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Abstract—Voltage regulator (VR) stability plays an essential 
role in ensuring maximum power delivery and long-lasting 
electronic lifespan. Capacitor with a specific equivalent series 
resistance (ESR) range is typically connected at the VR output 
terminal to compensate for instability of the VR due to sudden 
changes in load current. The stability of VR can be measured by 
analyzing output voltage during load transient tests. However, 
the optimum ESR range obtained from the ESR tunnel graph in 
its datasheet can only be characterized by testing a set of data 
points consisting of ESR and load currents. Characterization 
process is performed manually by changing the value of ESR and 
load current for each operating point. However, the inefficient 
process of estimating the critical value of ESR must be improved 
given that it requires a large amount of time and expertise. 
Furthermore, the stability analysis is currently conducted on the 
basis of the number of oscillation counts of VR output voltage 
signal. Therefore, a model-based virtual sensing approach that 
mainly focuses on black-box modeling through system 
identification method and training neural network on the basis of 
estimated transfer function coefficients is introduced in this 
study. The proposed approach is used to estimate the internal 
model of the VR and reduce the number of data points that need 
to be acquired. In addition, the VR stability is analyzed using 
noninvasive stability measurement method, which can measure 
phase margin from the frequency response of the VR circuit in 
closed-loop conditions. Results showed that the proposed method 
reduces the time it takes to produce an ESR tunnel graph by 
84% with reasonable accuracy (MSE of 5×10−6, RMSE of 
2.24×10−3, MAE of 1×10−3, and R2 of 0.99). Therefore, efficiency 
and effectiveness of ESR characterization and stability analysis 
of the VR circuit is improved. 

Keywords—Voltage regulator; output capacitor; equivalent 
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I. INTRODUCTION 
Increasing demand for electronic products, such as system-

on-chips and personal electronics, commonly requires the use 
of a voltage regulator (VR) for stable and regulated output 
voltage supply. VR has been widely used in the electronic field 
due to the development of new technologies and increasing 
demand for high-performance electronic devices and compact 
solutions [1],[2]. VRs in electronic devices are embedded in an 
integrated circuit (IC), but fault probability of the VR can be 

influenced by a few parameters, such as temperature, input 
voltage supply, and aging factors [3],[5],[6]. These factors may 
further deteriorate internal parameters and thus reduce the 
performance of electronic devices or completely eliminate their 
functionality [21]. Therefore, industrial electronic 
manufacturers must perform stability analysis of the VR. 

The existing analysis for VR stability through ESR and 
load is performed manually [4],[7]. This method is solely 
conducted by testing a vast number of data, observing load 
transient, and varying the load current for a specific ESR value. 
Thus, an accurate ESR tunnel graph can be obtained to show 
stable and unstable regions for operating conditions of the VR. 
This situation occurs because an internal model for the VR is 
lacking and product variations may cause parameters inside the 
VR to vary. Therefore, analyzing VR stability without prior 
knowledge of the VR internal model is challenging [9],[10]. 
Additionally, variation of load currents may also cause VR 
instability and inefficiency [9],[21]. Hence, an efficient and 
accurate failure region estimation method is necessary under 
the condition that the actual model is known. 

A. VR Mechanism 
The two different types of VRs are linear (LVR) and 

switching VRs. LVRs are low cost and can regulate a small 
drop-out voltage with less noise compared with switching VRs 
[5],[6],[11]. Hence, LVR can minimize the amount of power 
loss in the internal VR and is highly efficient. VRs aim to 
regulate the input voltage supply and produce low-noise, 
constant, and stable output DC voltage [4],[5], thereby 
indicating the absence of multiple oscillations or ripples. 
Moreover, VRs can limit over- and undershoot values during 
sudden changes in the load current. 

As shown in Fig. 1, a typical VR circuitry contains an 
output capacitor connected at the output terminal that acts as an 
energy storage element. Moreover, the output capacitor 
compensates for the disturbance during load transient [7],[8]. 
However, impurity element inside the capacitor called 
equivalent series resistance (ESR) is a main factor that 
contributes to the stability of the VR. Although a pure 
capacitor should ideally contain only the capacitance value 
without ohmic resistance, the case is different in the real world. 
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Fig. 1. Basic LVR Circuit. 

B. ESR Tunnel Graph 
The optimum value of ESR is crucial in determining the 

stability of the VR. An excessively high or low value of ESR 
may cause a significant output voltage to undershoot, produce 
unwanted oscillations, and cause instability. The ESR 
compensates for the disturbance by adding zero to its transfer 
function to cancel out the non-dominant pole and thus achieve 
a dominant-pole compensation. 

Manufacturers provide a datasheet for each fabricated VR 
to depict the stable range of ESR values in the VR circuit 
through a unique chart called the ESR tunnel graph. Fig. 2 
shows an example of an ESR tunnel graph using the 
TPS76301, a commercial VR from Texas Instrument. The plot 
presents a range of ESR values against a range of load currents. 
A specific ESR and output current range is chosen for plotting 
the ESR tunnel graph. The figure shows that the value of ESR 
from 0.3 Ω to 10 Ω indicates a stable region while other values 
denote non-stable regions. The critical value of ESR is located 
at the failure region boundary. 

C. VR Stability Analysis 
LVR stability can be analyzed using two types of 

responses: (a) load transient response in the time domain or (b) 
frequency response in the frequency domain. Stability analysis 
based on the load transient test is usually conducted because of 
its simplicity and the method can be performed under closed-
loop condition despite its low accuracy [6]. Although the 
frequency response of the LVR can be ideally obtained when 
the system is under open-loop condition, this scenario is 
difficult to achieve in the actual case. The LVR system is 
typically packaged under closed-loop condition; therefore, 
yielding its transient response is simple [17]. Furthermore, the 
frequency response can yield a more accurate stability 
measurement than the transient response because it indicates 
the phase margin of the system [13],[18],[20]. However, 
determining the frequency response is challenging because it 
can only be obtained while the system is under open-loop 
condition and this scenario breaks the loop in the actual LVR. 
Thus, a method called noninvasive stability measurement 
(NSM) is proposed to obtain the frequency response of the VR 
system under closed-loop condition. 

Studies on VR stability based on the NSM method are 
limited. Recent studies typically analyze the electronic system 
through transient response [5], [6], [16]. However, 
investigations based on the frequency response are few. 
Existing studies mainly focus on fault diagnosis [3], [12], [19], 
scalability, and dynamic performance [12] but those on 
achieving short-time stability analysis of VR are limited. 

 
Fig. 2. Example of the ESR Tunnel Graph (VR Model TPS76301 from Texas 

Instruments). 

NSM can be utilized to improve the existing stability 
characterization method in the VR failure region estimation 
process and determine the stability condition of a particular 
operating point. In addition, a virtual sensing approach that 
enhances the black-box modeling method can be used to 
illustrate the model of the internal VR circuitry and estimate 
the model transfer function coefficient used to determine 
critical ESR values located in the failure region boundary. 
Therefore, a model-based virtual sensing approach (MBA) that 
mainly focuses on the black-box modeling through system 
identification (SI) and training the neural network (NN) on the 
basis of the estimated transfer function coefficient is introduced 
in this study, as explained in Section II. MBA is used to 
estimate the internal model of the VR and reduce the number 
of data points required to estimate the critical value of ESR for 
generating the region of failure of the VR stability through the 
ESR tunnel graph. Furthermore, outcomes from this MBA 
approach are described and discussed in Section III. 

II. METHODS 
Four phases of this study is presented in Fig. 3. The first 

phase is the manual characterization, which analyzes the load 
transient test of the VR. The outcome of this phase is also used 
as the benchmark for the proposed method in this work. The 
second phase implements the NSM method to obtain the phase 
margin of the VR circuit in each operating point in the ESR 
tunnel graph. The third phase applies the MBA by first 
estimating the VR system model using the system 
identification method and then training the neural network 
structure. The final phase validates the method performance 
using various performance metrics. 

A. VR Manual Characterization as Benchmark 
The commercial LVR used in this study is the LT1963A 

from Analog Devices because of the comprehensive 
information provided in its datasheet [14] and its availability in 
the LTSpice software for simulation purposes. The LVR 
circuitry developed for the manual ESR characterization with a 
step signal is illustrated in Fig. 4. This step signal is used to 
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disturb the load current in the load transient test. The 10 µF 
capacitor used in this work is based on the datasheet provided 
by manufacturers. A resistor is connected in series with the 
output capacitor and labeled ESR given that ESR is absent in 
the purely capacitive capacitor used in the simulation. As 
mentioned in the early section, VR characterization is 
performed manually in manufacturing practice. Hence, the 
ESR of the output capacitor manually varies and the 
undershoot, overshoot, and oscillations during the load 
transient test are observed for stability analysis. 

The datasheet also indicated that the range of the input 
voltage should be between 2.5 and 20 V when obtaining the 
output voltage range of 1.21–20 V [14]. Therefore, two 
resistors (R1 and R2) must be chosen appropriately to obtain 
an output voltage of 5 V. Values of R1 and R2 can be 
calculated as follows: 

𝑉𝑜𝑢𝑡 = 𝑉𝑎𝑑𝑗 �1 + 𝑅2
𝑅1
� + �𝐼𝑎𝑑𝑗�(𝑅2),            (1) 

where Vadj is 1.21 V and Iadj is 3 µA. Therefore, values 
obtained for R1 and R2 are 12 and 3.9 k, respectively. 

 
Fig. 3. Flowchart of the Proposed Method. 

 
Fig. 4. LT1963A VR Circuit in LTSpice for Load Transient Test. 

The ESR value is manually changed from 0.01 Ω to 0.3 Ω, 
with an increment of 0.01 Ω. Meanwhile, the load current is in 
the range of 0.01–0.05 A, with an increment of 0.01 A. 
Combining each ESR value and each load current produces one 
operating point. The load transient test is then conducted. The 
circuit is energized to obtain the transient response after the 
input voltage is initialized and the ESR and load current values 
are configured and set to a specific value. The start time is 
recorded immediately after the process begins until every 
operating point in the ESR tunnel graph is tested. 

The stability of each operating point is determined 
manually on the basis of the output voltage observed in the 
load transient test response during the manual characterization. 
As stated in the LT1963A datasheet, the ESR value must be 
between 20 mΩ and 3 Ω for an output voltage of 1.2 V with a 
10 µF output capacitor to ensure VR stability [14]. The output 
voltage oscillation must be examined for each operating data 
point in this case. Otherwise, the VR system is considered 
unstable with excessive ringing, that is, more than three 
oscillations exist. This stability condition check is also 
performed manually and requires high expertise. Manual 
characterization is conducted on all data points. Finally, an 
ESR tunnel graph is illustrated to depict stable and unstable 
ranges of ESR for a specific load current. 

B. Noninvasive Stability Measurement 
The proposed stability measurement method is based on the 

NSM method, which analyzes the VR stability under closed-
loop condition to obtain the phase margin of the VR system. 
Fig. 5 shows the LVR circuitry setup to obtain the phase 
margin from the frequency response of the LVR system using a 
small-injection AC signal with an injection transformer at the 
output terminal of the LVR. 

 
Fig. 5. LVR Circuitry for Noninvasive Stability Measurement. 

The NSM method is proposed to obtain the phase margin 
through frequency response without breaking the loop 
condition of the system. Thus, the result obtained from this 
approach is accurate and efficient because breaking the control 
loop of the VR system is unnecessary. A small-injection 
resistor Rinj with a value of 20 Ω, which is relatively small 
compared with that of R1 and R2, is connected in series at the 
upper terminal of R1 to perform the NSM method and ensure 
that two different injection points (va and vb) can be 
established. A ground (GND) reference for these points is 
absent; therefore, an injection transformer is connected parallel 
to Rinj on the primary side L1. Meanwhile, the secondary side 
L2 is connected to a sine wave signal generator V2. Both 
points va and vb are then connected to an oscilloscope to ensure 
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that both sine wave signals entering the system at point vb and 
exiting the system at point va can be observed. Amplitude 
gains of both sine wave signals are expected to differ; thus, 
frequency tuning is required until both sine waves display the 
same gain, which is equal to 1 or also known as unity gain. The 
frequency when both sine wave channels demonstrate the same 
gain is known as crossover frequency at 0 db or unity gain 
frequency. Another parameter that must be considered is the 
phase shift between the two signal waves at points va and vb. 
The phase shift value between the two signal waves represents 
the phase margin of the system. Therefore, the ESR tunnel 
graph can be produced by observing the system’s frequency 
response for each operating data point tested using the NSM 
method and an accurate stability condition is expected. 

C. VR System Modeling Through SI 
The next step is to apply the black-box modeling approach 

through SI to estimate the VR circuit model. The SI method is 
used to estimate the internal model of the VR circuit given that 
input and output data are available [15]. The circuit used for SI 
data acquisition is similar to the one displayed in Fig. 4. 
However, the voltage source V1 in Fig. 4 generates a 
pseudorandom binary signal (PRBS) instead of a step signal in 
SI. Steps taken in the SI approach are the preprocessing of 
data, estimation and validation of data, model structure 
determination, and choosing the desired coefficient of the 
model. Hence, the model of the VR system can be evaluated 
with the optimal fitness model. 

Input, output, and sampling time must be determined prior 
to data preprocessing. In this case, input data are the small-
signal output voltage Vout and output data are the small-signal 
output current Iout. These data are obtained from the circuit 
simulation using LTSpice by exporting all data into the 
MATLAB software. Further processing is then conducted in 
MATLAB. The removal of the mean value of raw data after 
importing raw data is also known as detrend. Half of detrended 
data is used for estimation data while the other half is utilized 
for validation data. 

The SI model structure selection must be determined for 
estimating the VR model. Several types of model structures, 
such as autoregressive exogenous input (ARX), output–error 
(OE), autoregressive moving average exogenous input 
(ARMAX), and Box–Jenkins (BJ) model structures, can be 
used to estimate the model of a dynamic system [7], [8]. This 
work utilized the OE model structure due to its simpler model 
transfer function parameters compared with those of other 
model structures. Fig. 6 shows the output–error model 
structure. 

 
Fig. 6. OE Model Structure. 

The OE model structure can be expressed as follows: 

𝑦(𝑡) =  𝐵(𝑞)
𝐹(𝑞)

𝑢(𝑡 − 𝑛𝑘) + 𝑒(𝑡)            (2) 

where y(t) is the model output, u(t) is the model input, nk is 
the number of delays, ek is the white noise error, and k is the 
number of samples. In addition, the polynomial B(q) represents 
the numerator in relation to the input u(t) and F(q) represents 
the denominator in relation to the output y(t). Polynomials B(q) 
and F(q) can be expressed with the backward shift operator 
term q−1 as follows: 

𝐵(𝑞) = ∑ 𝑏𝑘𝑞−𝑘∞
𝑘=1 =  𝑏1 + 𝑏2𝑞−1 + ⋯+ 𝑏𝑛𝑏𝑞

−𝑛𝑏+1,       (3) 

𝐹(𝑞) = ∑ 𝑓𝑘𝑞−𝑘
𝑛𝑓
𝑘=0 =  1 + 𝑓1𝑞−1 + ⋯+ 𝑓𝑛𝑓𝑞

−𝑛𝑓 ,          (4) 

where nb is the order of polynomial B(q) and nf is the order 
of polynomial F(q). The following process is used for model 
estimation using the linear regression for an iterative method 
with unknown parameters θ: 

𝑦(𝑘,𝜃) = 𝜙(𝑘𝑇)𝜃 =  𝐵(𝑞)
𝐹(𝑞)

𝑢(𝑡) = 𝜉(𝑘,𝜃),           (5) 

where ϕ(k) is expressed as 

𝜙(𝑘) = [𝑢(𝑘 − 1),𝑢(𝑘 − 2), … ,𝑢(𝑘 − 𝑛𝑏), 

−𝜉(𝑘 − 1, 𝜃),−𝜉(𝑘 − 2, 𝜃), … ,−𝜉�𝑘 − 𝑛𝑓 ,𝜃�],          (6) 

where θ is expressed as 

𝜃 = [𝑏1,𝑏2,⋯ , 𝑏𝑛𝑏 , 𝑓1, 𝑓2,⋯ , 𝑓𝑛𝑓]𝑻           (7) 

Therefore, the percentage error of actual output data and 
the estimated output model can be reduced by obtaining the 
model transfer function coefficient or parameter vector θ. We 
then apply validation data to the estimated transfer function. 
Hence, the model fitness can be obtained and the transfer 
function with the maximum percentage of the fitness model is 
selected. Validation of the selected SI model transfer function 
is continued with a step signal that changes from 0 V to 5 V 
after a slight delay. The transient response from SI is recorded 
and then compared with the one in the LVR circuitry 
simulation during the load transient test to validate the SI-
estimated model. 

D. Neural Network Training 
The following process shows the training of the NN 

structure to reduce the number of operating points by testing 
the few sets of operating data points. Therefore, VR 
characterization time can be significantly reduced with the 
decrease of testing of operating data points. Fig. 7 shows an 
example of an NN structure consisting of input, hidden, and 
output layers with a number of neurons. 

Input data are fed into the NN structure via channels, which 
are typically assigned with numerical values and known as the 
weight, to the hidden layer in this stage. Input layers are then 
multiplied to their own corresponding weights, and the hidden 
layer performs its mathematical computation. The output layer 
predicts the output, which is the estimated model transfer 
function coefficients previously obtained from the SI. Finally, 
the ESR and load currents are fed into the input layer while 
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transfer function coefficients of the SI model are fed into the 
output layer. These input selections are chosen due to their 
correlation with the coefficient of the output transfer function 
for each operating data point in the ESR tunnel graph. 

The trained NN structure was then used to estimate the 
model transfer function for the remaining untested operating 
data. The step response was obtained through MATLAB 
simulation for each operating data point after estimating all 
transfer function coefficients using the trained NN. Step 
responses from both manual characterization and MBA (SI-
NN) are then compared and validated for their similarity. 
Finally, an ESR tunnel graph from the MBA-based 
characterization is produced and then compared with the ESR 
tunnel graph from the manual characterization in terms of 
critical ESR values. 

E. Performance Validation 
The last stage evaluates the obtained ESR critical values 

from both manual and MBVS characterization processes and 
determines the efficiency of the MBVA characterization 
method compared with the manual process. Mean squared error 
(MSE), root mean squared error (RMSE), mean absolute error 
(MAE), correlation coefficient (R2), and efficiency calculation 
can be expressed as follows: 

𝑀𝑆𝐸 = 1
𝑁
∑ �𝑦(𝑖) − 𝑦𝑝(𝑖)�2,𝑛
𝑖=1             (8) 

𝑅𝑀𝑆𝐸 = �1
𝑁
∑ �𝑦(𝑖) − 𝑦𝑝(𝑖)�2,𝑛
𝑖=1             (9) 

𝑀𝐴𝐸 = 1
𝑁
∑ �𝑦(𝑖) − 𝑦𝑝(𝑖)�,𝑛
𝑖=1            (10) 

𝑅2 =
∑ [�𝑦(𝑖)−y�(𝑖)��𝑦𝑝(𝑖)−𝑦�𝑝(𝑖)�]𝑛
𝑖=1

�∑ (𝑦(𝑖)−y�(i))2 ∑ (𝑦𝑝(𝑖)−𝑦�𝑝(𝑖))2𝑛
𝑖=1

𝑛
𝑖=1

,         (11) 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = �1 − 𝑡𝑆𝐼−𝑁𝑁
𝑡𝑚𝑎𝑛𝑢𝑎𝑙

 � × 100%,         (12) 

where the term y is the actual critical ESR value, yp is the 
critical ESR value obtained from the proposed method, n is the 
number of observations, and i is the number of load current 
instants. The output of the proposed method is the SI-NN 
characterization and validated if MSE, RMSE, and MAE 
values are close to zero. The efficiency value determines how 
the time is taken for the proposed method to be conducted 
compared to the manual characterization method. 

 
Fig. 7. Neural Network Structure. 

III. RESULTS AND DISCUSSION 

A. Manual VR Characterization Results 
This stage phase aims to produce a benchmark for the ESR 

tunnel graph that depicts stable and unstable regions of 
operating data points. As mentioned earlier, the ESR value 
must be higher than 20 mΩ for an output voltage of 1.2 V to 
ensure VR stability. The load transient of the LVR circuit is 
simulated and then the transient response is observed to 
analyze its corresponding number of oscillations at this 
operating condition. Fig. 8 shows the transient response 
obtained from the load transient for an LVR circuit with an 
output current of 500 mA, ESR value of 20 mΩ, and output 
voltage of 1.2 V. As shown in Fig. 8, the number of 
oscillations obtained is three cycles with an undershoot of 
31.34 mV. 

A voltage drop of 31.34 mV is observed from the first wave 
of the load transient. Stability analysis is carried out using the 
noninvasive method under closed-loop conditions after the load 
transient is obtained from the circuit simulation for each 
operating data point to provide increasingly accurate and 
efficient stability measurement through the system’s frequency 
response. Fig. 9 depicts the Bode plot to obtain the phase 
margin of the system through the frequency domain. 
Component parameters of the circuit for this noninvasive 
method are the same as those used to obtain the load transient 
test circuit. 

The phase margin obtained from the noninvasive method 
was 17.64° at a crossover frequency of 206.28 kHz. This phase 
margin value indicates the border region of the system stability. 
Hence, an ESR tunnel graph depicted in Fig. 10 is the product 
of all operating data points tested using the noninvasive 
method. 

 
Fig. 8. Transient Response for an Output Current of 500 mA with an ESR of 

20 mΩ. 
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Fig. 9. Phase Margin Results using the Noninvasive Method. 

 
Fig. 10. ESR Tunnel Graph through Manual Characterization. 

B. SI-NN Characterization Results 
The SI-NN characterization method is approached after the 

manual benchmark has been obtained. First, the SI method uses 
the black-box modeling concept to determine the transfer 
function coefficient that represents the system model. Second, 
the model selection with the maximum percentage of model 
fitness is selected to represent the system model. Fig. 11 shows 
the output model fitness by tuning parameters of poles and 
zeroes of the OE models. The percentage fitness of different 
model parameters of OE is presented in Table I. 

 
Fig. 11. Output Models with Fitness Percentage. 

TABLE I. FITNESS PERCENTAGE OF DIFFERENT MODELS 

Model Fitness Percentage (%) 
OE220 84.86 

OE320 93.85 
OE330 94.25 
OE440 95.46 

The model fitness percentage with the minimum number of 
parameters is chosen due to its simplicity. Thus, the OE320 
model is selected. The output yields a transfer function 
coefficient for B(q) and F(q) parameters on the basis of this 
model (Fig. 12). Finally, the transfer function coefficient is 
tabulated and used for NN training and the dataset reduction 
phase. 

 
Fig. 12. Transfer Function Coefficient for OE320. 

All individual coefficients are applied to the output of the 
NN structure after the transfer function coefficient obtained 
from all operating data points is characterized and tabulated 
through SI to validate the output model. All individual transfer 
function coefficients are combined and fed into the output layer 
of the NN structure. Therefore, the value of the NN output 
layer is 5. Finally, as mentioned earlier, the ESR and output 
current are fed to the input layer of the NN. Thus, the input 
layer is 2, and the hidden layer varies from 10 to 50 with an 
increment of 10. Fig. 13 shows the network architecture of an 
NN structure trained for the selected estimated model. 

 
Fig. 13. NN Structure. 
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Fig. 14. Regression Plot. 

The dataset used for training into the NN varies by 
reducing the percentage of the total dataset from the SI 
beginning with 93.7%, 87.5%, 81.25%, 75%, and 68.75%. For 
each of the reduced percentage dataset reductions, a different 
number of hidden layers, as mentioned earlier, is assigned to 
train the neural network structure starting. Bayesian 
regularization (BR) is then used as the training algorithm. Fig. 
14 illustrates the regression plot of the output data obtained. 
The value of R2 indicates the correlation between measured 
and target outputs. A value approaching 1 indicates a close and 
precise relationship. 

C. ESR Tunnel Graph using SI-NN 
The ESR tunnel graph benchmark from manual 

characterization is then compared with the ESR tunnel graph 
obtained using the SI-NN characterization, with the phase 
margin as the targeted output. Fig. 15 shows the ESR tunnel 
graph obtained from the SI-NN approach. 

D. Performance Metrics 
Performance metric parameters in Tables II and III were 

observed for a different number of dataset reductions and a 
fixed hidden layer size of 20 and 10, respectively, to validate 
the results of the SI-NN characterization method further. 

The calculated metrics showed that at 20 number of trained 
data, for hidden layer size of 20, yields the most negligible 
MSE value of 5x10-6 that showed a high critical ESR value 
prediction. 

 
Fig. 15. ESR Tunnel Graph using the SI-NN Approach. 

TABLE II. PERFORMANCE METRICS FOR DIFFERENT NUMBERS OF 
REDUCED TRAINED DATA AT A HIDDEN LAYER SIZE OF 20 

No. of 
trained 
data 

Performance Metrics 

MSE RMSE MAE R2 

10 5×10−5 7.07×10−3 2×10−3 0.987 

20 5×10−6 2.24×10−3 1×10−3 0.999 

30 4.5×10−5 6.71×10−3 3×10−3 0.999 

40 5×10−6 2.24×10−3 1×10−3 0.999 

50 5×10−6 2.24×10−3 1×10−3 0.999 

TABLE III. PERFORMANCE METRICS FOR DIFFERENT NUMBERS OF 
REDUCED TRAINED DATA AT A HIDDEN LAYER SIZE OF 10 

No. of 
trained 
data 

Performance Metrics 

MSE RMSE MAE R2 

10 6.85×10−4 2.62×10−2 1.5×10−2 0.99 

20 2.5×10−4 5×10−3 3×10−3 0.91 

30 5×10−6 2.24×10−3 1×10−3 0.99 

40 5×10−6 2.24×10−3 1×10−3 0.99 

50 5×10−6 2.24×10−3 1×10−3 0.99 

IV. CONCLUSION 
The proposed method can generally reduce the amount of 

time taken to characterize the failure region of the voltage 
regulator, and estimate critical ESR values that accurately 
distinguish stable and unstable regions of the voltage regulator 
system. The proposed method can estimate the internal model 
of VR through the SI method. Furthermore, the VR output 
voltage stability can be determined via a noninvasive stability 
measurement approach without breaking the internal control 
loop inside the VR circuit. 
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