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Abstract—Seismic exploration involves estimating the 

properties of the Earth's subsurface from reflected seismic waves 

then visualizing the resulting seismic data and its attributes. 

These data and derived seismic attributes provide 

complementary information and reduce the amount of time and 

effort for the geoscientist. Multiple conventional methods to 

combine various seismic attributes exist, but the number of 

attributes is always limited, and the quality of the resulting image 

varies. This paper proposes a method that can be used to 

overcome these limitations. In this paper, we propose using Deep 

Learning-based image fusion models to combine seismic 

attributes. By using convolutional neural network (CNN) 

capabilities in feature extraction, the resulting image quality is 

better than that obtained with conventional methods. This work 

implemented two models and conducted a number of 

experiments using them. Several techniques have been used to 

evaluate the results, such as visual inspection, and using image 

fusion metrics. The experiments show that the Image-fusion 

Framework, using the Image Fusion Framework Based on CNN 

(IFCNN) approach, outperformed all other models in both 

quantitative and visual analysis. Its QAB/F and MS-SSIM scores 

are 50% and 10%, respectively, higher than all other models. 

Also, IFCNN was evaluated against the current state-of-the-art 

solution, Octree, in a comparative study. IFCNN overcomes the 

limitation of the Octree method and succeeds in combining nine 

seismic attributes with a better-combining quality, with QAB/F and 

NAB/F scores being 40% higher. 

Keywords—CNNs; neural networks; seismic attributes; seismic 

images; image fusion 

I. INTRODUCTION 

Seismic data is a major source of information for Earth 
subsurface exploration and visualization. To gather seismic 
data, seismic waves are sent into the Earth’s subsurface, and 
the resulting reflection is recorded. Using these reflections, the 
underlaying structural information is obtained and the earth 
subsurface can be modeled and visualized [1]. The data that 
are obtained from the seismic data, to supplement and enhance 
the geological/geophysical information, are referred to as 
seismic attributes [2]. They help to make the process of 
visualization more informative. 

The current process used by engineers, archeologists, 
geologists, and other scientific scholars to develop accurate 
representations of the Earth's subsurface involves looking at 
the seismic images and their related seismic attributes, which 

is followed by the interpretation of huge volumes of data. The 
process is, however, bulky and makes it difficult to combine 
the various views into one comprehensive view that can 
efficiently exploit all the data included in each individual view 
and reduce the time taken in the process. 

Various scholars have made major contributions to address 
the challenge of combining seismic attributes, including 
Octree, principal component analysis (PCA), cross-plotting, 
and volume blending [3], [4]. The most recent work by Al-
Dossari et al. [4], show how the Octree color quantization 
algorithm can be extended to enhance the combined seismic 
attributes. However, the method has some limitations. For 
instance, the number of attributes is limited to a maximum of 
eight, the structural disposition of the attributes can affect the 
results, and the result of the combined image includes 
artifacts. 

Image fusion can be described as the process of combining 
more than one input image that contains complementary 
information from related scenes, thus producing a composite 
image [5]. The input images are obtained from matching 
imaging devices, including various types of imaging devices, 
or from various other parameters such as infrared cameras and 
satellites. The resultant composite image is more useful in 
terms of the included information as compared to the 
individual images [6]. The techniques used in image fusion 
offer many benefits in different image processing tasks that 
rely on viewing more than one image of the same scene, such 
as object recognition and detection, as well as areas like 
digital photography and remote sensing, among others. 
Merging the key information of various input images into one 
fused image can be helpful in reducing the challenge of 
wasted time and enhancing the final results of the work [5]. 
The data enrichment offered by seismic attributes of seismic 
images is the same as in various other image fusion tasks, like 
remote sensing and medical imaging. 

The recent development of deep learning (DL) has led to 
various experts in the field developing different image fusion 
techniques using the new technology. In this field, Machine 
Learning algorithms, afforded by deep learning, along with 
neural networks, are used to extract data and image 
representations. The use of Convolutional Neural Networks 
(CNN) is important in solving the conventional, manual 
method challenge of designing fusion techniques and choosing 
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activity-level metrics and fusion rules as it has the capability 
of learning features indirectly via data training. Because the 
tasks involved in image fusion are closely related to the 
classification challenges that CNNs excel in, they provide 
superior results [7], [8]. 

To create a DL method capable of combining any number 
of seismic attributes, this paper proposes using general image 
fusion models. The method involves extracting features of an 
image and then fusing them into a single image. It first obtains 
three-dimensional (3D) image information, with each piece of 
the three-dimensional information representing either the 
seismic attributes or the seismic (raw data) image. Based on 
this method, 3D data is sliced, and the resulting two-
dimensional (2D) images are forwarded to the fusion model as 
inputs. The key data is then extracted from the input images 
by use of the convolutional layer to produce maps of the 
features. These maps are then fused to generate the output 
image and, lastly, the process outputs the data in form of a 3D 
image. 

This paper includes experiments that compared the 
proposed technique by implementing two fusion models with 
other fusion models used previously by Alotaibi et al. [9], and 
then compares their results. It also compares the model’s 
results against the results of Octree. The models used are a 
new kind of image fusion model developed to fuse all types of 
images and are not limited to any specific types of images. 
The reason for using pre-trained models is the lack of 
available datasets for seismic images with ground-truth fusion 
images, which hinders the training process. The pretraining 
helps solve the problem of training the CNN. 

Our paper is structured as follows: In Section II, we briefly 
provide background information; in Section III, the proposed 
fusion method is introduced in detail; in Section IV, the 
experimental results are shown; in Section V the conclusion of 
our paper and discussion are presented. 

II. BACKGROUND 

A. Image Fusion Review 

In its simplest terms, image fusion can be described as a 
technique used in image processing that involves merging 
more than one input image, obtained from multiple sensors, to 
produce a single superior image [5]. The process is used to 
reduce the volume of data, as well as to provide images that 
are more ideal and understandable by computers and humans. 
Image fusion also facilitates the collection of data from 
images derived from multiple sources to create high-quality 
fused images including all the spectral and spatial information 
[6]. 

The fused image must observe the following conditions: 
first, it must contain all of the relevant information; second, it 
must have clarity regarding every artifact and anomaly; and 
third, all errors and noise are eliminated. Some of the primary 
applications of image fusion are multi-focus image fusion, 
medical image fusion, and remote sensing image fusion [5]. 

The common approach used in image fusion includes 
acquiring multiple input images, registering the images, and 
then fusing them. The registration of the images includes 

detecting features, setting and comparing them, estimating the 
transformation models, and converting and re-sampling the 
image. The process includes fusion rules which are applied 
either as part of the image transformation models or as direct 
mathematical applications, such as choosing or averaging the 
maximum pixel value [10]. 

Image fusion can be classified into different categories 
according to the task(s) performed [11]. These are: 

 Multi-exposure image fusion - combines images with 
various exposures to different lighting to produce 
superior images. 

 Medical image fusion – combines images used in 
medical fields, like computed tomography (CT) and 
magnetic resonance imaging (MRI) to produce more 
informative images. 

 Infrared/Visible light image fusion that combines 
images obtained using infrared radiation with visible 
light to produce images that are more informative. 

 Multi-focus image - it combines images that include 
diverse focus depths to produce greater depth of visual 
field. 

The deep learning-based image fusion approach has 
demonstrated huge potential in terms of enhancing the 
techniques used for image fusion due to the application of 
CNNs. The basic architecture of CNNs includes two main 
parts, the classifier and the feature extractor. The latter utilizes 
pooling and convolutional layers to obtain the relevant 
features of the inputs and signify them via activation maps, 
which support the step of image registration in the image 
fusion process. The former is used to execute fusion rules on 
the map, which supports the fusion part in the image fusing 
process. CNNs are also able to apply more than one fusion 
rule since they are trained on big datasets, thus avoiding one 
of the classical limitations of the fusion techniques. Fig. 1 
presents the CNN’s basic architecture. 

B. General Image Fusion 

Within the last few years, a new trend of image fusion 
research has emerged in which DL models are created to 
perform image fusion on all types of image fusion tasks. So 
far, two of such general image fusion models have been 
developed. 

 

Fig. 1. Overview of CNNs Architecture. 
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One of these includes a Zero-learning image fusion model 
proposed by Lahoud and Susstrunk [12] to solve problems of 
image fusion using CNNs, such as the need to create a large 
dataset to train the network. The training process is time-
consuming and expensive, requiring a lot of resources such as 
processing power, and a large amount of memory, energy, and 
time, which prevents the network from being able to perform 
other tasks. As a solution, the study proposes a novel image 
fusion model using earth CNNs. The pre-trained network is a 
network that has been trained on a large dataset and has saved 
the network’s weights and biases to use on another task. Using 
a pre-trained network solves all the aforementioned problems 
by removing the need to create a dataset, saving time, and 
reducing cost. It also eliminates the training process to work 
on various image fusion tasks. The model operates as a two-
scale decomposition image fusion model. Fig. 2, presents a 
schematic diagram of the proposed method. It follows specific 
steps, which include: (1) dividing the images into base and 
detail layers by applying a filter; (2) performing base layer 
fusion on saliency maps; (3) performing detail layer fusion on 
CNN feature maps using the Very Deep Convolutional 
Networks (VGG19) model trained with ImageNet [13]; and 
(4) fusing base and detail layers to acquire the final fused 
image. 

The proposed model was tested against state-of-the-art 
models for medical image fusion, Infrared-Visible image 
fusion, and Multi-focus image fusion. The experimental 
results showed that the fusion model being developed was 
robust, and that it exceeded the current state-of-the-art image 
fusion models for specific tasks. 

Zhang et al.[14] propose a general image-fusion 
framework using CNN (IFCNN) that takes full advantage of 
the convolutional layer capabilities as a feature extractor, as 
well as generating output images using a weighted average. 
The proposed framework is a novel solution to the problem of 
general-purpose image fusion to achieve state-of-the-art 
results with a fully convolutional neural network without the 
need for other techniques to complement it. The quality of the 
training dataset used in the model is far superior to other 
existing models, thus making the proposed framework a 
novelty among CNN models used for image fusion. The 
IFCNN contains three key modules, including the image 
reconstruction module, feature fusion module, and feature 
extraction module. Fig. 3 includes an illustration of the model 
architecture. 

 

Fig. 2. Schematic Diagram of the Method [12]. 

 

Fig. 3. IFCNN Architecture [14]. 

The model was also tested against state-of-the-art models 
used in multi-focus image fusion, multi-exposure image 
fusion, infrared-visible image fusion, and medical image 
fusion, and outperformed all of them. 

Alotaibi et al. [9] proposed the use of DL models to 
combine seismic attributes. The work primarily investigated 
the performance of current state-of-the-art models, pre-trained 
for specific types of image fusion in combining three seismic 
attributes. The results showed that DeepFuse [15] has 
successfully combined three seismic attributes. DeepFuse is a 
model used for multi-exposure fusion. Prabhakar et al. [15] 
proposed DeepFuse, a novel model for multi-exposure fusion 
that takes an unsupervised approach in the fusion process. The 
authors also created and trained the network on a new 
benchmark dataset, improving the model’s learning ability. 

III. PROPOSED TECHNIQUE 

The image fusion technique proposed here helps to support 
the seismic data-merging and multiple seismic attributes along 
these lines: assume there are X inputs to the model, and X≥2, 
where X is three-dimensional images with similar sizes that 
are either seismic attributes or data, symbolized as IAn and IR 
in that order, as IAn|n∈{1,2, 3,…, N} as shown in Fig. 4. First, 
the IAn and IR inputs are transferred to slicing functions to 
change the three-dimensional data (x,y,z) into two-
dimensional data (x,y) with Z sum of images. The slicing 
function’s outputs are sent to the fusion models as inputs, the 
model accept a group of images as inputs, including a single 
image from each IAn and IR, beginning from z =1 up to Z. 
After every fused image is generated by the fusion models, 
and the calculation of the fusion metrics and image fusing is 
done, they are then converted into three-dimensional image 
information via the slicing function’s reverse function. 

A. Fusion Model 

We will compare the performance of IFCNN and Zero-
Learning models on the seismic image combining task. 
IFCNN is trained on a NYU-D2[16] dataset and Zero-
Learning, using ImageNet weights for its layers, and pre-
trained implementation to overcome the issue of a lack of 
labeled datasets where their ground truths are identified. This 
approach also benefits from the use of pre-trained models 
because it eliminates the need for model training, which 
reduces the time and resources required to implement the 
method. Additionally, using pre-trained models to combine 
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seismic attributes creates a method that is less complicated 
than all other existing methods since the existing methods 
require powerful workstations and high computational 
resources. 

 

Fig. 4. Schematic Diagram of the Proposed Method. 

B. Fusion Metrics 

The metrics used to assess the performance of image 
fusion techniques proposed by Lahoud, Süsstrunk, et al. 
[12][14] compare the models’ performance. Because the 
ground truth images are lacking, different non-referenced 
image fusion metrics are used in the evaluation of the 
performance of the models. Based on the study by Jagalingam 
and Hegde [17], the appropriate metrics to use are: 

1) NAB/F (Modified Fusion Artifacts): for measuring 

artificial artifacts produced by the fusion. 

2) EN (Entropy): for measuring the fused image’s 

information content. 

3) QAB/F (Information Transfer): for measuring the overall 

information moved from source images to the fused one. 

4) FMI (Feature Mutual Information): for measuring the 

dependencies existing between the fused image and input 

images. 

5) MI (Mutual Information): measures the relationship of 

image intensity between the reference images and the fused 

images. 

6) SSIM (Structural Similarity Index Measure): used for 

comparing the local patterns of pixel intensities between the 

reference images and the fused image. 

7) MS-SSIM (Multi-scale structural similarity): used in 

measuring the expansion of the SSIM by merging luminance 

data at the highest resolution levels, with contrast and 

structural information at various down-sampled resolutions 

(scales). 

IV. EXPERIMENTS AND RESULTS 

After conducting experiments on the models Zero-
Learning and IFCNN, using pre-trained models published by 
Lahoud, Süsstrunk, et al. [12][14], the results were compared 
with those of DeepFuse and Octree [4][15]. Three key 
experiments are presented in this study. The first one 
compares the results from three models' results on combining 
three seismic attributes to find the best model, and the second 
one compares the results of Octree with the best fusion model. 

Experiment 1 determined whether the proposed models are 
able to combine three different seismic images and then 
compared their results with DeepFuse. Experiment 2 showed 
the model's ability to combine up to nine attributes. 
Experiment 3 was used to compare the model results of 
combining eight seismic attributes against the results of 
Octree. To analyze the combined results, a visual comparison 
was done, along with a quantitative assessment, to check the 
visual representation characteristics, like color and quality, 
among other aspects of the fused image, together with the 
structural data. 

A. Comparing Fusion Models 

In the first experiment, a section from a marine block from 
the North Sea was used. The number of inputs X is 3; one of 
the inputs is a seismic image (IR), and another is a 
skeletonization algorithm seismic attribute termed skeleton, 
produced by (IA1) [18]; the third is a seismic attribute called 
coherence and is represented by (IA2) [19]. The size of IR,, IA1, 
and IA2 is (876,221,271). The inputs and the combined results 
of the three models are presented in Fig. 5. The images are 
reduced and cropped to fit within the limits of the space 
available. The original images were used for the experiments. 

To assess the success of the fusion of multiple seismic 
attributes, the fusion result should: 

1) Identify unique events that appear in one attribute. In 

this experiment, the events are faults that appear in one of the 

inputs. 

2) Preserve small details. 

3) Reveal major common geo-bodies from all inputs. In 

our experiment, the geo-bodies are faults [1]. 

We will refer to each of these points as a Studied Property 
(SP). 

 

Fig. 5. Fusion Results after Combining Experiment 1 Results: The Left Side 

of the Line shows the Inputs while the Right Side Presents the Fusion 

Outputs. 
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For SP 1, described as Identifying unique events that 
appear in one attribute, as shown in Fig. 4 and marked in blue, 
Zero-Learning, IFCNN, and DeepFuse clearly present the 
events from all inputs. For SP 2, described as Preserving small 
details after the combining process, as shown in Fig. 4 marked 
in red, IFCNN maintained all of the details that other models 
could not keep. For SP 3, described as Revealing major 
common Geo-bodies in the fused image, Fig. 4 shows an 
example of a common geo-body, marked in green. All models 
displayed the geo-body but not all details are visible. Only 
IFCNN captured all of the details. IFCNN had the best 
performance, followed by Zero-Learning, which shows that 
general fusion models are capable of extracting and 
transferring important information from seismic images better 
than DeepFuse. 

Experiment 1 fusion metrics results are presented in 
Table I. The figures in bold font represent the best 
performance results, while underlined figures indicate the 
second-best performance. 

TABLE I. EXPERIMENTAL RESULTS 

Fusion Metric 
Model 

Zero Learning IFCNN DeepFuse 

EN↑ 7.185351 7.363646 7.127503 

MI↑ 21.55605 22.09094 21.38251 

QAB/F↑ 0.35872 0.55716 0.38529 

FMI↑ 0.840996 0.831741 0.840794 

SSIM↑ 0.4322 0.413706 0.428697 

MS-SSIM↑ 0.785514 0.870077 0.806129 

NAB/F↓ 0.010318 0.079795 0.000752 

The Zero-Learning model’s result included the top values 
for FMI, SSIM, and second-best values for EN, MI, and NAB/F. 
Scoring high in EN, MI, and FMI, ≈0.84 values indicate that 
the fused images include huge volumes of data and that the 
model performs extremely well for extracting features. The 
model’s EN and MI values are 2.4% less than the best model 
(IFCNN). Scoring high SSIM ≈ 0.43, and MS-SSIM ≈0.78 
values, indicates that the fused images have maintained 
structural data and high image resolutions. The model’s SSIM 
and MS-SSIM values are 1% and 9.7% respectively, less than 
the models with the highest values (IFCNN, DeepFuse). 
Scoring a high QAB/F, ≈  0.35 value, shows that the fused 
image contains data transferred from the inputs. The model is 
ranked third for QAB/F value, and less than the best model by 
35.6%. Scoring a low NAB/F ≈ 0.01 value indicates less 
artificial fusion noise. The model is ranked second for NAB/F 

values and is more than the best model (DeepFuse) by 1×103 
percent. 

The IFCNN model’s results included the top values in EN, 
MI, QAB/F, and MS-SSIM. The model’s high MI and EN 
values indicate that the fused image includes some rich 
information. The model has a high FMI ≈ 0.83 value which is 
less than that of the model with best values (Zero-Learning) 
by 1%. The model has a high SSIM ≈ 0.41 and highest MS-

SSIM ≈ 0.87 values; SSIM values are 4.2% less than the best 
model (Zero-Learning). The model has the highest QAB/F ≈ 
0.55 value and has a low NAB/F≈ 0.079 value. It is ranked third 
for the NAB/F values, and the value is more than the best model 
(DeepFuse) by 1×105 percent. The fused images contain all of 
the structural information from the inputs, every edge is clear, 
the inputs’ texture and color are available, and no perceptible 
fusion noise is present. 

For the DeepFuse model, its results included the top values 
for NAB/F, and the second-best ones for FMI, QAB/F, SSIM, and 
MS-SSIM. The model has high EN and MI values. The EN 
and MI values are 3.3% less than the model with the best EN 
and MI values (IFCNN) and the model’s FMI ≈ 0.86, and are 
less than the model with best values (Zero-Learning) by 
0.02%. The model has high SSIM ≈ 0.42 and high MS-SSIM 
≈ 0.80 values. The SSIM and MS-SSIM values are 1% and 
7.8% respectively, less than the models with the highest 
values (Zero-Learning and IFCNN). The model has a high 
QAB/F ≈ 0.38 value but is less than the best model (IFCNN) by 
%30. The model has the lowest NAB/F ≈ 0.0004 value. The 
fused images contain all of the structural information from the 
inputs, every edge is clear, the texture and color from the 
inputs are presented clearly, and no perceptible fusion noise is 
present. 

The Experiment showed that IFCNN is the best out of the 
investigated models, as it outperformed every other model and 
gave the best result for enhancing fault detection by 
combining seismic attributes. Zero-learning and DeepFuse 
were competing for second place and had comparable 
performance. We only considered IFCNN in the following 
experiments. 

B. Combining more Attributes 

The second experiment tested IFCNN’s ability to combine 
multiple seismic attributes. We used a section from the 
Parihaka dataset and generated fusion results. In addition to 
seismic Detect and Skeleton attributes, six additional attributes 
were generated using an edge-preserving algorithm [20]. 
Fig. 5 presents the results of combining multiple attributes. 

The fusion metrics of the results have been calculated and 
are presented in Table II. 

TABLE II. FUSION METRICS’ RESULTS FOR IFCNN FOR UP TO NINE INPUTS 

Fusion 

Metric 

Number of Inputs (Attributes) 

3  4  5  6  7  8  9  

EN↑ 6.85 6.86 6.89 7.02 7.14 7.06 7.60 

MI↑ 20.9 27.4 34.48 42.13 50.00 56.55 60.87 

QAB/F↑ 0.56 0.48 0.36 0.32 0.31 0.25 0.21 

FMI↑ 0.86 0.84 0.84 0.82 0.82 0.82 0.76 

SSIM↑ 0.50 0.43 0.41 0.44 0.43 0.38 0.28 

MS-

SSIM↑ 
0.85 0.69 0.60 0.73 0.55 0.70 0.67 

NAB/F↓ 0.05 0.05 0.01 0.04 0.13 0.08 0.17 
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The metrics values show that IFCNN had maintained good 
image quality for the fused images while increasing the 
number of attributes. First, the increase in EN and MI values 
with the increase of attributes shows that IFCNN combining 
results is rich in information. IFCNN maintained high FMI 
and MS-SSIM values while increasing the number of 
attributes, demonstrating that the fused images did not lose 
important information from individual inputs and that the 
fused images have a good structure. The NAB/F values 
increased while increasing the number of attributes, since 
increasing the number of inputs leads to increasing the amount 
of resulting fusion noise, but the values remained small. 
Finally, IFCNN QAB/F and SSIM values decreased while 
increasing the number of attributes because, given that the 
fused image structural similarity to individual inputs and the 
information transfer rate from input to output will decrease 
with the increase of inputs, the decrease is to be expected. 

Visually inspecting the combining results exhibit IFCNN’s 
ability to increase the number of combined attributes without 
generating a large number of unwanted artifacts or 
diminishing visual information. After examining the 
combining results quantitatively using fusion metrics, and 
qualitatively by visual inspection, the combining results 
determined IFCNN’s ability to successfully combine up to 
nine attributes, with the ability to combine more. 

 

Fig. 6. A Sample of Combining Results of Multiple Attributes. Inputs: 

Seismic (IR), Detect Attribute (IA1), Skeleton Attribute (IA2), Sobel X 
Gradient Attribute (IA3), Prewitt X Gradient Attribute (IA4), Sobel Y 

Gradient Attribute (IA5), Prewitt Y Gradient Attribute (IA6), Sobel Z 

Gradient Attribute (IA7), Prewitt Z Gradient Attribute (IA8). 

C. Comparing IFCNN and Octree 

The third experiment was carried out to compare, in detail, 
the quality of combining results between IFCNN and Octree 
on fault detection. To fairly compare IFCNN and Octree, we 
used sections from a marine block and an F3 block to generate 
combining results of three and eight attributes respectively, 
Fig. 6 shows the input and output of both IFCNN and Octree 
for combining three attributes. 

As shown in Fig. 6, IFCNN preserved more structural 
information in the resulting image than Octree, its combined 
image had less noise, and its results are more suited for the 
fault detection task. Then, we generated combining results for 
eight attributes and compared the performance of the two 
methods as shown in Fig. 8. 

From Fig. 7, it can be seen that IFCNN’s structural details 
are more vivid and that faults are more easily detectable since 
IFCNN uses a large number of filters to extract important 
features from individual attributes before combining. This 
helped IFCNN maintain high structural information with the 
increased number of attributes. The quality of the combining 
results can be quantified using the fusion metrics’ values in 
Table III (better results are in bold). 

 

Fig. 7. Inputs: Seismic (IR), Detect Attributes (IA1), and Skeleton Attribute 

(IA2). Output: Combining Results of IFCNN and Octree. 

 

Fig. 8. Left Side: Combining Results of Three Attributes. Right Side: 

Combining Results of Eight Attributes. 
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TABLE III. FUSION METRICS’ RESULTS FOR IFCNN AND OCTREE 

Fusion Metric 
3 Attributes 8 Attributes 

IFCNN Octree IFCNN Octree 

EN↑ 7.180216 7.51156 7.60924 7.93288 

MI↑ 21.54065 22.5347 60.8739 63.4630 

QAB/F↑ 0.583826 0.27468 0.21114 0.11362 

FMI↑ 0.850726 0.87913  0.76648 0.72074 

SSIM↑ 0.457925 0.25939 0.28056 0.18298 

MS-SSIM↑ 0.878803 0.41374 0.67677 0.26245 

NAB/F↓ 0.056377 0.35625 0.17012 0.29739 

The higher EN and MI values of the Octree method can be 
attributed to the color quantization algorithm, because Octree 
quantizes and inputs pixel values, which guarantees that all 
information from all inputs is condensed in the output, 
creating an information-rich image with a high amount of 
information. The FMI values are also affected by the color 
quantization algorithm, as observed in Table III. The Octree 
method had a higher value of FMI with a small number of 
inputs because the total amount of information can be 
quantized (condensed) without losing input information, but 
when quantizing a large number of inputs, some information 
from individual inputs is lost. Because of feature extraction, 
IFCNN managed to maintain high values of FMI with the 
increase of the number of inputs, because the important 
information is extracted from the images, and the fused image 
did not lose important information from individual inputs. 
Also, for the other metrics, it can be seen that the Octree 
method does not maintain high structural similarities between 
inputs and output, which is indicated by the low values of 
SSIM and MS-SSIM. Fig. 7 shows that the Skeleton attribute 
structure is not clearly visible in the Octree results. IFCNN, 
SSIM, and MS-SSIM values are 50% more than Octree, and 
this can be observed by IFCNN results maintaining a similar 
structure as input images. Also, IFCNN, QAB/F, and NAB/F 
values are 40% better than Octree, indicating the IFCNN 
causes less artificial noise during the combining, and it has a 
better information transfer rate than Octree. Thus, results show 
that IFCNN overcomes the limitations of the Octree method, 
and IFCNN’s seismic attribute combination quality exceeds 
that of the Octree method. 

V. CONCLUSION 

In this paper, a method based on Deep Learning, designed 
to solve the problem of combing multiple seismic attributes by 
using CNN models is presented. The proposed method uses 
pre-trained general image fusion models to fuse and combine 
multiple seismic attributes. The approach has shown that it 
can: 

1) Overcome the issue of lack of labeled datasets where 

their ground truths are identified. 

2) Reduce the time and resources requirements by the use 

of pre-trained models to eliminate the training phase. 

3) Provide a refined solution that is capable of producing 

better results than using the DeepFuse model. 

The experiments that were conducted led to a number of 
findings. They showed that the Image-fusion Framework 
using the CNN (IFCNN) model was the best model out of all 
of the investigated models for combining seismic attributes. 
The Zero-Learning model is a lightweight model, and the 
easiest one to modify, and can be extended for future research 
to further study these types of fusion models to use for seismic 
attribute combining tasks. General image fusion models 
exhibited excellent results and showed great potential. The 
results showed that IFCNN scored better than other DL 
models on multiple metrics. Its QAB/F and MS-SSIM scores are 
50% and 10%, respectively, higher than the second-best 
model. When IFCNN is compared to the current state-of-the-
art, Octree, IFCNN combining quality was superior to Octree 
especially when the number of attributes is high. Metrics 
results showed that IFCNN is better the Octree by 40% when 
the two are compared by the quality of the image structural 
information and the amount of noise. 

The work presented in this paper implemented a method 
that can combine seismic attributes using pre-trained DL 
models. The choice of the pretrained models was based on 
their performance in comparison to other models found during 
the literature review. With scientific research advancement, 
better models can be introduced. The downside to the study 
presented is that the work is limited to seismic attributes used 
for faults enhancement and detection. 
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