), and Zxing (20 bugs, 
391 source files). Five steps were followed to complete their 
approach. First, an information retrieval technique is used for 
measuring the similarity between the bug reports text and 
source code files called rVSM [13]. Then the structured data 
in the bug reports like bug description, bug summary and 
other stated before in the bug report artifact are analyzed and 
integrated with the above data. After that, if stack traces 
appeared in the bug report, they would be analyzed to extract 
the beneficial information to improve the results of retrieval. 
Moreover, the historical data for code modifications which is 
extracted from version control systems to predict the affected 
files and methods. Finally, similarity measurements were 
applied between the accumulative data from the above steps 
and the source code files. The results will be ranked by scores 
to the files of the code which is mainly expected to have the 
error. The proposed approach resulted in an enhancement in 
the mean precision over some other approaches like 
BugLocator with 54%, BLUiR with 42%, and BRTracer with 
30%, and Amalgam with 25%. 

Wen et al. proposed an information retrieval technique to 
localize bugs called FineLocator. FineLocator recommends 
the position of bugs based on method level [14]. It means that 
not only recommend the source file that contains bug but also 
the method contains bug. The proposed architecture consists 
of three main components are method extraction, method 
expansion, and method retrieval. The method extraction 
process is applied by extracting the methods names and their 
bodies using the abstract syntax tree for the code. 
Additionally, the timestamp for the methods is also extracted 
from version history systems and the dependence information 
for each method is also extracted. The first sub-component of 
method expansion is the semantic similarity measurement 
between methods. This step will be applied first by generating 
a numeric vector for each method by generating a bag of 
words and among all methods of the code. Then the scores are 
calculated between every two methods to know the similarity 
score between them. Then the call dependency is applied 
among the class level and the method level to enhance the 
similarity scores between methods. Besides, another score is 
calculated which is temporal proximity measure which 
calculates the difference in time of edit between the methods 
as the methods that edited in time near each other will be more 
probable to be near to each other. Then all the above scores 
are combined to one value which is the method augmentation 
value. They test their work on ArgoUML, Maven, Kylin, Ant, 
and AspectJ and enhance the performance of the method level 
by 20% MRR. 

Yaojing et al. [15] proposed an approach with three main 
considerations which are 1) the fix history relationships with 
old bug reports, 2) word co-occurrence in the bug reports and 
source files, 3) The long source files. The proposed model 
consists of a supervised topic modeling technique called LDA 
for classifying the old bug reports and bug reports with special 
topic w. Then the word co-occurrence with words from bug 
reports that appear in the bug reports. In addition to the 
creation of the long source files and stack traces in bug 

reports. They test their work on 10-fold cross-validation. Also, 
the proposed model was applied to three main projects PDE 
with 3900 bug reports and 2319 source files, the platform with 
3954 bug reports and 3696 source files, and JDT with 6267 
bug reports and 7153 source files. 

Mills et al. [16] constructed an approach trying to enhance 
the process of text retrieval bug localization by studying the 
most important elements of a bug report. A genetic algorithm 
is applied to find the optimal query to retrieve the true results 
from source files. Yu Zhou et al. construct an approach [17] 
that consists of three steps to classify bug reports: Classifying 
the summary part of each bug into (high, middle, and low) 
using a machine learner. It will help to increase the accuracy 
of bug localization systems. Then some structured features are 
used from the bug reports using a machine learner. 

Additionally, the results are merged from the above steps 
and other machine learning algorithms are used. The authors 
manually classify the bug reports into six categories (BUG, 
RFE, IMPR, DOC, REFAC, other). Additionally, a voting is 
applied [18] between different developers to classify each bug 
report to label them. They need to classify either the bug 
report is a bug or not. They answer the question of that a given 
report is a corrective bug or not by using different fields in the 
bug report. Also, the proposed approach Combines text 
mining and a data mining approach to solve the problem. The 
approach evaluated using 3200 random reports from large 
projects like Mozilla, Eclipse, JBoss, firefox, and 
OpenFOAM. The Use Bugzilla as the bug tracking system. 
They use the only reports that are tagged by resolved or closed 
to analyze them. They consider multiple fields of the bug 
report like (textual summary, severity, priority, component, 
assignee, and reporter. 

Alessandro Murgia et al… Tonelli [19] tried to make bug 
tracking systems linked with CVS to enhance the bug fixing 
and relations between different versions of the software and 
the bugs and also the end-users. Each commit component 
consists of (author when it was done, modified files, and 
commit messages). The work was stressed on fixing-issue 
commits. They manually labeled the data of commits to 
training their classifier through one author and this is a 
drawback as the author may do not know enough the data in 
the commits then maybe the classifier is biased to their 
labeling. Preprocessing steps from natural language 
processing are used like stemming and stop words removal to 
enhance the classifier. Additionally, some regular expressions 
are used to filter commits that relate to specific bugs. The 
features used to feed the classifier are the words extracted 
from the commits. They applied their experiments to Netbeans 
and Eclipse projects. The machine learning classifier got a 
precision of 99.9% for classifying fix issue and non-fix issue 
commits. The dataset used has not appeared as they didn't use 
a benchmark dataset. Besides, they identify the main terms 
used for bug-fixing issues like the fix, for, and bug. The 
support vector machines are classified with accuracy up to 
99.9%. 

B. Related Work on Machine Learning 

In [52], the authors produced an approach for localizing the 
bugs automatically using ranking. The source code files are 
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ranked to the most probably that contains the bug reported. 
Different features will be used as a bag of words used from 
source code files and bug reports. The similarity that is 
measured between bug reports and source code files using 
cosine similarity. Also, the API information is used to enhance 
the features. Another feature is collaborative filtering which is 
applied between similar bug reports. Additionally, the class 
names and the bug fixing frequency considered to be featured. 
They apply their experiment on AspectJ, Eclipse UI, JDT, 
SWT, and Tomcat. The average accuracy of 70% achieved all 
over the top 10 ranked files. 

In [20], an approach proposed using deep learning with 
rVSM to enhance the process of bug localization. The revised 
vector space model (rVSM) is utilized to set up the features 
that are used in measuring the similarity between bug 
documents and source code files. The DNN is used to measure 
the relevancy of the term between the terms in bug reports and 
source code files. Also, another type of feature rather than 
terms is the metadata feature about source code files, it seems 
like logs about the file. The inputs are text similarity, metadata 
about source code files. They used DNN to learn all the 
features. They applied on different datasets like AspectJ, Birt, 
Eclipse UI, JDT, SWT, and Tomcat. They got an average 
precision of 0.52 using the tomcat dataset. 

Dongsun Kim, Sunghun Kim, and Andreas Zeller 
proposed a model [21] with two phases to predict the files to 
be fixed. The bug report in many cases as mentioned by the 
authors may not contain sufficient information to help in 
predicting the files needed to be fixed. A machine learning 
approach is applied to classify the bug reports as predictable 
which means contain useful information or not predictable. 
The Features extracted from the bug reports are the summary, 
platform, operating system, severity, priority, and reporter. 
Then the model is trained using the specified machine learning 
and tested. Then in phase two, the predictable bug reports to 
be fixed are then entering a multi-class classification model to 
know the exact files to be fixed. The recommended model was 
evaluated using 70 percent of the dataset for training and 30 
percent for testing. They achieved an average accuracy for 
predicting files to be fixed with 70 percent. 

ERIC et al. [22] proposed a neural networks technique 
based on the code coverage data as a feature. This coverage 
data comes from applying virtual test cases to each line in the 
code. Then they feed them to a neural network. The technique 
was tested on four different benchmark datasets (Siemens, 
UNIX, Grep, and Gzip). They enhance the performance of 
examining lines of code than [23]. 

In [24], [25] a deep learning model are applied in order to 
localize bugs using source code files and bug reports. They 
got accuracy of applying on different benchmark datasets. 

Liang et al. [10], proposed a deep learning system to 
localize bugs. Bug reports text terms are utilized besides the 
terms of source code files. The works are evaluated on four 
datasets (AspectJ, SWT, JDT, and Tomcat) with the following 
MAP (0.439, 0.457, 0.482, and 0.561). 

C. Related Work on Program Spectrum 

Jeongho et al. proposed a spectrum-based technique that 
localizes bugs based on the variables that are most probably 
suspicious [11] to rank the lines most probably contain bugs. 
A limitation discussed in this paper about previous work 
considering program spectrum that if there is an else block as 
an example and the block contains many lines. The outcome 
of the ranking of lines contains code will not be accurate and 
maybe the cause of the error be directly before the block. To 
overcome the above limitation, the variable-based technique 
proposed to keep track of mainly the information about the 
suspicious variables and their coverage in the code. First, the 
variable spectra are created by using the test cases as an input 
in addition to the execution trace data for each variable. Then 
the suspicious ratios are calculated by substituting the variable 
spectra with the coefficient's similarity. The final step is 
applied by rank the most variables that are most suspicious in 
descending order to the bug solver. The work was evaluated 
using the Exam score evaluation metric. 

On the other side, Henrique et al. constructed a spectrum-
based fault localization tool called Jaguar which stands for 
Java coverage fault localization ranking [26]. An architecture 
was formulated for the tool consists of two main components 
which are Jaguar Runner and Jaguar Viewer. The java runner 
component gathers the data for control flow spectra and data 
the data flow using different unit tests. After the data 
collection steps applied, then a metric score calculated using 
one of past known calculations Metric like [27]. After that, the 
mixed scores between data and control flow matrices are 
normalized for the suspicious parts of the code. Then the 
jaguar viewer colors the suspicious entities of the code 
according to their score with for different colors according to 
their danger. They assessed t their work based on the 
Defects4J dataset. 

A new method that depends on the level of predicates not 
all the lines of the code was constructed by B´ela that utilizing 
the data from test cases and code coverage data [28]. This 
special type of spectrum-based fault localization took into 
consideration which methods will be hit in the run time of test 
cases to use these data in ranking the most suspicious 
methods. Additionally, different past research metrics for 
ranking that used for the lines of code as stated in [29] will be 
used at the method level. The pre-step to the algorithm is the 
building of the coverage matrix between the methods and the 
test cases. A graph will be generated from the coverage as the 
nodes of the graph represent the methods and the tests. The 
edges that will link different nodes with each other represent 
that a node that may be a test case will hit a node which is a 
method. Besides, the failed test cases will be marked in the 
graph. The first step was to calculate the edge weights by 
summing up the total methods that hit a failed test case to all 
methods. Then the values will be updated by calculating the 
average value of methods that cover failed test cases. The next 
step is to aggregate the values of edges to the method nodes. 
Finally, the nodes of methods values will be updated by 
calculating the resulted values concerning the number of test 
cases. They evaluated their work based on the Defects4J 
dataset that includes four projects with good results of the 
ranking. 
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 Abubakar et al. proposed a graph-based technique for the 
spectrum-based technique based on the execution of the test 
cases [30]. The technique aims at localizing not only a single 
bug in the system but also multiple bugs during execution. 
The exploration of localizing multiple bugs due to dealing 
only with the bug affects the accuracy of localization as stated 
by the authors. The graph represented here is undirected where 
the nodes of the graph represent the program statements and 
the edges represent the execution between them. Degree 
centrality is a graph centrality to measure the importance of a 
node in a network which will indicate that the part of the code 
will be more probable to contain an error. Another measure in 
which closeness centrality was used for each node to know the 
shortest path length between the node and other nodes. The 
result of this step will affect the process of multiple bug 
localization. The technique is evaluated on about 5 out of 7 
programs from the Siemens dataset (Dset6, Dset6, Dset7, 
Dset8, Dset9, and Dset11). In the experiment on single fault 
localization, 99% of the faulty version can be found by 
exploring only 80% of the code. In the two bug's version, 
about 99% of bugs found after exploring 70% of the 
executable code. They evaluated their work based on the exam 
score evaluation and the incremental Developer Expense 
(IDE) methods. 

Program slicing according to [12] [31] is a debugging 
technique that formulates a slice of code which are statements 
that affect a variable. Static slicing is a type of program slicing 
that generates slices depend on control dependencies in the 
code. Another type of program slicing is dynamic slicing 
which works on reducing the amount of space generated by 
static slicing. Dynamic slicing creates the slice depend on the 
variable values at run time to reduce the number of statements 
of the program in the debugging. However, execution slicing 
as stated by [32] applied data flow tests to formulate the slice 
or a group of slices (dice) by detecting the most probable 
statements from the tests to have the bug. 

III. MOTIVATIONAL EXAMPLE 

This section presents the software artifacts of the software 
system explained within the motivational example. These 
artifacts will be later the input the application of different bug 
localization techniques in the following sections. The system 
description will be discussed in subsection “A”, a subset of 
system source code files will be presented in subsection “B”, 
and a subset of the software bug reports are shown in section 
“C”. 

A. System Description 

Consider a system for online shopping. The aim of the 
system is to be utilized for online shopping. The customer can 
browse some products, add them to his shopping cart then 
process the order. The order will be finalized, and the total 
amount will be calculated including taxes and the customer 
payment choice. The customer chooses a payment method and 
assigns it a profile as it is either cash, or by credit card, and the 
customer can update such payment method later. The 
administrator of the shop can add new computer products to 
the inventory with specific data. The shop has two main types 
of components: "DesktopLaptop” or “ComputerComponents". 

Also, the administrator can update taxes for any product, and 
products of the same type must be updated automatically. 

Fig. 1 shows a partial class diagram the ‘Online Shopping 
System’ (OSS) including 9 classes. Customer class holds the 
customer’s information and operations does like adding a 
newproduct to the shopping cart (addProductToShopping () 
method) and assign a payment (setPayementMethod () 
method). ShoppingCart class holds information about products 
selected by the customer. Payment Method class is an 
interface for the type of payment, and it has two subclasses 
PaybyCredit and PaybyCache, with specific attributes for 
payment. ComputerProduct class is a parent class that consists 
of the basic information of any computer product of the 
system. DesktopLaptop and ComputerComponents are child 
classes of ComputerProduct class, each with specific 
properties. Inventory class manages the inventory through the 
addProduct () method for adding products with their quantity 
to the system. A relationship exists between Customer and 
ShoppingCart classes because each customer must have a 
shopping cart to add products to it. The relationship exists 
between Customer and PaymentMethod since each customer 
must decide his payment method for online shopping. 
ShoppingCart and Inventory classes are in an aggregation 
relationship with ComputerProduct class, as both classes 
consist of computer products. Such software system has a set 
of software artifacts that are presented within the following 
subsections. 

B. Motivational Example Source Code Files 

A subset of source code files for the online shopping 
system is presented in this section. The source code for the 
“Shopping Cart” class is presented in Fig. 2. The source code 
for the “Inventory” class is shown in Fig. 3. 

 

Fig. 1. A Partial Class Diagram of the Online Shopping System (OSS) 

 

Fig. 2. "ShoppingCart .java" Source Code. 
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Fig. 3. "Inventory.java" Source Code File from File from the use Case 

Example. 

C. Motivational Example Bug Reports 

A bug report is a terminology that refers to documenting 
and describing software bugs that appeared while running a 
software [33]. As stated by [33] a bug report can be submitted 
by different stakeholders related to the software project such 
as the tester or the developer or user to the system. They 
posted their bug reports on a bug tracking system [33] which 
is used mainly for open-source projects to track different bug-
report changes, assigned to solve the bug, or any other 
discussions. 

Four bug reports, for the used motivational scenario, are 
presented in this section. Three bug reports have the status 
“resolved fixed” and one new bug report has the status “New”. 

TABLE I. BUG REPORT 1 

Bug Report 1 

Bug ID 1102 

Bug Summary The payment method didn't change  

Bug Status Resolved Fixed 

Product Normal user 

Reported Online Marketing Application 

Version 5/5/2020 

Bug Description 

I purchased pc and two other products then when I 

proceed to the order, they give me a note the payment 
will be on the cache given; However, I updated my 

payment method to pay by credit before.  

Stack Trace - 

Fixed Files Customer.java 

Fixed Time 7/5/2020 

Test Cases - 

Bug report 1, shown in Table I, shows a user who had 
previously changed his payment method from using cash to 
using the credit card. When making a new purchase 
afterwards, the system still displayed that his payment method 
will be using cash. Bug report 2, shown in Table II, has the 
status New” as it will be fixed by our example. The bug 
appears with the user when adding a new product to purchase 

to his cart, the program crashed and stopped. Bug report 3 
shown in Table III presented a solved bug by adding a new 
product to the store. When the user of the system adds a new 
product to the system, a crash occurred. The bug was solved 
by the maintainers and the source code file “Inventory. Java”. 
Bug report 4 shown in Table IV presented a solved bug with 
getting an invoice for a purchasing process. It was found that 
the tax percent is calculated incorrectly however it is 
calculated before. The solution to the bug is found in the 
source file “ComputerComponents. Java”. 

Starting from Section III to Section V, different bug 
localization techniques will be discussed and applied to the 
motivational scenario showing how those techniques work and 
their limitations. 

TABLE II. BUG REPORT 2 

Bug Report 2 

Bug ID 1104  

Bug Summary Adding a PC to purchase cause an error 

Bug Status New 

Product Online Marketing Application 

Reported 5/12/2020 

Version 1.2  

Bug Description 

When trying to add a PC to purchase and browse 

some other components and added them then adding 
another pc to the cart it is crashed. 

Stack Trace - 

Fixed Files - 

Fixed Time - 

Test Cases - 

TABLE III. BUG REPORT 3 

Bug Report 3 

Bug ID 1201 

Bug Summary Error with adding a new product to the store 

Bug Status Resolved Fixed 

Product Online Marketing Application 

Reported 5/5/2020 

Version 1.1 

Bug 

Description 

When I trying to add new product to the store, the 

program crashed given the following error  

Stack Trace 

Exception in thread "main" java.lang.OutOfMemoryError: 
GC overhead limit exceeded at 

java.util.LinkedList.linkLast(LinkedList.java:142) 

at java.util.LinkedList.add(LinkedList.java:338) 
at Inventory.addProduct(Inventory.java:28) 

at project. main(project.java:15) 

Fixed Files Inventory.java 

Fixed Time 5/9/2020 

Test Cases 1201 
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TABLE IV. BUG REPORT 4 

Bug Report 4 

Bug ID 1325 

Bug Summary Error with getting an invoice  

Bug Status Resolved Fixed 

Product Online Marketing Application 

Reported 5/5/2020 

Version 1.1 

Bug Description 
When the transaction is going to be fired, it calculates the 

total invoice wrong with a problem in taxes percent 

Stack Trace - 

Fixed Files ComputerComponents.java  

Fixed Time 7/5/2020 

Test Cases - 

IV. INFORMATION RETRIEVAL TECHNIQUES 

Information retrieval (IR) [34] is finding or extracting 
beneficial data that may be documents of unstructured nature 
like text that answers information needs. In the bug 
localization process, the source code files, bug reports either 
old or new, stack traces artifacts [35] will be the unstructured 
text of the system being analyzed. The unstructured data like 
the natural text in the bug reports, stack traces and source code 
file terms. This data needs to be retrieved and ranked using 
specific queries to retrieve the file contains bug [35]. The 
information retrieval passes through steps from preprocessing 
and preparing different text sources to similarity measures. 

A. Case Study IR Experiment 

In this subsection, three experiments will be applied. First, 
historical similar bug reports artifact will be utilized. Then 
source code artifact will be utilized in the second experiment. 
Finally, Similar Bug Reports Experiment applied. 

1) Similar bug reports application: The first bug 

localization technique to apply, is an information retrieval 

technique that uses similarity scores across bugs. Klaus 

Changsun et al. [9] proposed a technique to localize bugs 

using an information retrieval technique. The assumption of 

their work depends on that if there is a new bug report similar 

in its attributes to one of the old bug reports then the fixed 

source code file by this old bug report will be the 

recommended source code file to be fixed with the new bug 

report. Such technique was applied to calculate similarity 

scores between the three resolved bug reports and the newly 

added bug report within the presented motivational example. 

The first step is to convert each bug report to a text vector as 

shown in Table V. 

Then the Term Frequency Inverse Document Frequency 
(TF-IDF) measure [36] will be applied to the text of the bug 
reports. The calculated similarity measure between the new 
bug report (i.e., bug report 2) and each of the old bug reports 
resulted in the following scores presented in Table VI: bug 

report 1 is 0.2, bug report 3 is 0.16, and bug report 4 is 0.11. 
The experiment resulted in that bug report 1 is the most 
similar bug report to the new bug report. It means that the 
fixed file within bug report 1 (Customer .java) in the old bug 
report 1 is the file that contains the bug. 

To evaluate the presented experiment, the new bug report 
needed to be fixed manually to know the files that contain the 
bug. The result of the manual investigation that the source 
code file "ShoppingCart.java”. However, experiment 1 
resulted in that the “Customer.java” is the file that contains the 
bug which means that the experiment 1 result is not true. 

To understand why the applied bug localization technique 
failed to locate the source code file that contained the bug, a 
closer look is needed at the used bug reports. As per the bug’s 
description in Section 3.2, bug report 1 was fixed by a change 
in Customer.java, whereas bug report 3 was fixed by a change 
in Inventory.java. The similarity score between bug report 1 
and the new bug report was higher than the similarity score 
between bug report 3 and the new bug report. Hence, the 
applied bug localization technique suggested fixing the same 
file that was fixed previously by bug report 1. Hence, the 
applied technique could lead to a wrong location based on the 
text used within the newly opened bug. Such text is usually 
written by an end user, who has no knowledge of the inner 
details of the source code. Hence, relying on the text of the 
bug report solely is one main drawback of that bug 
localization technique. Another drawback is the complete 
reliance of the technique on the presence of historically fixed 
bug reports to recommend resolutions for the new bugs. Such 
assumption is not realistic when developing new applications 
that do not have a repository of previously fixed bug reports. 

TABLE V. TEXT VECTORS OF THE BUG REPORTS OF OSS SYSTEM 

Bug Report Bug Report Text Vector 

Bug Report 1 

[Payment, Method, change, Normal, User, Application, 

purchased, two, products, proceed, order, they, give, note, 
payment, cache, given, updated, method, pay, credit] 

Bug Report 2 
(NEW) 

[Adding, PC, purchase, cause, error, Online, Marketing, 

Application, trying, add, browse, some, components, 

added, adding, another, pc, cart, crashed 

Bug Report 3  

[Error, with, new, product, store, Online, Application, 
store, program, given, following, Exception, thread, main, 

javalangOutOfMemoryError, GC, overhead, limit, 

exceeded, at, 
javautilLinkedListlinkLastLinkedListjava142, 

javautilLinkedListaddLinkedListjava338, 

InventoryaddProductInventoryjava28, project, 
mainprojectjava15Inventoryjava] 

Bug Report 4 

[Error, new, product, store, Resolved, Fixed, transaction, 

going, fired, calculates, total, invoice, wrong, problem, 

taxes, percent] 

TABLE VI. SIMILARITY SCORES BETWEEN THE NEW AND OLD REPORTS 

Old Bug Report Similarity Score with the new bug report 

Old Bug Report 1 0.20 

Old Bug Report 3 0.16 

Old Bug Report 4 0.11 
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2) Source code experiment: In the second experiment, 

Similarity Scores between the new Bug report and the source 

code files are applied [9]. As experiment 1, similarity scores 

will be calculated. The difference here that text similarity will 

be applied between the new bug report and project source 

code files with the TF-IDF technique. 

The number of source code files is nine files as listed in 
Table VII with their text vectors. In the same table, the 
similarity score between these sources code files and the new 
bug report is calculated. The similarity results must be sorted 
in descending order. But in this case, there are no common 
words between the new bug report and all source files. 

TABLE VII. TEXT VECTORS OF THE BUG REPORTS WITH SOURCE FILES 

TEXT OF OSS SYSTEM 

Source Code 

Files (.java) 
Source File Text Vector 

Similarity 

Score 

ShoppingCart 

[ ShoppingCart, Computer, comp, counter, 

Computer, addNewGoodsComputer, 

compcounter, getGoods, 

xthiscompigetName, compigetPricen] 

0 

Inventory 

[Inventory, inventoryName, Computer, 

comp, counter, Inventory, inventoryName, 

addProductComputer, comp, add] 

0 

Customer 

[Customer, cName, cNumber, 

PaymentMethod, payment, ShoppingCart, 

PaybyCahce, 

addProductToShoppingComputer, 

shaddNewGoodsc, 

setPaymentPaymentMethod, thispayment, 

getPaymentMethod] 

0 

Computer 

[ Computer, getName, double, getPrice, 

updatePricedouble, price, getCode, 

getStatus, printTaxes, setTaxesdouble, taxes] 

0 

ComputerComp

onents 

[ComputerComponents, implements, 

Computer, compName, code, price, status, 

pName, Description, taxes, 

ComputerComponentsString, 

thiscompName, code, price, thispName, 

Description, taxes, Override, getName, 

return, getPrice, getCode, getStatus, status, 

printTaxes, setTaxesdouble, 

updatePricedouble] 

0 

DesktopLaptop 

[DesktopLaptop, implements, Computer, 

compName, code, price, status, HDD, RAM, 

generation, screenSize, taxes, 

DesktopLaptopString, compName, code, 

price, HDD, RAM, generation, screenSize, 

taxes, status, Offered, Override, getName, 

return, getPrice, getCode, getStatus, 

printTaxes, void, setTaxesdouble, 

updatePricedouble] 

0 

PaybyCahce 

[public, class, PayByCredit, implements, 

PaymentMethod, Override, String, 

getMethod, return, enter, card, number, pass] 

0 

PayByCredit 

[ PaybyCahce, implements, 

PaymentMethod, Override, getMethod, Pay, 

cache] 

0 

PaymentMetho

d 
[PaymentMethod, getMethod] 0 

Discussion: As per the above similarity calculation, the 
text of the bug report does not match the naming conventions 
used within source files. Hence, relying on similarity scores 
analysis between the source code and bug reports would not 
result in locating bugs. The absence of such similarity is 
attributed to the constructing of those bug reports by a normal 
user who uses terms not related to the developer terms used 
within the source code files. So, the bug localization system in 
this state will not resulted in a true source code file. An 
example comparing the bug report called "NEW BUG 
REPORT 1" text to source file text as an example 
"ShoppingCart.java”. The similarity scores between all the 
source code files and the new bug report equal to zero as no 
common words between them. After computing the same way 
with all source files, the new bug report got zero similarity 
score with all of them. 

3) Stack traces: Stack traces or execution traces represent 

the method calls during the execution of the application. When 

an error occurs during the execution and the program stops 

working or works in an unexpected way, the current state of 

the stack trace represents the method calls till the stopping 

point. 

The presence of stack traces, as a part of the bug report, 
will enhance the accuracy of finding the source code file that 
contains the error [37]. From an information retrieval 
perspective, having a stack trace as a part of the bug report 
will result in higher similarity score between the bug reports 
and the source code files. Furthermore, stack traces result in 
faster manual debugging by the developers [38]. For example, 
Fig. 4 shows represents a bug from eclipse [39] how the file 
names involved in the error and the corresponding line 
number are shown appear or the line that contains an error are 
shown in Fig. 4 that line 13 contains the error in the source file 
inventory.java. Schroter et al. apply [40] a study on 3940 bug 
reports. 2,321 bugs reports observed that they are fixed 
contains stack traces with 60 %. Also, the mean lifetime of the 
bugs include stack traces is 2.73 Days compared with the 
remaining bug report does not contain stack traces with mean 
4.13 days. So, in our case, bug report 2 with status new will 
not be solved using stack traces as the bug report does not 
contain it. 

 

Fig. 4. Sample Stack Trace Extracted from ECLIPSE Bug. 

V. MACHINE LEARNING TECHNIQUES 

Machine learning is a branch of computational algorithms 
that are designed to emulate human intelligence by learning 
from the surrounding environment [41]. Different bug 
localization techniques utilized different machine learning 
techniques to localize bugs automatically. 
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A. Case Study Experiment using Machine Learning 

The most important step in applying a machine learning 
algorithm is the preparation of the features. For the 
motivational scenario, the features will be similarity scores 
between each old bug report and all the source code files. 
Each record or row of features represents this similarity scores 
with the source code files as presented in the following 
Table IX. Three bug reports will be utilized from the 
motivational example. Two of them will be used for training 
and one for testing. Their calculated similarity scores with the 
source code files to be the features. Also, the result of these 
features which the source file contains the error with each bug 
report appeared in the right cell of the row. As these bug 
reports are solved before and the files contains solved error 
already known. After preparing the training set with these two 
bug reports, it will be fed to the machine learning algorithm. 
Then the testing phase started by preparing the features for a 
bug report that we know its result before. The new bug report 
is prepared with its specific features. Then the machine 
learning algorithm will decide its decision which appeared in 
the last row in Table VIII. As shown in Table VIII, we have 
only two training examples with only two results. After 
running a machine learning algorithm, with feeding the 
training examples to the machine learning. Then feeding the 
testing example as to tell us the source code file containing the 
error. The result will be "ComputerComponents .java". 

The file that contains the bug for new bug report 4 will be 
“ComputerComponents.java”. That means the result of the 
experiment is not true. Different reasons lead to such a wrong 
location of the bug. First, machine learning needs a huge 
training set to learn, otherwise it will not work properly [42]. 
Second, if the project has no old, solved bugs, machine 
learning will not be an applicable technique. In such a case, 
the only alternative would be to take training data from a 
different software project, like projects similar in nature to 
make use of their old bug reports. Some challenges will face 
this work: the language of the project may be different, the 
type of project as it may be desktop, web application or other.  

TABLE VIII. FEATURES PREPARATION FOR MACHINE LEARNING 

ALGORITHM BUG REPORT 

Training 

example 

Feature 1 

(ShoppingCart) 

Feature 2 

(Inventory) 

Feature 

N 

Result 

(Source 

File) 

Training 

example 1 
(Bug report 1)  

0.11 0.1 ….. Customer 

Training 

example 2 

(Bug report 3) 

0.3 0.1 0.3 Inventory 

Testing 

example (Bug 

Report 4) 

0.1 0.5 0.1 ? 

VI. PROGRAM SPECTRUM TECHNIQUES 

Program spectra refer to the program entities that are 
covered during the execution of the program [29], [43]. Also, 
the spectrum based get some information executed from the 
programs as the test cases. There are several types of spectra 
[29] used in the spectra based fault localization as (program 

statements, variables, execution trace, execution path, path 
profile, execution profile, Number of failed test cases cover a 
statement and not, number of successful test cases that cover a 
statement and not, the total number of test cases that cover a 
statement, the total number of test cases that do not cover a 
statement, the total number of successful test cases, total 
number of failed test cases and the test case number. Such 
technique demands the presence of test cases, or the presence 
of correct program execution traces, to be applied. 
Furthermore, the technique demands having a large set of test 
cases to cover the lines of code that most probably contains an 
error. 

A. Case Study Experiment using Program Spectrum 

The main inputs to this experiment will be the test cases. 
Some operations must be applied to test cases to know the 
lines of code that will most probably have the error. Two test 
cases related to the motivational example are shown in 
Tables IX and X. When a new bug is reported, the output of 
the test cases (i.e., the spectrum) can be utilized with some 
equations to find the bug [44]. The source code file that the 
test cases will run on is presented in Fig. 2. 

TABLE IX. TEST CASE 1 FOR OSS SYSTEM 

Test Case 1 

Test Case Number 1 

Test Case Inputs Create Object of Inventory 

Expected Output Object Created without error 

Actual Output Created Successfully 

Test Case Result Success 

TABLE X. TEST CASE 2 FOR OSS SYSTEM 

Test Case 2 

Test Case Number 2 

Test Case Inputs Add new Product to Inventory 

Expected Output Added Successfully 

Actual Output Added Successfully 

Test Case Result Success 

From the test cases and different inputs, test case number 
(1) will execute the following lines 6 to 13. And test case 
number (2) will cover 14 and 16. Then the number of records 
will be counted for each line to find the bug. The technique 
applied for spectrum depends on the statistical equation for 
every line of code covered by test cases. In Table XI, different 
program spectrum listed in section 2.2.3 as number of 
successful test cases that execute lines of code are presented 
with the occurrence of each spectrum with each line of code 
that are in the vertical rows. The hit of a spectra with a line of 
code represented by 1 and 0 for nit hitting. The criteria for 
each line like the number of successful test cases covered, the 
number of failed test cases, overall test cases in each line. We 
will consider that we have only two test cases for our bug 
localization task. Test case one presented in the above figure, 
it will hit the class source code from line 6 to 13 and the result 
of this test cases is a success. Test case two will hit the lines of 
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code from 14 to 16. Consider Line 6 as shown in the table for 
illustration, we must calculate different spectrum for each line 
from the resulted test case as follows: Number of success test 
cases (NCS)covered line 6 will be test case number (1) only so 
the total will be one. The number of failed test cases (NCF) 
covered in line 6 will be equal to zero as our test cases here 
are only two and both are successful. The number of test cases 
covers line 6 is equal to one as we list it before. Several test 
cases not covered in line 6 are equal to one which is test case 
number (2). The number of failed test cases not covered 
(NUF) line 6 is equal to zero as we have only two successful 
test cases. The last spectrum is the Number of Success Test 
Cases Not Covered which is one as test case 2 is a successful 
test case not covered line 6. The total number of failed test 
cases (NF) =0. The above steps will be calculated to all lines 
of the code as shown in the table. Then an equation is applied 
to calculate different spectra in one number for all lines of 
code then we have to sort these scores in descending order. 
The highest score will represent the line that contains the 
error. 

The equation performed here that utilized different 
spectrum used from [44] presented in the (1): 

𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠(𝑂𝑐ℎ𝑖𝑎𝑖) =
𝑁𝐶𝐹

√𝑁𝐹∗(𝑁𝐶𝐹+𝑁𝐶𝑆)
           (1) 

The score to line 6 will be equal to NCF = 0, NF=0, 
NCS=1 by substituting, the result will equal to zero. The 
above process will be repeated for every line of code then 
sorted but here all scores equal to zero. 

The main limitation of program spectrum is that the many 
test cases need to be analyzed, to find the bug then many test 
cases to be tested to find a true solution which affects the time 
and performance of bug localization process [45]. 
Unfortunately, the results are equal, also we need to compute 
many test cases that affect the time to find the source code file 
contains bug [45]. 

TABLE XI. DIFFERENT PROGRAM SPECTRA FOR A SOURCE CODE FILE FOR 

OSS SYSTEM 

Different 

Program 

Spectra 

Code Line 

6 7 8 9 10 11 12 13 14 15 

Success Test 

Cases Covered 
1 1 1 1 1 1 1 1 1 1 

Failed Test 

Cases Covered 
0 0 0 0 0 0 0 0 0 0 

Test Cases 
Covered 

1 1 1 1 1 1 1 1 1 1 

Test Cases not 

Covered 
1 1 1 1 1 1 1 1 1 1 

Failed Test 
Cases not 

Covered 

0 0 0 0 0 0 0 0 0 0 

Success Test 
Cases not 

Covered 

1 1 1 1 1 1 1 1 1 1 

Total Score  0 0 0 0 0 0 0 0 0 0 

VII. DISCUSSION AND CONCLUSION 

This paper presents a review to explore different software 
bug localization techniques. The exploration done through 
presenting different past works. Additionally, a motivational 
example is applied to show how these techniques are working 
presenting their limitations; also, the software artifacts that are 
utilized and which are not utilized. 

Two main findings are presented: (1) Some software 
artifacts are not properly utilized in the process of software 
bug localization. (2) The current software bug localization 
techniques suffer from some limitations. We elaborate on 
those findings as follows. 

Finding 1: Many bug localization systems use information 
from both bug reports and source files. Previous research [10], 
[46], [47], [48], [49], [50], [51], [15] utilized the natural text 
of the bug reports with terms of the source files. Method 
names and the abstract syntax trees are used from source code 
files [10]. However, the changes that applied to each source 
code file among different from version control systems used 
by [49], [15]. Also, application interface descriptions text has 
been utilized by [49] , [50]. Test cases are also used where 
successful test cases and failing test cases are used to find the 
most probable error [22] [11] [26]. 

However, several artifacts are not utilized in the bug 
localization process. They are software requirements, use 
cases, classes’ relationships within the source code, software 
architecture, and different comments between developers or 
written discussion between them of old bug reports that may 
affect the process of localization mentioned. If we have bug 
report text data as stated above. Text data can be linked to 
requirements text, which can be then, shorten the search with 
source code files to specific files of a definite module. 

Finding 2: Different software bug localization techniques 
are applied in the process of bug localization (Information 
Retrieval, Machine Learning, and Program spectrum). These 
techniques suffer from some limitations and this appeared 
from applying the motivational example. 

Information retrieval techniques suffer from the problem 
of the dependence on natural unstructured text. Those 
techniques depend on matching the new bug report text to any 
of the old bug reports, and hence recommending the fixed file 
of the old bug report. But such technique may not take us to 
the true old bug report depending on how the bug report is 
written, which varies greatly between developers and end 
users of the system. This issue appears as well if we attempt to 
measure the text similarities between the new bug report and 
the source code files. Also, the lack of old bug reports for the 
same project may prohibit applying the technique altogether. 

Machine Learning techniques will not work properly in 
two situations. In the first situation, that we train the bug 
localization system on some software projects, and the new 
bug appears in a different project. Hence, the bug localization 
system will not give the exact source code that contains the 
error. The past works [46] [47] [48] [49] [11] are applied on 
one of the datasets and tested on the same dataset. The second 
situation when we do not have enough training examples to 
train the machine learning algorithm. 
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Test case-based techniques as program spectrum and 
program slicing are depending on test cases to localize bugs. 
The main limitation comes with performance and time to test 
the whole system to find the bug. Also, the huge number of 
test cases is to be examined to find the bug. 

Accordingly, we anticipate that by utilizing additional 
software artifacts, and additional information from previously 
utilized software artifacts, we can improve the accuracy of bug 
localization, and extend its applicability even to projects that 
do not have historical information about the source code of the 
fixed bugs. 
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