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Abstract—Self-driving vehicles and autonomously guided 

robots could be very beneficial to today's civilization. However, 

the mobile robot's position must be accurately known, which 

referred as the localization with the task of tracking the dynamic 

position, in order for the robot to be active and useful. This paper 

presents a robot localization method with a known starting 

location by a real-time reconstructed environment model that 

represented as an occupancy grid map. The extended Kalman 

filter (EKF) is formulated as a nonlinear model-based estimator 

for fuse Odometry and a LIDAR range finder sensor. Because 

the occupancy grid map for the area is provided, just the 

inaccuracies of the LIDAR range finder will be considered. The 

experimental results on the “turtlebot” robot using robot 

operating system (ROS) show a significant improvement in the 

pose of the robot using the Kalman filter compared with sample 

Odometry. This paper also establishes the framework for using a 

Kalman filter for state estimation, providing all relevant 

mathematical equations for differential drive robot, this 

technique can be used to a variety of mobile robots. 
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vehicle; simultaneous localization and mapping; occupancy grid 
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I. INTRODUCTION 

Recently, mobile robots have been used to perform 
specialized tasks in a number of industries, including services, 
rescue, military, disaster relief, unmanned defense vehicles, 
and so on. Localization of mobile robots is a hard problem that 
many academics are seeking to address via the development of 
innovative techniques. Researchers have added more sources 
in order to build a powerful localization approach 
[1].Odometry is one of the most important techniques to tackle 
the posture tracking problem, it uses encoder data to track the 
motion progress from a specified beginning position. This 
technique tracks motion from a known beginning position 
using encoder data, the encoded data is sent to the central 
processor, which uses a geometric equation to update the 
robot's position [2, 3]. Due to a variety of factors such as 
wheel slippage, ground roughness, and varying wheel 
diameters, this approach has accumulative errors. So, under 
severe conditions, solely utilizing Odometry for localization 
virtually never results in an accurate state, and it becomes 
more active when other sources of sensing are used. Stereo, 
LIDAR range finder, sonar, compass, gyro, and GPS are the 
most often utilized extra sensors [4]. Building a robot from the 
scratch is expensive and time consuming, so working in an 
environment that guarantees theoretical study and practical 
implementation will be quiet helpful. ROS is an open source 
meta operating system that provides hardware abstraction, 

control implementation of commonly used functionalities, 
tools and libraries for building, writing, and running code for 
simulated and real robots after installing necessary drivers. 
The significance of this research rests in the framework it 
provides for fusing several sensors with a Kalman filter for 
robot localization, with the experimental results emphasizing 
notable reduction of errors in robot position. The paper is 
structured as follow: in section III the motion model of two 
wheeled robot was derived. Section IV presents Kalman filter 
pose tracking design. Section V discusses Kalman filter 
implementation results, followed by conclusion in section VI. 

II. LITERATURE REVIEW 

Iraj Hassanzadeh and Mehdi Abedinpour implemented an 
augmented unscented and extended Kalman filter for position 
tracking using a differential drive mobile robot with encoder 
readings, assuming real measurements are available. The work 
showed an improvement in pose tracking using this technique 
with the unscented filter outperforming the extended one [5]. 
Jaeyong Park and Sukgyu Lee investigated a mobile robot 
SLAM (simultaneous localization and mapping) technique 
based on EKF extended Kalman filter, with an additional 
extended Kalman filter used to enhance robot heading 
accuracy, because the robot's kinematic model was unclear 
due to the rough surface, its heading was deviated as it drove 
across uneven terrain. They proposed a method for correcting 
uncertain robot postures utilizing an extra extended Kalman 
filter on a simulation-based test [6]. The Kalman filter was 
applied on a Pioneer 2DX mobile robot by Edouard Ivanjko, 
Mario Vasak, and Ivan Petrovic, combining data from wheel 
encoders and a sonar sensor. The experimental result indicates 
that the kalman filter reduces posture tracking errors when 
compared to using Odometry alone [7]. Yusuke Misono and 
Yoshitaka Goto have implemented outdoor SLAM using 
Kalman filter in an outdoor environment using electric 
wheelchair mobile robot provided by LIDAR range finder and 
GPS the experimental results reveal a significant improvement 
of self-localization vehicle estimate by the SLAM algorithm 
compared with dead reckoning [8]. On a laser range finder-
equipped robot platform, Angga Rusdinar, and Sungshin Kim 
investigated simultaneous localization and mapping with a 
particle filter. The experiment's findings showed that the 
suggested particle filter can improve map building 
performance and mobile robot localization accuracy inside 
indoor buildings [9]. Mohammed Faisal, Mansour Alsulaiman, 
and Ramdane Hedjar Hassan developed a localization method 
to reduce error accumulation in the dead-reckoning approach, 
since dead-reckoning is reliant on encoder information, they 
use an additional sensing source, the proposed localization 
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system uses the extended Kalman filter in combination with 
infrared sensors to enhance the mobility robots' localization, 
by rectifying errors in the robot's position and address the 
issue of dead-reckoning, with the working area's walls serving 
as references (landmarks)[10]. Yi-Xiang Wang and Ching-
Lung Chang investigated SLAM under the robot operating 
system (ROS) utilizing a laser range finder (LIDAR), an 
Inertial Measurement Unit (IMU), an odometer, and an Ultra-
wideband (UWB), and fused all of the above sensors using 
Extended Kalman filter. Experiment findings demonstrate that 
the mobile robot's average error distance in the system is 
restricted to 10cm [11]. For city navigation, Zanwu Xia and Si 
Tang developed a new technique to improve the accuracy of 
high definition (HD) maps in order to improve the localization 
of self-driving cars. The research focused on extracting the 
factors that have a high impact on the global map, such as 
feature sufficiency, layout, local similarity, and map 
representation quality. The Kalman filter was used to combine 
data from LIDAR, IMU, and GNSS systems. The 
experimental results show a reduction in accumulative errors 
[12]. 

In this study, we focus on the problem of indoor robot 
localization, which involves determining the position of the 
robot x, y, and its orientation Ɵ. The idea of the Kalman filter 
is to reduce the errors in both the mechanical model of the 
robot and the sensor readings. Kalman Filter is designed to 
deal with linear systems, but most nontrivial systems are 
nonlinear. Therefore, a new modified technique called 
extended Kalman filter (EKF) has been developed. This paper 
aims to deal with the uncertainties of a mobile robot by fusing 
Odometery and LIDAR range finder in the dead-reckoning 
method. Three steps are encoded in the method proposed here; 
the prediction step depends on the motion equation of the 
robot platform. Data acquisition by measurement sensors in 
the workspace, which are used to correct the robot position 
calculated in the motion prediction step. Update step that 
corrects the sum of motion uncertainty and measurement 
uncertainty, Fig. 1. 

 

Fig. 1. Kalman Filter Estimator. 

III. MOTION MODEL 

 Regardless of whether robot position has to be adjusted or 
not, a kinematic model of robot motion exists that is 
dependent on the degree of freedom available to it. For 
example, a wheeled mobile robot without a manipulating arm 
(our robot platform) has three degrees of freedom 
(displacement along X-axis, displacement along Y-axis, and 
the orientation around Z-axis). Fly robot for instance has six 

degree of freedom (beside to displacement along orthogonal 
axis’s X Y Z, there is orientation around each axis Ɵx Ɵy Ɵz 
).In the experiment, a two-wheeled mobile robot was used. 
Each wheel has encoders placed, besides the passive caster 
wheel for stability. The driving wheels are individually 
controlled. The following relationships define the mobile 
robot's kinematic model (Fig. 2). 
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Where    and    are the center gravity of robot platform ; 
   travel distance between two successive time interval k+1 

and k ;      mobile robot's translational velocity ; T is the 

sampling time ;    the robot's heading with the X-axis;     

rotational angle of robot between k+1 and k time steps ;      

and      the left and right wheel's respective linear velocities ; 

     and      the left and right wheel's respective angular 

velocities ; The two driving wheels have a radius of R ; b axle 
length or robot. The radius of both driving wheels, in 
sampling, is assumed to be equal. We add three more variables 
to (6) and (7) to account for sampling errors caused by not 
knowing the exact radius and axle length. 
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Fig. 2. Real Robot and its Kinematic Model. 
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The uncertainty of the exact wheel radius is represented by 
k1 and k2, while the uncertainty of the exact axle length is 
represented by k3. In [13, 14, 15, 16] the systematic error 
correction approach is described in depth, as well as how the 
parameter values were calculated. Equations (1) to (7) 
describe the fundamental concept of Odometry position 
tracking. 

IV. LOCATION TRACKING WITH KALMAN FILTER 

Although there are many specific techniques for estimating 
the state of the system from, a set of measurements, most of 
these do not explicitly consider the noisy nature of 
measurements. This noise is typically described by statistics, 
which leads to have to use stochastic methods to tackle the       
problem[17, 18]. This section describes the stochastic state 
estimation process, initially, the basics of Bayesian filtering 
are presented, providing a brief mathematical derivation of 
how it is possible to make an estimate of the state. A 
mathematical treatment of the Kalman Algorithm for 
localization is then presented. 

The difficulty in utilizing sensor fusion to localize a 
mobile robot is balancing the uncertainty of the state (x, y and 
Ɵ) with the LIDAR range measurement (robot's output) to 
achieve an optimum estimation of the posture. Kalman filter 
requires that the state random variables have Gaussian 
probability distributions that are adequately characterized by 
the mean and covariance [19, 20]. Time Update and 
Measurement Update are the two major stages in calculating 
the optimum state estimate. The state prediction is generated 
using the motion model based on the previous value and the 
control input value. The output forecasts are calculated using 
the measurement model based on the outcomes of the time 
update. The anticipated state mean and covariance are then 
adjusted by reducing the state covariance using the difference 
between 

Expected and measured output. 

A. Bayesian Filtering 

A Bayesian filter is a mathematical tool that estimates the 
development of the system's state given the available data 
[21]. This tool necessitates: 

The analytical knowledge of the transition function ft and 
the stochastic knowledge of the noise of the state    

 The analytical knowledge of the output function ht and 
the stochastic knowledge of the observation noise    

 The realization of the output of the system z1: t at time t. 

Having this data, the Bayesian filter is able to estimate the 
function probability density. Once the state estimation 
problem has been formalized as a Baysian filtering problem, 
we have to find a mathematical formulation that allows us to 
return to the probability density function              using our 
system knowledge and observations. First, we have to model 
the system's internal evolution as well as how it manifests 
itself through its observable outputs. Two conditional 
distributions are introduced for this purpose. The first is 
observation model          , represents the density of the 
measurement    given the system state    .The second 

function            is an evolution model that represents how 
the system develops over time. Using the Bayes rule and the 
Markovian chain assumption, it is possible to obtain an a 
posteriori probability density of the state incrementally. 
Because data arrives in stages over time, a recursive 
formulation of Bayes' rule known as the Bayes Filter is used. 
The a posteriori probability of the state is gradually refined in 
this formulation as measurements arrive. 
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If we are interested in the iterative distribution the 
equation becomes: 
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Where η is a normalization factor to ensure that equation 
(15) represents a probability density function. Usually, the 
evaluation of this equation takes place in two steps. In the 
prediction phase, the xt + 1 state is calculated starting from the 
xt state, through the application of the transition model. 
Subsequently, the zt observation is incorporated into the 
previously calculated probability density function, through the 
updating phase. The relationship between the present state and 
the prior state is depicted by the motion model. The location 
of the mobile robot in a global coordinate frame is defined as 
the state vector;               

 , where, k indicates the 
sampling moment. The probability distribution is assumed to 
be Gaussian so that the state variable is fully described by a 3 
* 3 covariance matrix Pk and the state expected value  ̂  
(Mean estimated value). The control input uk represents the 
motion command that moves the mobile robot from step k to 
step k + 1, since uk can be expressed as;    
         

  denotes translation by distance dk followed by a 
rotation angle     . The state vector is calculated using the 
current state vector and the current control input by the state 
transition function f(.);                 . Since    
           

  depicts process noise (also Gaussian with zero 

mean)             , according to equations (1), (2), and (3) 
the state transition function is obtained. 

           = 
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Two independent error sources, translational and angular, 
were used to model the process noise covariance Qk. The 
expression for Qk is: 

Qk=(
  
         

            
    

 )           (17) 

Where   
  and    

  are the variances of translation dk and 
rotation     respectively. 

B. Measurement Model 

Measurement function          determines the distance 
between the obstacles and robot’s l RPLIDAR (Fig. 3). 

 

Fig. 3. Robot Pose from the Landmark. 

In the world model, pi = (xi, yi) represents the point 
(occupied cell identified by the LIDAR). The LIDAR model 
utilizes distance readings that are linked to the causative 
obstacle. 

                              (18) 

The measurement noise is represented by     . Because all 

distance measurements are utilized in parallel for the distance 
measurement value, the distance measurements      are a 

single measurement vector. And   
  and   

  components of the 
measurement form a diagonal matrix Rk. 

C. EKF-based Pose Tracking 

This paper describes EKF, as sensor fusion-based method 
for robot posture tracking. More a thorough discussion of the 
EKF localization method can be found in [22]. At time k the 
values of the control input vector u k-1 generated by wheel 
encoder are supplied to the equations that will be mentioned in 
this section, and the first-time update is performed to get the 
prediction estimate, and when fresh LIDAR measurements are 

received, these predictions are adjusted. The prior mean  ̂ 
  is 

calculated by using the nonlinear Odometry function to 
propagate the predicted state. 

 ̂ 
     ̂               })           (19) 

The anticipated state covariance   
  is calculated by 

propagating the state covariance through a linearized system 
form. 

  
            

          
            (20) 

         ̂               }) denotes the Jacobian of 
function f(.) with respect to the state    which can be 
computed as follows. 

    ( 

      (       )                

          (       )    (           )

                                                                             

)    (21) 

         ̂               }) is the Jacobian of  (.) 
with respect to the control input u. It is important to note that 
when (9) and (10) are employed, the mean and covariance are 
only true to the first order of the associated Taylor expansion 
[23]. If no fresh LIDAR measurements are available at time k, 
or if all are discarded, there is no measurement update, and the 
estimated mean and covariance are assigned the anticipated 
values. 

{
 ̂   ̂ 

 

     
             (22) 

Otherwise, a measurement update occurs, in which the 
initial forecasts of the approved LIDAR readings in  ̂   

  with 

the i-th component are as follows: 

 ̂   
   ( ̂ 

    )   {    }           (23) 

In time step k, the state estimate and covariance are 
calculated as follows: 

{
 ̂   ̂ 
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Since Zk reflects actual LIDAR readings, where     is the 
Jacobian matrix and we can obtain by calculating the 
derivative of measurement function with respect to state   : 
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Since: 

         ̂    
         ̂    

           (26) 

And Kk is the Kalman filter which can be computed as 
follows: 

     
    

       
    

     
             (27) 

By implementation of previous equations, we can see the 
diverges in robot location in case of using Kalman filter (blue 
color) compared with sample Odometry (red color), as shown 
in Fig. 4. 

After we have seen the diverges in robot pose using kalam 
filter compared with sample odmetry and deriving the 
necessary equations, We will go further, to see the effect of 
using kalman filter in reducing estimated error the following 
figure (Fig. 5) depicts the implementation of EKF on a 
differential drive mobile robot (turtelbot) using ROS. 
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Fig. 4. Robot Ypos vers Xpos. 

 

Fig. 5. True Robot Trajectory (Left), Estimated Trajectory (Middle) and 

Squared Positional Error (Right) using EKF Algorithm. 

V. DISCUSSION 

In Fig. 5 estimates after the prediction step are shown as 
red arrows; estimates after the update step are shown as green 
arrows. Blue dots represent (static) landmarks and the red 
lines indicate the robot’s field of view. Robot state covariance 
increases during the prediction step and decreases during the 
update step. The algorithm benefits more from the correction 
step when the motion covariance is large, as otherwise the 
prediction step already yields fairly precise estimates. A larger 
number of landmarks result in a more precise position 
estimate. Loop closing, e.g., observing landmarks that have 
already been observed at an earlier stage greatly decreases the 
covariance of both the robot state and landmark position. This 
effect is clearly visible in Fig. 5, where loop closure occurs 
twice: first around step 9 and then around step 20. Both times, 
the squared estimation error decreased. It's worth noting that 
the findings displayed above were obtained using ROS in 
simulated settings for obstacles, LIDAR measurements, linear 
and angular velocities; hence, with ROS, we can safely utilize 
the same software for actual robots, as shown in Fig. 6. 

  
(a)     (b) 

Fig. 6. (a) Robot’s Environment in Laboratory (b) Green Squared Dots 

Represent LIDAR Measurements Readings. Turtelbot Real EKF 

Implementation under ROS Robot Operating System. 

VI. CONCLUSION 

Extended Kalman filters are developed and tested as 
mobile robot posture monitoring methods. Odometry and 
sensor fusion LIDAR-based sensors are shown to significantly 
improve mobile robot localization, and the experimental 
results reveal substantial differences when utilizing sample 
Odometry and the EKF method. The algorithm is tested with 
different motion and measurement noise covariance, generated 
trajectories and a varying number of landmarks. This 
technique produces significant results in a limited 
environment and with a small number of Landmarks. 
However, it is clear that this approach is insufficient in the 
case of a large number of Landmarks, which would definitely 
result in an increase in the size of the state space. 
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