
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

385 | P a g e

www.ijacsa.thesai.org

Using HBase to Implement Speed Layer in Time

Series Data Storage Systems

Milko Marinov

Department of Computer Systems and Technologies

University of Ruse, Ruse, 7017, Bulgaria

Abstract—In recent years, modern systems have become

increasingly integrated, and the challenges are focused on

delivering real-time analytics based on big data. Thus, using

standard software tools to extract information from such datasets

is not always possible. The Lambda Architecture proposed by

Marz is an architectural solution that can manage the processing

of large data volumes by combining real-time and data batch

processing techniques. Choosing a suitable database management

system for storing large volumes of time series data is not a

trivial issue as various aspects such as low latency, high

performance and the possibility of horizontal scalability must be

taken into account. The new NoSQL approaches use for this

purpose non-relational databases with significant advantages in

terms of flexibility and performance in comparison with the

traditional relational databases. With reference to this, the

purpose of this paper is to analyse the general characteristics of

time series data and the main activities performed by the Speed

layer in a system based on the Lambda Architecture. Based on

this, the use of a column-oriented NoSQL DBMS as a system for

storing time series data is justified. The paper also addresses the

challenges of using HBase as a system for storing and analysing

time series data. These questions are related to the design of an

appropriate database schema, the need to achieve balance

between ease of access to the data and performance as well as

considering the factors that affect the overload of individual

nodes in the system.

Keywords—Lambda architecture; speed layer; time series data;

data storage system

I. INTRODUCTION

The accelerated development of technologies applied to big
data has caused significant changes in the subject areas of
storage, retrieval, and processing of data. Nowadays, the
problems related to the big data are connected not only to the
volume of data. Much of the data are acquired in real time and
is most valuable if its interpretation takes place as it arrives
[1,2,3]. Synthesizing, processing, and transforming this big
data to valuable information is one of the great challenges of
the technological world today.

In big data systems, an important property of data related to
its processing is immutability. In such systems, to prevent data
loss and data corruption, data are processed in a way that
records can never be modified or deleted. By its nature,
immutable data are simpler than mutable data [4]. This
organization allows the system only to create and read records
(CreateRead) as opposed to the additional capability of
updating and deleting records (CRUpdateDelete) as
implemented in relational databases. Thus, the write operations

only add new data units [5]. This approach makes data
processing highly scalable. The data system itself becomes a
kind of a logging system, which adds a timestamp and a unique
identifier to the data record, which is then kept in the data
store.

Different architecture models are used when building the
big data ecosystem. The Lambda Architecture, proposed by
Nathan Marz [6], is a solution which combines real-time data
processing techniques with batch processing techniques. The
Lambda Architecture is a big data management software
paradigm that supports data processing by balancing the
performance, latency, and fault-tolerance of the system that is
based on this architecture [7,8]. There is no single integrated
tool that provides a comprehensive solution with reference to
better accuracy, low latency, and high performance. Therefore,
it is necessary to apply the idea of using a set of tools and
techniques to build a comprehensive big data management
system. With reference to this, Lambda Architecture defines
several layers that correspond to a set of tools and techniques
for building a big data processing system, i.e., a speed layer, a
serving layer, and a batch layer [9]. The increasing need for
new and improved storage and retrieval mechanisms resulted
in the development and use of NoSQL database management
systems such as HBase, MongoDB, Cassandra, CouchDB,
Hypertable and big data platforms such as Hadoop and Spark
[10,11,12]. Lambda Architecture defines a logical, well-
motivated approach in linking these technologies together to
build a system that meets user requirements. Each software
tool offers its own trade-offs, but when these tools are used
together, scalable systems with low latency, high fault-
tolerance, and minimal complexity can be realized [13].

The main objective of the current research is to justify the
use of a column-oriented NoSQL DBMS as a system for
storing time series data. This suggestion is based on the general
characteristics of time series data and the main activities
performed by the Speed layer in a Lambda Architecture based
system. This paper focuses on the challenges of using HBase as
a system for storing and analysing time series data, related to
designing an appropriate database schema, the need to strike a
balance between ease of data access and performance, and
consideration of factors that affect the overload of individual
nodes in the system.

The remainder of this article includes the following:
Section 2 surveys some related studies. Section 3 presents an
overview of the Lambda Architecture with an emphasis on the
Speed layer. Section 4 discusses the main characteristics of
time series data. Section 5 outlines the key problems that arise

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

386 | P a g e

www.ijacsa.thesai.org

when using HBase as a system for storing time series data and
techniques for solving these issues. Section 6 contains the
conclusion.

II. RELATED WORK

One of the big challenges to extracting data from processes
is handling real-time event data and providing operational
support for ongoing processes. The research presented in [7]
focuses on a real-time process discovery algorithm
implemented by the authors in an integrated platform that is
built using the Lambda Architecture principles. The proposed
architecture solution makes it possible to scale up to big data
processing tasks.

Trajectory prediction problems are classified in the
category of big data processing tasks. In [1], a platform for
predicting the next position of moving objects based on the
Lambda Architecture is discussed. In the presented platform,
data analysis is performed both in a batch mode and a real time
mode. In the proposed system, the Lambda Architecture is
applied to combine predictions made by heavy-weight models
trained by using all available data, implemented by the Batch
layer, on one hand, and light-weight models trained by using
real-time data obtained from small samples, implemented by
the Speed layer, on the other hand.

Maeda & Gaur propose in [14] a Lambda Architecture of a
failure mode identification system for industrial assets that
achieves low initial implementation costs by providing
reasonable accuracy in object classification. The architecture
consists of a data acquisition node, such as a Raspberry Pi, in
which lightweight computations are performed. This node
processes high-speed vibration data in real-time to extract
important characteristics about objects and uses a deep learning
engine that is trained in a cloud platform.

The nature of heterogeneous IoT devices introduces the
challenge of collecting and processing the large data sets for
their analysis in detecting cyber-attacks in near real-time.
However, the traditional Intrusion Detection System cannot
cope with such a problem due to scalability limitations and
insufficient storage and processing capabilities. To address
these challenges, Alghamdi & Bellaiche present in [15] a
model of Intrusion Detection System based on the Lambda
Architecture. The proposed solution enables the detection of
suspicious activities in real time and allows them to be
classified by analyzing historical data in the Batch layer.
Suthakar et al. describe in detail in [9] a study of an Optimized
Lambda Architecture using the Apache Spark ecosystem,
which involves the modelling of an efficient way to
transparently connect batch processing and real-time
processing.

Data storages, whose architecture is based on the relational
data model, are not able to meet the current needs in terms of
data storage requirements as well as data read and write speed
requirements. Therefore, research related to real-time data
management systems is based on distributed storage organized
in a cluster, for example built on the Hadoop ecosystem. The
study in [4] proposes the use of HBase DBMS, whose storage
structure is based on the column-oriented data model. The
described system provides real-time monitoring of sensor data

and satisfies data storage and processing requirements. In [16],
the researchers discuss the use of the Hadoop ecosystem in
finance.

Bao & Cao analyse in [17] the challenges to storing and
retrieving social network data. In this study, they present a
query optimization scheme based on HBase DBMS. The table
structure is designed according to the characteristics of HBase,
such as the high efficiency of row keys and storage which is
based on the column-oriented data model. A coprocessor is
used to design a secondary index, which transforms some
queries to the attributes into row key queries of the index tables
so that this can support flexible queries to social network data
with high scalability and low latency. In [18,19], a similar
solution is proposed regarding the indexing mechanism in
HBase for sensor data processing. A secondary memory index
mechanism is used. The retrieval speed of the indexed data is
significantly improved because the indexing is stored and
maintained in the memory.

In order to increase the performance of the storage process
of data retrieved in the real time, the process must be
distributed. It can be realized by taking advantage of the
MapReduce technology. HBase offers a data loading tool that
can process data stored in TSV or CSV formats which is called
ImportTSV [20]. This tool is based on the MapReduce model.
Azqueta-Alzúaz et al. in [10] identify and quantify the
problems associated with loading massive big data. They
propose a tool for parallel massive data loading using HBase.
This solution overcomes the defined problems of data loading
in HBase.

III. LAMBDA ARCHITECTURE OVERVIEW

The CAP theorem applies to trade-offs in distributed
systems [6,11]. It states that in a distributed data storage system
only two of the characteristics availability, consistency, and
partition tolerance can be guaranteed. The meaning of partition
tolerance is that the system characteristics are maintained even
in case of network failures. This requirement is supported in
modern systems. Therefore, when designing a data
management system, a compromise has to be made between
consistency and availability. The Lambda Architecture is
designed to address the trade-offs that must be made in a
distributed data storage and processing system. The main idea
is to create two input data streams to be processed separately
and to combine later the obtained results. The components of
the Lambda Architecture are the Batch layer, the Serving layer,
and the Speed layer (Fig. 1).

The components through which the Batch layer and the
Serving layer are implemented involve the execution of
computational functions on each piece of data, i.e., on the data
as a whole [6]. These layers satisfy all characteristics that are
required for a data processing system except one: low latency
updates. The only task of the Speed layer is to satisfy the latter
requirement. Executing functions on an entire data set, which
could be measured in petabytes, is an operation that requires
considerable computational resources. The Speed layer should
use a completely different approach from the one used by the
Batch and Serving layers to reduce latency of updates as much
as possible. Whenever data changes, the Speed layer
recalculates only those results that depend on the changed data,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

387 | P a g e

www.ijacsa.thesai.org

i.e., incremental computation is performed. The main
functionalities that must be implemented by the Speed layer are
storing real-time views and processing the incoming data
stream to update these views. The Speed layer is more complex
than the Batch layer and more errors may occur when storing
and processing the data. The Speed layer is only responsible
for the data that will be included in the Batch views, which are
part of the Serving layer. The amount of this data is
significantly smaller than the amount of the main dataset. This
allows more flexibility in the design of the Speed layer. Real
time views that are obtained as a result of the Speed layer are
temporary, i.e., they are not stored permanently. Once the data
are accepted and used in the batch views, it can be discarded
from the Speed layer.

The choice of Lambda Architecture when building a
distributed system may have the following disadvantages:

 The different layers in this architecture make it too
complex in terms of synchronization between layers. It
is possible that the cost of synchronization between the
batch and speed layer will increase. More
computational resources, time and efforts are required
to run both the Batch and Speed layers.

 The implementation of the Lambda Architecture
requires the use of a large number of technologies,
which makes it difficult to find specialists who know
the whole set of tools.

 Under certain conditions, this architecture could contain
a large surplus of tools that need to be configured for
each scenario.

Fig. 1. Lambda Architecture Main Components.

IV. CHARACTERISTICS OF TIME SERIES DATA

Time series data are a set of data points, and each value is
connected to a timestamp. Formally, a time series can be
defined as a set of pairs, each consisting of a timestamp and a
value [2,20]. Generally speaking, time series datasets are
sequences of data records ordered according to the time of their
occurrence. Time series data is characterized by chronological
consistency, large volume and high degree of competitiveness.
The time series datasets are used in situations in which, once
measurements have been taken, they are not revised or
updated. However, they are rather used when the set of
measurements is accumulated by adding new data for each
parameter that is measured at each new time point. Time series
data entries are rarely changed, and time series data are
extracted by reading a continuous sequence of samples,
obtained after summarizing or aggregating the samples, in the
order in which they are received. These time series data
characteristics limit the requirements for the technology used to
store this type of data [23].

Although the idea of collecting and analyzing time series
data is not new, the combination of some factors such as the
volume of current datasets, the speed of data accumulation, and
the variety of new data sources turn the task of building
scalable time series databases into an enormous challenge.
Time series data require different approaches and different
tools [24].

It is difficult to store data whose nature is unpredictable.
This makes it necessary to store and process time series data in
a database. Especially when it comes to large volumes of time
series data, the requirements for its efficient storage become
increasingly important. A time series database is a way of
storing multiple time series so that queries to retrieve data from
one or more time series for a specific period can be executed
efficiently. Time series databases allow users to predict the
behavior of an object by analyzing its past states. The queries
made to the time series data can be implemented as large,
sequential scans, which are very efficient if the data are stored
appropriately in a time series database. And if the data volume
is very large, a non-relational time series database based on a
suitable NoSQL data model is usually needed to provide
sufficient scalability. In addition to considering the
characteristics, the nature of time-series data, as well as the
requirements for high storage reliability and horizontal
scalability, require the use of a NoSQL distributed time-series
database as the most suitable for storing and processing all
these large volumes of data. The new NoSQL-based
approaches use non-relational databases for this purpose with
significant advantages in terms of flexibility and performance
over traditional relational databases.

V. STORING AND PROCESSING TIME SERIES DATA IN

HBASE

HBase is a distributed DBMS built on HDFS. One of the
significant advantages of HBase is the ability to combine real-
time queries with batch MapReduce jobs in the Hadoop
ecosystem, using HDFS as a shared storage platform [21,22].
All rows in HBase are sorted lexicographically by row key. In
the column-oriented model, the data are organized at the
logical level into tables, rows, and columns. A table in HBase

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

388 | P a g e

www.ijacsa.thesai.org

is multi-dimensional and can be queried using the primary key.
The key structure is presented in Fig. 2. HBase columns can
have multiple versions of the same row key. A typical HBase
cluster has one active master node, one or more backup
masters, and regional servers (Fig. 3). The HBase Master node
assigns the corresponding regions to Region Servers. The first
one is the ROOT region, which contains all the META regions
which must be assigned. It also monitors the state of Region
Servers and if it detects a failure in any Region Server, it
restores it using the replicated data. In addition, the HBase
Master is responsible for table maintenance. The tasks which
HBase Master performs are related to adding or deleting tables
and making changes to the table structure. The Region Server
handles read and write client requests. It interacts with the
HBase Master to obtain a list of regions to serve and informs
the master node of its availability.

When HBase is used as a system for storing time series
data, problems arise, and they are related to overloading one of
the Range Servers and scattering of data. Since there is a wide
variety of time series data, it is necessary to take into account
the specific features of every type of data when it is stored in
HBase.

Fig. 2. Key Structure in Column-oriented Data.

Fig. 3. HBase General Architecture.

The most logical key that can be used to store time series
data is the timestamp. This guarantees the uniqueness of the
key for every measurement at a specific point in time. With
this approach to data storage, the data for each timestamp value
can be accessed by performing a single read operation. It is
also possible to easily perform a scan of a range of key values.
A fast scan is guaranteed because all rows stored in HBase are
sorted by key. However, the following two problems arise
when this approach is applied and either of them can reduce the
system performance:

 First, such an organization of the data may cause
overloading of some of the Region servers. This is
because at the time of writing, all data are concentrated
in the regions that serve the corresponding key values,
while in the other regions no data are being written.
Similarly, when performing a read query targeting the
most recent data, a small number of regions will be
accessed. This will reduce the effect of being able to
access a larger number of regions in parallel.

 Second, relatively few columns are stored in each row,
and this can be very inefficient because little data are
read at once and there are too many Bloom filter values
that will be used in the search process.

When all new rows are written sequentially in HBase, they
are all placed on the same server because they are sorted, and
this requires them to be close together. HBase has a built-in
automatic sharding mechanism. The new regions (areas of the
hard disk where the data are written) which result from the
sharding operation will be used later. In this way, they will
balance the overload. In practice, the overload will not be
noticeable at low write speeds as the RegionServer will be
doing perfectly fine. This, however, will not lead to the
efficient use of the entire HBase cluster because only one
server will be used.

To avoid key concentration in sequential writes, it is
necessary to do one of the following when developing the
logical organization of the data:

 Indexing must be avoided if possible. In the case of
time series data, the timestamp should not be used as
the only key, some other data element should be added
as well. In other words, a composite key should be used
to uniquely identify the row and the moment when the
corresponding value was received, or the event
occurred.

 Storing write operations randomly. The main problem
with time series data is that the sorted timestamps are
the essential information, and they must be present in
the data in one or another way. Therefore, using random
writes in time series data will make the writes faster but
the reads slower because the data will have to be
collected from many locations. In some cases, even
pseudo randomization can help to reduce the load of
some servers.

RowID Column

family

Column

qualifier

Time

stamp

Value

Key

HBase

HBase Master

HDFS

Region Server

Region Server

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

389 | P a g e

www.ijacsa.thesai.org

 Adding a fragment identifier at the beginning of the
key. In this way, the load can be distributed among the
set of Region servers. When the data are being read, it
must be read by each server. Then the fragment
identifier must be added to the timestamp, and finally
the query results must be combined in the memory.

If the write of a time series data set has a rather small row
(with a small number of columns), this will lead to a problem
associated with cache-hit and large Bloom filters when data are
searched for. Cache-hit is a condition in which the data that is
requested for processing is in the cache memory. In terms of
HBase, this can be explained as follows. Hadoop reads blocks
from HDFS, which typically range in size from 64 MB to 256
MB. If the data to be read and written is much smaller than this
size, this will lead to inefficient cluster operation and hence
cache memory problems. Bloom filters are used to answer the
question whether, based on the key, it is possible to locate the
data in the corresponding region. The answer is not definite,
but it should be understood as maybe yes, which requires
reading the region and searching. If the keys identify rows
containing little information (called thin rows), this will cause
the use of too many Bloom filter keys, which will take up disk
space and reduce the efficiency of their use.

One technique for increasing the speed at which data can be
retrieved from a time series database is by storing a large
number of values in each row. In DBMSs that support a
column-oriented data model, and HBase is exactly such a
system, the number of columns is almost unlimited. This
feature can be used to store numerous values within a single
row. This allows data points to be accessed at a higher speed.
The speed at which data can be scanned depends on the
number of rows scanned, the total number of values retrieved,
and the volume of data retrieved. If the number of rows is
reduced, the fraction of data loss in retrieval will be
significantly reduced, resulting in an increase in retrieval
speed. For example, if the row key contains <time_series_ID>
and <Start_time_of_Tme_Window>, and the column names
correspond to the offset from the start of the time window
when the value of the corresponding data element will be
written, then the result will be a table with many columns. This
means that the data retrieval from a particular time series for a
particular time period would involve mainly sequential read
operations and would therefore be much faster in comparison
to a situation in which the rows were scattered.

Such an organization leads to a reduction in the number of
rows in the table. In addition, rows that contain data from the
same time series are close to each other when the data are
stored. To take advantage of the benefits of this structure with
reference to its performance, the number of samples in each
time window must be sufficiently large. This will cause a
significant reduction in the number of rows that must be
retrieved.

This technique is similar to the default table structure used
by OpenTSDB [5,20]. OpenTSDB is an open-source
distributed time series database designed to control clusters of
commodity servers with a high level of granularity. The
interaction between OpenTSDB and HBase is presented in Fig.
4. An OpenTSDB consists of interacting components for

loading and accessing time series data. These include data
collectors, Time Series Daemons (TSDs), and various user
interface management related functions. Each TSD is
independent. There is no master, no shared state, and as many
TSDs as required can be run so that the system can handle the
workload. Each TSD uses HBase to store and retrieve time
series data. On the servers where measurements are being
taken, there is a collection process that sends data to the TSD.
The TSDs are responsible for finding time series to which data
will be added and each data point will be inserted as it is
received in the data storage layer. OpenTSDB uses HDFS as a
file system for storing large data sets. A simplified web-based
user interface is supported, and users query various metrics in
real time through it.

Fig. 4. OpenTSDB Components Interaction.

VI. CONCLUSION

The Lambda Architecture allows users to optimize the cost
of processing large volumes of data by dividing the storage and
processing of input data into two streams - data that needs to be
processed in real time and data on which batch processing will
be performed. The Lambda Architecture provides a consistent
approach to building a big data system that can perform real-
time data storage and processing in a low-latency, high-
throughput, and fault-tolerant manner. The Speed layer
implementation needs to consider the characteristics of time
series data as well as the requirements of high storage
reliability and horizontal scalability. This requires the use of a
NoSQL distributed time series database based on a column-
oriented data model.

When using HBase as a time series data storage system, it
is necessary to properly design a row key that is based on the
timestamp in order to overcome the problems associated with
overloading one of the Range Servers and the data scatter
problem. The effectiveness of the speed layer can be

Servers

HBase

Servers

Collector Collector

T S D T S D

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 2, 2022

390 | P a g e

www.ijacsa.thesai.org

significantly increased when HBase is integrated with
OpenTSDB. All OpenTSDB data points are stored in one “big”
table, which is called tsdb by default. All values are stored in a
single column family. This is done to take advantage of the key
ordering in HBase and the distribution of regions over
individual RegionServers.

The author's further efforts will be focused on expanding
research on the application of other software architectures used
to build time series data storage systems and incorporate these
technologies in the Distributed Databases course of the
Computer Systems and Technologies master degree at the
University of Ruse.

REFERENCES

[1] E. Psomakelis, K. Tserpes, D. Zissis, D. Anagnostopoulos and T.
Varvarigou, “Context agnostic trajectory prediction based on λ-
architecture,” Future Generation Computer Systems, vol. 110, pp. 531–
539, 2020.

[2] A. Noury and M. Amini, “An access and inference control model for
time series databases,” Future Generation Computer Systems, vol. 92,
pp. 93–108, 2019.

[3] A. Pandya, O. Odunsi, C. Liu, A. Cuzzocrea and J. Wang, "Adaptive
and efficient streaming time series forecasting with Lambda architecture
and Spark," in 2020 IEEE International Conference on Big Data (Big
Data), pp. 5182-5190, 2020.

[4] J. Yang, X. Chi, M. Zhu and W. Wang, “Research and Design of Sensor
Data Management System Based on Distributed Storage,” in 2020 Int.
Conf. on Computer Science and Management Technology (ICCSMT),
pp. 128-132, 2020.

[5] A. Nielsen, Practical Time Series Analysis, O'Reilly Media, Inc., CA,
2019.

[6] N. Marz and J. Warren, Big Data: principles and best practices of
scalable real-time systems, Manning Publications, 2015.

[7] A. Batyuk and V. Voityshyn, “Streaming Process Discovery for Lambda
Architecture-Based Process Monitoring Platform,” IEEE 13th Int.
Scientific and Technical Conference on Computer Sciences and
Information Technologies (CSIT), pp. 298-301, 2018.

[8] M. Kiran, P. Murphy, I. Monga, J. Dugan and S. S. Baveja, "Lambda
architecture for cost-effective batch and speed big data processing,"
2015 IEEE International Conference on Big Data (Big Data), pp. 2785-
2792, 2015.

[9] U. Suthakar, L. Magnoni, D. R. Smith and A. Khan, “Optimised
Lambda Architecture for Monitoring Scientific Infrastructure,” in IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 6, pp.
1395-1408, 2021.

[10] A. Azqueta-Alzúaz, M. Patiño-Martinez, I. Brondino and R. Jimenez-
Peris, “Massive Data Load on Distributed Database Systems over
HBase,” 17th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID), pp. 776-779, 2017.

[11] D. McCreary and A. Kelly, Making sense of NoSQL, Manning
Publications, 2014.

[12] B. Jose and S. Abraham, “Performance analysis of NoSQL and
relational databases with MongoDB and MySQL”, Materials Today:
Proceedings, vol. 24(3), pp. 2036-2043, 2020.

[13] F. Cerezo, C. E. Cuesta, J. C. Moreno-Herranz and B. Vela,
"Deconstructing the Lambda Architecture: An Experience Report," 2019
IEEE International Conference on Software Architecture Companion
(ICSA-C), pp. 196-201, 2019.

[14] D. Maeda and S. Gaur, “Lambda architecture for robust condition based
maintenance with simulated failure modes,” IEEE/ACM Symposium on
Edge Computing (SEC), pp. 152-154, 2020.

[15] R. Alghamdi and M. Bellaiche, “A Deep Intrusion Detection System in
Lambda Architecture Based on Edge Cloud Computing for IoT,” 4th
International Conference on Artificial Intelligence and Big Data
(ICAIBD), pp. 561-566, 2021.

[16] F. de Moura Rezende dos Santos and M. Holanda, “Performance
Analysis of Financial Institution Operations in a NoSQL Columnar
Database,” 15th Iberian Conference on Information Systems and
Technologies (CISTI), pp. 1-6, 2020.

[17] C. Bao and M. Cao, “Query Optimization of Massive Social Network
Data Based on HBase,” IEEE 4th International Conference on Big Data
Analytics (ICBDA), pp. 94-97, 2019.

[18] F. Ye, S. Zhu, Y. Lou, Z. Liu, Y. Chen and Q. Huang, "Research on
Index Mechanism of HBase Based on Coprocessor for Sensor Data,"
IEEE 43rd Annual Computer Software and Applications Conference
(COMPSAC), pp. 598-603, 2019.

[19] P. Zhengjun and Z. Lianfen, "Application and research of massive big
data storage system based on HBase," IEEE 3rd International
Conference on Cloud Computing and Big Data Analysis (ICCCBDA),
pp. 219-223, 2018.

[20] T. Dunning and E. Friedman, Time Series Databases: New Ways to
Store and Access Data, O’Reilly Media, Inc., CA, 2015.

[21] P. Wang, F. Xu, M. Ma and L. Duan, "Efficient Spatial Big Data
Storage and Query in HBase," 2019 IEEE International Conference on
Smart Cloud (SmartCloud), pp. 149-155, 2019.

[22] H. Ochiai, H. Ikegami, Y. Teranishi and H. Esaki, "Facility Information
Management on HBase: Large-Scale Storage for Time-Series Data,"
2014 IEEE 38th International Computer Software and Applications
Conference Workshops, pp. 306-311, 2014.

[23] G. Liu, W. Zhu, C. Saunders, F. Gao and Y. Yub, “Real-Time Complex
Event Processing and Analytics for Smart Grid”, Procedia Computer
Science, vol. 61, pp. 113-119, 2015.

[24] K. Mishra, S. Basu, U. Maulik, “Graft: A graph based time series data
mining framework,” Engineering Applications of Artificial Intelligence,
vol. 110, 2022.

