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Abstract—In recent years, modern systems have become 

increasingly integrated, and the challenges are focused on 

delivering real-time analytics based on big data. Thus, using 

standard software tools to extract information from such datasets 

is not always possible. The Lambda Architecture proposed by 

Marz is an architectural solution that can manage the processing 

of large data volumes by combining real-time and data batch 

processing techniques. Choosing a suitable database management 

system for storing large volumes of time series data is not a 

trivial issue as various aspects such as low latency, high 

performance and the possibility of horizontal scalability must be 

taken into account. The new NoSQL approaches use for this 

purpose non-relational databases with significant advantages in 

terms of flexibility and performance in comparison with the 

traditional relational databases. With reference to this, the 

purpose of this paper is to analyse the general characteristics of 

time series data and the main activities performed by the Speed 

layer in a system based on the Lambda Architecture. Based on 

this, the use of a column-oriented NoSQL DBMS as a system for 

storing time series data is justified. The paper also addresses the 

challenges of using HBase as a system for storing and analysing 

time series data. These questions are related to the design of an 

appropriate database schema, the need to achieve balance 

between ease of access to the data and performance as well as 

considering the factors that affect the overload of individual 

nodes in the system. 
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I. INTRODUCTION 

The accelerated development of technologies applied to big 
data has caused significant changes in the subject areas of 
storage, retrieval, and processing of data. Nowadays, the 
problems related to the big data are connected not only to the 
volume of data. Much of the data are acquired in real time and 
is most valuable if its interpretation takes place as it arrives 
[1,2,3]. Synthesizing, processing, and transforming this big 
data to valuable information is one of the great challenges of 
the technological world today. 

In big data systems, an important property of data related to 
its processing is immutability. In such systems, to prevent data 
loss and data corruption, data are processed in a way that 
records can never be modified or deleted. By its nature, 
immutable data are simpler than mutable data [4]. This 
organization allows the system only to create and read records 
(CreateRead) as opposed to the additional capability of 
updating and deleting records (CRUpdateDelete) as 
implemented in relational databases. Thus, the write operations 

only add new data units [5]. This approach makes data 
processing highly scalable. The data system itself becomes a 
kind of a logging system, which adds a timestamp and a unique 
identifier to the data record, which is then kept in the data 
store. 

Different architecture models are used when building the 
big data ecosystem. The Lambda Architecture, proposed by 
Nathan Marz [6], is a solution which combines real-time data 
processing techniques with batch processing techniques. The 
Lambda Architecture is a big data management software 
paradigm that supports data processing by balancing the 
performance, latency, and fault-tolerance of the system that is 
based on this architecture [7,8]. There is no single integrated 
tool that provides a comprehensive solution with reference to 
better accuracy, low latency, and high performance. Therefore, 
it is necessary to apply the idea of using a set of tools and 
techniques to build a comprehensive big data management 
system. With reference to this, Lambda Architecture defines 
several layers that correspond to a set of tools and techniques 
for building a big data processing system, i.e., a speed layer, a 
serving layer, and a batch layer [9]. The increasing need for 
new and improved storage and retrieval mechanisms resulted 
in the development and use of NoSQL database management 
systems such as HBase, MongoDB, Cassandra, CouchDB, 
Hypertable and big data platforms such as Hadoop and Spark 
[10,11,12]. Lambda Architecture defines a logical, well-
motivated approach in linking these technologies together to 
build a system that meets user requirements. Each software 
tool offers its own trade-offs, but when these tools are used 
together, scalable systems with low latency, high fault-
tolerance, and minimal complexity can be realized [13]. 

The main objective of the current research is to justify the 
use of a column-oriented NoSQL DBMS as a system for 
storing time series data. This suggestion is based on the general 
characteristics of time series data and the main activities 
performed by the Speed layer in a Lambda Architecture based 
system. This paper focuses on the challenges of using HBase as 
a system for storing and analysing time series data, related to 
designing an appropriate database schema, the need to strike a 
balance between ease of data access and performance, and 
consideration of factors that affect the overload of individual 
nodes in the system. 

The remainder of this article includes the following: 
Section 2 surveys some related studies. Section 3 presents an 
overview of the Lambda Architecture with an emphasis on the 
Speed layer. Section 4 discusses the main characteristics of 
time series data. Section 5 outlines the key problems that arise 
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when using HBase as a system for storing time series data and 
techniques for solving these issues. Section 6 contains the 
conclusion. 

II. RELATED WORK 

One of the big challenges to extracting data from processes 
is handling real-time event data and providing operational 
support for ongoing processes. The research presented in [7] 
focuses on a real-time process discovery algorithm 
implemented by the authors in an integrated platform that is 
built using the Lambda Architecture principles. The proposed 
architecture solution makes it possible to scale up to big data 
processing tasks. 

Trajectory prediction problems are classified in the 
category of big data processing tasks. In [1], a platform for 
predicting the next position of moving objects based on the 
Lambda Architecture is discussed. In the presented platform, 
data analysis is performed both in a batch mode and a real time 
mode. In the proposed system, the Lambda Architecture is 
applied to combine predictions made by heavy-weight models 
trained by using all available data, implemented by the Batch 
layer, on one hand, and light-weight models trained by using 
real-time data obtained from small samples, implemented by 
the Speed layer, on the other hand. 

Maeda & Gaur propose in [14] a Lambda Architecture of a 
failure mode identification system for industrial assets that 
achieves low initial implementation costs by providing 
reasonable accuracy in object classification. The architecture 
consists of a data acquisition node, such as a Raspberry Pi, in 
which lightweight computations are performed. This node 
processes high-speed vibration data in real-time to extract 
important characteristics about objects and uses a deep learning 
engine that is trained in a cloud platform. 

The nature of heterogeneous IoT devices introduces the 
challenge of collecting and processing the large data sets for 
their analysis in detecting cyber-attacks in near real-time. 
However, the traditional Intrusion Detection System cannot 
cope with such a problem due to scalability limitations and 
insufficient storage and processing capabilities. To address 
these challenges, Alghamdi & Bellaiche present in [15] a 
model of Intrusion Detection System based on the Lambda 
Architecture. The proposed solution enables the detection of 
suspicious activities in real time and allows them to be 
classified by analyzing historical data in the Batch layer. 
Suthakar et al. describe in detail in [9] a study of an Optimized 
Lambda Architecture using the Apache Spark ecosystem, 
which involves the modelling of an efficient way to 
transparently connect batch processing and real-time 
processing. 

Data storages, whose architecture is based on the relational 
data model, are not able to meet the current needs in terms of 
data storage requirements as well as data read and write speed 
requirements. Therefore, research related to real-time data 
management systems is based on distributed storage organized 
in a cluster, for example built on the Hadoop ecosystem. The 
study in [4] proposes the use of HBase DBMS, whose storage 
structure is based on the column-oriented data model. The 
described system provides real-time monitoring of sensor data 

and satisfies data storage and processing requirements. In [16], 
the researchers discuss the use of the Hadoop ecosystem in 
finance. 

Bao & Cao analyse in [17] the challenges to storing and 
retrieving social network data. In this study, they present a 
query optimization scheme based on HBase DBMS. The table 
structure is designed according to the characteristics of HBase, 
such as the high efficiency of row keys and storage which is 
based on the column-oriented data model. A coprocessor is 
used to design a secondary index, which transforms some 
queries to the attributes into row key queries of the index tables 
so that this can support flexible queries to social network data 
with high scalability and low latency. In [18,19], a similar 
solution is proposed regarding the indexing mechanism in 
HBase for sensor data processing. A secondary memory index 
mechanism is used. The retrieval speed of the indexed data is 
significantly improved because the indexing is stored and 
maintained in the memory. 

In order to increase the performance of the storage process 
of data retrieved in the real time, the process must be 
distributed. It can be realized by taking advantage of the 
MapReduce technology. HBase offers a data loading tool that 
can process data stored in TSV or CSV formats which is called 
ImportTSV [20]. This tool is based on the MapReduce model. 
Azqueta-Alzúaz et al. in [10] identify and quantify the 
problems associated with loading massive big data. They 
propose a tool for parallel massive data loading using HBase. 
This solution overcomes the defined problems of data loading 
in HBase. 

III. LAMBDA ARCHITECTURE OVERVIEW 

The CAP theorem applies to trade-offs in distributed 
systems [6,11]. It states that in a distributed data storage system 
only two of the characteristics availability, consistency, and 
partition tolerance can be guaranteed. The meaning of partition 
tolerance is that the system characteristics are maintained even 
in case of network failures. This requirement is supported in 
modern systems. Therefore, when designing a data 
management system, a compromise has to be made between 
consistency and availability. The Lambda Architecture is 
designed to address the trade-offs that must be made in a 
distributed data storage and processing system. The main idea 
is to create two input data streams to be processed separately 
and to combine later the obtained results. The components of 
the Lambda Architecture are the Batch layer, the Serving layer, 
and the Speed layer (Fig. 1). 

The components through which the Batch layer and the 
Serving layer are implemented involve the execution of 
computational functions on each piece of data, i.e., on the data 
as a whole [6]. These layers satisfy all characteristics that are 
required for a data processing system except one: low latency 
updates. The only task of the Speed layer is to satisfy the latter 
requirement. Executing functions on an entire data set, which 
could be measured in petabytes, is an operation that requires 
considerable computational resources. The Speed layer should 
use a completely different approach from the one used by the 
Batch and Serving layers to reduce latency of updates as much 
as possible. Whenever data changes, the Speed layer 
recalculates only those results that depend on the changed data, 
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i.e., incremental computation is performed. The main 
functionalities that must be implemented by the Speed layer are 
storing real-time views and processing the incoming data 
stream to update these views. The Speed layer is more complex 
than the Batch layer and more errors may occur when storing 
and processing the data. The Speed layer is only responsible 
for the data that will be included in the Batch views, which are 
part of the Serving layer. The amount of this data is 
significantly smaller than the amount of the main dataset. This 
allows more flexibility in the design of the Speed layer. Real 
time views that are obtained as a result of the Speed layer are 
temporary, i.e., they are not stored permanently. Once the data 
are accepted and used in the batch views, it can be discarded 
from the Speed layer. 

The choice of Lambda Architecture when building a 
distributed system may have the following disadvantages: 

 The different layers in this architecture make it too 
complex in terms of synchronization between layers. It 
is possible that the cost of synchronization between the 
batch and speed layer will increase. More 
computational resources, time and efforts are required 
to run both the Batch and Speed layers. 

 The implementation of the Lambda Architecture 
requires the use of a large number of technologies, 
which makes it difficult to find specialists who know 
the whole set of tools. 

 Under certain conditions, this architecture could contain 
a large surplus of tools that need to be configured for 
each scenario. 

 

Fig. 1. Lambda Architecture Main Components. 

IV. CHARACTERISTICS OF TIME SERIES DATA 

Time series data are a set of data points, and each value is 
connected to a timestamp. Formally, a time series can be 
defined as a set of pairs, each consisting of a timestamp and a 
value [2,20]. Generally speaking, time series datasets are 
sequences of data records ordered according to the time of their 
occurrence. Time series data is characterized by chronological 
consistency, large volume and high degree of competitiveness. 
The time series datasets are used in situations in which, once 
measurements have been taken, they are not revised or 
updated. However, they are rather used when the set of 
measurements is accumulated by adding new data for each 
parameter that is measured at each new time point. Time series 
data entries are rarely changed, and time series data are 
extracted by reading a continuous sequence of samples, 
obtained after summarizing or aggregating the samples, in the 
order in which they are received. These time series data 
characteristics limit the requirements for the technology used to 
store this type of data [23]. 

Although the idea of collecting and analyzing time series 
data is not new, the combination of some factors such as the 
volume of current datasets, the speed of data accumulation, and 
the variety of new data sources turn the task of building 
scalable time series databases into an enormous challenge. 
Time series data require different approaches and different 
tools [24]. 

It is difficult to store data whose nature is unpredictable. 
This makes it necessary to store and process time series data in 
a database. Especially when it comes to large volumes of time 
series data, the requirements for its efficient storage become 
increasingly important. A time series database is a way of 
storing multiple time series so that queries to retrieve data from 
one or more time series for a specific period can be executed 
efficiently. Time series databases allow users to predict the 
behavior of an object by analyzing its past states. The queries 
made to the time series data can be implemented as large, 
sequential scans, which are very efficient if the data are stored 
appropriately in a time series database. And if the data volume 
is very large, a non-relational time series database based on a 
suitable NoSQL data model is usually needed to provide 
sufficient scalability. In addition to considering the 
characteristics, the nature of time-series data, as well as the 
requirements for high storage reliability and horizontal 
scalability, require the use of a NoSQL distributed time-series 
database as the most suitable for storing and processing all 
these large volumes of data. The new NoSQL-based 
approaches use non-relational databases for this purpose with 
significant advantages in terms of flexibility and performance 
over traditional relational databases. 

V. STORING AND PROCESSING TIME SERIES DATA IN 

HBASE 

HBase is a distributed DBMS built on HDFS. One of the 
significant advantages of HBase is the ability to combine real-
time queries with batch MapReduce jobs in the Hadoop 
ecosystem, using HDFS as a shared storage platform [21,22]. 
All rows in HBase are sorted lexicographically by row key. In 
the column-oriented model, the data are organized at the 
logical level into tables, rows, and columns. A table in HBase 
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is multi-dimensional and can be queried using the primary key. 
The key structure is presented in Fig. 2. HBase columns can 
have multiple versions of the same row key. A typical HBase 
cluster has one active master node, one or more backup 
masters, and regional servers (Fig. 3). The HBase Master node 
assigns the corresponding regions to Region Servers. The first 
one is the ROOT region, which contains all the META regions 
which must be assigned. It also monitors the state of Region 
Servers and if it detects a failure in any Region Server, it 
restores it using the replicated data. In addition, the HBase 
Master is responsible for table maintenance. The tasks which 
HBase Master performs are related to adding or deleting tables 
and making changes to the table structure. The Region Server 
handles read and write client requests. It interacts with the 
HBase Master to obtain a list of regions to serve and informs 
the master node of its availability. 

When HBase is used as a system for storing time series 
data, problems arise, and they are related to overloading one of 
the Range Servers and scattering of data. Since there is a wide 
variety of time series data, it is necessary to take into account 
the specific features of every type of data when it is stored in 
HBase. 

 

Fig. 2. Key Structure in Column-oriented Data. 

 

Fig. 3. HBase General Architecture. 

The most logical key that can be used to store time series 
data is the timestamp. This guarantees the uniqueness of the 
key for every measurement at a specific point in time. With 
this approach to data storage, the data for each timestamp value 
can be accessed by performing a single read operation. It is 
also possible to easily perform a scan of a range of key values. 
A fast scan is guaranteed because all rows stored in HBase are 
sorted by key. However, the following two problems arise 
when this approach is applied and either of them can reduce the 
system performance: 

 First, such an organization of the data may cause 
overloading of some of the Region servers. This is 
because at the time of writing, all data are concentrated 
in the regions that serve the corresponding key values, 
while in the other regions no data are being written. 
Similarly, when performing a read query targeting the 
most recent data, a small number of regions will be 
accessed. This will reduce the effect of being able to 
access a larger number of regions in parallel. 

 Second, relatively few columns are stored in each row, 
and this can be very inefficient because little data are 
read at once and there are too many Bloom filter values 
that will be used in the search process. 

When all new rows are written sequentially in HBase, they 
are all placed on the same server because they are sorted, and 
this requires them to be close together. HBase has a built-in 
automatic sharding mechanism. The new regions (areas of the 
hard disk where the data are written) which result from the 
sharding operation will be used later. In this way, they will 
balance the overload. In practice, the overload will not be 
noticeable at low write speeds as the RegionServer will be 
doing perfectly fine. This, however, will not lead to the 
efficient use of the entire HBase cluster because only one 
server will be used. 

To avoid key concentration in sequential writes, it is 
necessary to do one of the following when developing the 
logical organization of the data: 

 Indexing must be avoided if possible. In the case of 
time series data, the timestamp should not be used as 
the only key, some other data element should be added 
as well. In other words, a composite key should be used 
to uniquely identify the row and the moment when the 
corresponding value was received, or the event 
occurred. 

 Storing write operations randomly. The main problem 
with time series data is that the sorted timestamps are 
the essential information, and they must be present in 
the data in one or another way. Therefore, using random 
writes in time series data will make the writes faster but 
the reads slower because the data will have to be 
collected from many locations. In some cases, even 
pseudo randomization can help to reduce the load of 
some servers. 

RowID Column 
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 Adding a fragment identifier at the beginning of the 
key. In this way, the load can be distributed among the 
set of Region servers. When the data are being read, it 
must be read by each server. Then the fragment 
identifier must be added to the timestamp, and finally 
the query results must be combined in the memory. 

If the write of a time series data set has a rather small row 
(with a small number of columns), this will lead to a problem 
associated with cache-hit and large Bloom filters when data are 
searched for. Cache-hit is a condition in which the data that is 
requested for processing is in the cache memory. In terms of 
HBase, this can be explained as follows. Hadoop reads blocks 
from HDFS, which typically range in size from 64 MB to 256 
MB. If the data to be read and written is much smaller than this 
size, this will lead to inefficient cluster operation and hence 
cache memory problems. Bloom filters are used to answer the 
question whether, based on the key, it is possible to locate the 
data in the corresponding region. The answer is not definite, 
but it should be understood as maybe yes, which requires 
reading the region and searching. If the keys identify rows 
containing little information (called thin rows), this will cause 
the use of too many Bloom filter keys, which will take up disk 
space and reduce the efficiency of their use. 

One technique for increasing the speed at which data can be 
retrieved from a time series database is by storing a large 
number of values in each row. In DBMSs that support a 
column-oriented data model, and HBase is exactly such a 
system, the number of columns is almost unlimited. This 
feature can be used to store numerous values within a single 
row. This allows data points to be accessed at a higher speed. 
The speed at which data can be scanned depends on the 
number of rows scanned, the total number of values retrieved, 
and the volume of data retrieved. If the number of rows is 
reduced, the fraction of data loss in retrieval will be 
significantly reduced, resulting in an increase in retrieval 
speed. For example, if the row key contains <time_series_ID> 
and <Start_time_of_Tme_Window>, and the column names 
correspond to the offset from the start of the time window 
when the value of the corresponding data element will be 
written, then the result will be a table with many columns. This 
means that the data retrieval from a particular time series for a 
particular time period would involve mainly sequential read 
operations and would therefore be much faster in comparison 
to a situation in which the rows were scattered. 

Such an organization leads to a reduction in the number of 
rows in the table. In addition, rows that contain data from the 
same time series are close to each other when the data are 
stored. To take advantage of the benefits of this structure with 
reference to its performance, the number of samples in each 
time window must be sufficiently large. This will cause a 
significant reduction in the number of rows that must be 
retrieved. 

This technique is similar to the default table structure used 
by OpenTSDB [5,20]. OpenTSDB is an open-source 
distributed time series database designed to control clusters of 
commodity servers with a high level of granularity. The 
interaction between OpenTSDB and HBase is presented in Fig. 
4. An OpenTSDB consists of interacting components for 

loading and accessing time series data. These include data 
collectors, Time Series Daemons (TSDs), and various user 
interface management related functions. Each TSD is 
independent. There is no master, no shared state, and as many 
TSDs as required can be run so that the system can handle the 
workload. Each TSD uses HBase to store and retrieve time 
series data. On the servers where measurements are being 
taken, there is a collection process that sends data to the TSD. 
The TSDs are responsible for finding time series to which data 
will be added and each data point will be inserted as it is 
received in the data storage layer. OpenTSDB uses HDFS as a 
file system for storing large data sets. A simplified web-based 
user interface is supported, and users query various metrics in 
real time through it. 

 

Fig. 4. OpenTSDB Components Interaction. 

VI. CONCLUSION 

The Lambda Architecture allows users to optimize the cost 
of processing large volumes of data by dividing the storage and 
processing of input data into two streams - data that needs to be 
processed in real time and data on which batch processing will 
be performed. The Lambda Architecture provides a consistent 
approach to building a big data system that can perform real-
time data storage and processing in a low-latency, high-
throughput, and fault-tolerant manner. The Speed layer 
implementation needs to consider the characteristics of time 
series data as well as the requirements of high storage 
reliability and horizontal scalability. This requires the use of a 
NoSQL distributed time series database based on a column-
oriented data model. 

When using HBase as a time series data storage system, it 
is necessary to properly design a row key that is based on the 
timestamp in order to overcome the problems associated with 
overloading one of the Range Servers and the data scatter 
problem. The effectiveness of the speed layer can be 

Servers 

HBase 

Servers 

Collector Collector 

T S D T S D 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 2, 2022 

390 | P a g e  

www.ijacsa.thesai.org 

significantly increased when HBase is integrated with 
OpenTSDB. All OpenTSDB data points are stored in one “big” 
table, which is called tsdb by default. All values are stored in a 
single column family. This is done to take advantage of the key 
ordering in HBase and the distribution of regions over 
individual RegionServers. 

The author's further efforts will be focused on expanding 
research on the application of other software architectures used 
to build time series data storage systems and incorporate these 
technologies in the Distributed Databases course of the 
Computer Systems and Technologies master degree at the 
University of Ruse. 
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