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Abstract—Human-Human Interaction Recognition (H2HIR)
is a multidisciplinary field that combines computer vision, deep
learning, and psychology. Its primary objective is to decode and
understand the intricacies of human-human interactions. H2HIR
holds significant importance across various domains as it enables
machines to perceive, comprehend, and respond to human social
behaviors, gestures, and communication patterns. This study aims
to identify human-human interactions from just one frame, i.e.
from an image. Diverging from the realm of video-based inter-
action recognition, a well-established research domain that relies
on the utilization of spatio-temporal information, the complexity
of the task escalates significantly when dealing with still images
due to the absence of these intrinsic spatio-temporal features.
This research introduces a novel deep learning model called
AdaptiveDRNet with Multi-level Attention to recognize Human-
Human (H2H) interactions. Our proposed method demonstrates
outstanding performance on the Human-Human Interaction Im-
age dataset (H2HID), encompassing 4049 meticulously curated
images representing fifteen distinct human interactions and on the
publicly accessible HII and HIIv2 related benchmark datasets.
Notably, our proposed model excels with a validation accuracy of
97.20% in the classification of human-human interaction images,
surpassing the performance of EfficientNet, InceptionResNetV2,
NASNet Mobile, ConvXNet, ResNet50, and VGG-16 models. H2H
interaction recognition’s significance lies in its capacity to en-
hance communication, improve decision-making, and ultimately
contribute to the well-being and efficiency of individuals and
society as a whole.
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tiveDRNet; multi level attention; human interactions

I. INTRODUCTION

Human-human interactions are the fundamental building
blocks of human society, influencing various aspects of our
lives, from personal relationships to collaborative efforts in
professional settings. The study of these interactions has
garnered increasing attention in recent years, driven by ad-
vancements in social psychology [1], communication sciences,
and technology. Human-human interaction recognition from
still images using deep learning has emerged as a compelling
and cutting-edge research area with profound implications for
a wide range of applications. In an era characterized by the
ubiquity of image data and the growing demand for automated
systems capable of understanding human behaviors, this field
stands at the forefront of technological innovation.

In real-life scenarios, deep learning-based frameworks for
recognizing human interactions in still images [2] find appli-
cation in diverse fields. They play a crucial role in social

behavior analysis [3] by detecting and deciphering subtle
cues in body language and gestures, facilitating a deeper
understanding of human interactions. They also find utility in
educational settings, specifically identifying classroom interac-
tions. Analyzing human interactions yields valuable behavioral
data, facilitating data-driven decision-making across diverse
industries. Enabling systems to understand user behavior and
intentions through images can create more intuitive interfaces
across applications, from gaming to virtual reality, seamlessly
adapting technology to human interaction and preferences.
Furthermore, these frameworks assist in automated content tag-
ging on social media and content-sharing platforms, enhancing
content discoverability.

The proposed AdaptiveDRNet with Multi-level Attention
model represents a significant advancement in human inter-
action recognition from still images, standing out for its dis-
tinctive architectural features. The proposed network combines
the multi-level attention mechanism and an adaptive deep
residual network to enhance its ability to recognize human-
human interactions in images. The term “Adaptive” signifies
the model’s dynamic ability to adjust its focus and attention
within the input data. This adaptiveness is facilitated by the
Multi-level self-attention mechanism that allows the model
to intelligently prioritize important information, enhancing its
capacity to discern complex human interactions. Instead of
relying on a single, global attention mechanism, the model
employs multiple attention levels. This approach enables the
model to adaptively focus on salient image regions, capturing
fine-grained spatial dependencies and intricate patterns crucial
for accurate recognition. The residual connections help capture
and propagate important information through the network.
Additionally, the model incorporates depthwise separable con-
volution, batch normalization, and the Swish activation func-
tion. This combination improves computational efficiency and
bolsters generalization, enabling the model to adapt effectively
to diverse interaction scenarios. The Swish activation enhances
non-linearity, and batch normalization aids in stable training,
reducing overfitting risks. The proposed model offers a dis-
tinct advantage over other existing deep learning models for
H2H Interaction recognition from images by incorporating
the GELU (Gaussian Error Linear Unit) activation function
instead of the traditional ReLU (Rectified Linear Unit) in the
fully connected Dense layers. GELU activation, known for its
smoothness and non-linearity, provides an essential edge to
this model. In contrast to ReLU, which can suffer from van-
ishing gradients in deeper networks, GELU maintains gradient
flow, facilitating the learning process in a deeper architecture.

www.ijacsa.thesai.org 984 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 10, 2023

Combining multi-level self-attention, efficient convolutional
operations, and enhanced activations, this model excels in
capturing nuanced details and spatial relationships, offering
superior generalization for human interaction recognition from
images, surpassing existing models in this field.

The proposed model mainly classifies the Human-Human
Interaction images into fifteen categories: Celebrating, Danc-
ing, Dining, Handshaking, Hugging, Protesting, Punching,
Pointing, Waving, Kicking, Kissing, Highfive, RaisingHands,
Talking, Teaching.

The main contributions of this research are: (a) Creation
of a novel image dataset for the recognition of Human-Human
Interactions (H2HID) with comprehensive data labelling. (b)
Recognition of Human-Human Interaction in images is car-
ried out using the proposed AdaptiveDRNet with Multi-level
Attention. (c) Introduction of Regularized Categorical Cross-
entropy (RCCE) Loss Function. (d) The model proposed in this
study is assessed on three related standard benchmark datasets,
HII, HIIv2 and Stanford40. (e) Result analysis with various
well-established deep learning models based on accuracy and
trainable parameters.

The structure of this research paper can be outlined as
follows: The comprehensive exploration of related works is
discussed in Section II. Section III delves into the intricacies
of our proposed method, meticulously detailing our approach,
which encompasses data preparation, the network architecture
of the proposed model, and details of the loss function utilized.
Section IV delves into the experimental results with various
standard models on our curated H2HID dataset using vari-
ous performance metrics and analysis of results with various
available related datasets based on accuracy and the number
of trainable parameters. The final section summarizes our
unique contributions, emphasizing significance and discusses
the future scope of this research.

II. RELATED WORKS

The study of human-human interactions (HHI), human-
object interactions (HOI), human-computer [4] interaction
(HCI) and human actions has been a prominent research focus
[5] in the analysis of video sequences. However, it is notewor-
thy that there has been a noticeable decrease in the volume
of research dedicated to exploring these topics when shifting
the focus from video sequences to static still images. Tanisik
et al. [6] introduced a range of facial region-based descriptors
in their research. Their experiments revealed that while these
facial descriptors offer valuable insights, their standalone use
yields less effective results. However, when integrated with
global scene features, particularly deep features, the proposed
facial descriptors exhibited enhanced recognition performance
and demonstrated the capability to recognize human interac-
tions in static images. The authors have attained 80.11% ac-
curacy using their collected Human Interaction image dataset.
Gong et al. [7] introduced a new image dataset containing four
distinct categories of human interactions. Li et al. [8] proposed
a new method for transferring knowledge from images to
videos, which adapts well to video data with limited training
samples. They employ class-specific spatial attention maps
within Convolutional Neural Networks (CNNs) to transform
video frames into a condensed feature representation. Their ap-

proach incorporates a new Siamese EnergyNet framework, op-
timizing two loss functions to enhance attention maps aligned
with ground truth concepts. They have attained 96.8% accuracy
on HII data using the fine-tuned ResNet101 model. In another
study, Tanisik et al. [9] delved into the significance of human
poses in discerning human interactions within still images.
Their novel approach introduces a multi-stream convolutional
neural network architecture, harmonizing diverse human pose
information to enhance human interaction recognition. Vari-
ous pose-based representations are scrutinized, and extensive
experimentation on an expanded benchmark dataset validates
the efficacy of their multi-stream pose CNN in distinguishing
a broad spectrum of human interactions and poses. When
coupled with contextual information, it serves as a valuable
tool for discriminative insights into human-human interactions.
They have attained 92.78% accuracy in recognizing human
interactions. Verma et al. [10] have employed a feature-based
neural network to identify human interactions in images. Tang
et al. [11] devised a novel approach to enhance vision-based
safety compliance checks by explicitly categorizing worker-
tool interactions. Their human-object interaction recognition
model, built upon this detector and dataset, also delivered
impressive results. On the other hand, Zhou et al. [12] tackled
the detection and recognition of Human-object interactions
(HOI) in images. They introduced a cascaded parsing net (CP-
HOI) that employs a multi-stage, structured approach for HOI
understanding. CP-HOI refines HOI proposals through instance
detection and structured interaction reasoning (SIR) modules,
utilizing a graph parsing neural network (GPNN) to represent
HOI structures as interconnected graphs, enhancing contextual
information extraction for better interaction comprehension.

On the contrary, there is a substantial body of literature
dedicated to the recognition of human interactions in video
streams. Numerous references, such as Zhou et al. [13] and
Tapaswi et al. [14], have extensively explored this domain
by utilizing traditional classification techniques. Nguyen et
al. [15] utilize handcrafted features in conjunction with a
three-layer convolutional neural network for model training.
Yan et al. [16] introduce a CNN-based network to extract
features, while Shu et al. introduce Hierarchical Long Short-
Term Memory (HLSTM) network [17] to handle temporal
information. Alazrai et al. [18] introduced an H2H interaction
video dataset having 12 interactions giving more focus on the
Pointing, Kicking and Punching interaction. Lee et al. [19]
have recognized eight different interactions. Guerdelli et al.
[20] provided a comprehensive overview of interpersonal rela-
tion recognition datasets and well-established methods, aiding
researchers in gaining deeper insights into their characteristics.

Human interaction recognition is a specific area within the
broader field of human action recognition. Thus, in addition
to our focus on human interaction, we have also listed some
notable and relevant existing research and studies in the field
of action recognition. Zhang et al. [21] introduced an approach
for recognizing actions in static images while minimizing
the need for extensive annotations. Luo et al. [22] employed
an improved EfficientNet framework to recognize human be-
haviours. In another study, Yu et al. [23] have proposed a
deep ensemble learning model to recognize human actions
in still images. In our prior research endeavours focused on
Action Recognition, our primary objective was to predict
various workout actions from still images [24], subsequently
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classifying them into ten distinct workout categories. It’s worth
highlighting that the proposed WorkoutNet model showcased
a remarkable validation accuracy of 92.75% when rigorously
assessed on our WAId dataset. Siyal et al. [25] have proposed
a Residual CNN model for feature extraction and SVM as a
classifier to categorize human actions in still images. Saif et al.
[26] have proposed an InceptionResNetV2-based CNN-LSTM
model to recognize actions in videos.

Existing standard image datasets HII [27] and HIIv2 [6]
have been pivotal in driving progress in the field of hu-
man interaction recognition. However, these publicly available
datasets often lack specificity in terms of interaction types.
The publicly available HII [27] dataset initially focused on
four distinct human interaction categories, while the HIIv2
[6] dataset expanded this scope to include ten different hu-
man interaction classes. To further enhance the resources
available for researchers and practitioners in the field, we
have introduced the Human-Human Interactions Image dataset
(H2HId), which comprises fifteen diverse types of human
interactions. Our primary objective is to furnish the research
community and professionals with valuable assets that can be
utilized to develop and assess models designed to classify and
recognize human interactions depicted in images accurately.
This dataset will contribute to enhancing the generalization
capabilities and real-world applicability of Human-human in-
teraction recognition models, particularly in the context of
interaction recognition.

The proposed AdaptiveDRNet model revolutionizes human
interaction recognition from still images with multi-level self-
attention, efficient convolution, and GELU activation. It dy-
namically adapts focus, captures fine details, and maintains
gradient flow, outperforming traditional models.

III. PROPOSED METHOD

The method commenced by gathering human interaction
images and standardizing them to a consistent size with
augmentation. Subsequently, the curated dataset underwent
division into training, validation, and test sets. Data augmenta-
tion was employed to enhance the training data. The proposed
model, integrated with Callback functions, facilitated model
training and extraction of image features. Ultimately, human-
human interactions were categorized using the last layer of the
proposed model, specifically the Softmax layer. The illustration
of the proposed method can be visualized from Fig. 1.

Fig. 1. Illustration of the proposed approach’s workflow.

Recognizing the need for research methodologies that
can perform efficiently with limited computational resources,
this study introduces the AdaptiveDRNet with Multi-level

Attention to recognize various human interactions in still
images. The subsequent sections provide detailed insights
into the following aspects: a) Training dataset preparation,
b) AdaptiveDRNet with ML-Attention: Model Architecture, c)
Description of the employed loss function, and d) Advantage
of AdaptiveDRNet ML-Attention model.

A. Dataset Preparation

The dataset capturing Human-human interactions (H2HId)
has been meticulously curated, enhanced through augmentation
techniques, and then resized all images to a uniform resolution
of 224 x 224. The collected images are in RGB. There are a
total of 15 different human interaction categories. Some sample
images of the collected H2HId dataset are highlighted in Fig.
2. The dataset details are given in Section IV(A).

Fig. 2. H2HId data sample.

Recognizing the significant demand for ample training
data in deep learning models, we employed the data aug-
mentation technique to bolster the overall performance of
the AdaptiveDRNet with ML-Attention model. This approach
entailed enlarging the training dataset and mitigating the risk of
overfitting. We introduced random transformations, including
a zoom range of 0.18, a contrast range of 0.23, rotations
ranging from 0 to 25 degrees, and horizontal flips. These ran-
dom transformations effectively generated additional training
data, thereby exposing the training model to a wider array
of potential data distribution characteristics. Furthermore, the
H2HId dataset has been methodically split into three separate
subsets following a precise distribution: 61% of the data is
assigned for training, 20% for validation, and 19% for testing.
This partitioning strategy adheres to established best practices
in deep learning.

B. AdaptiveDRNet with ML-Attention: Model Architecture

The proposed Adaptive Deep Residual Network (Adaptive-
DRNet) with Multi-level Attention model architecture com-
prises an initial convolutional layer with 32 filters, followed by
three sets of residual blocks with attention mechanisms. The
model begins with an input layer configured to accept RGB
images with dimensions of 224x224 pixels. The initial layer
is a 2D convolutional layer with a 3x3 kernel, utilizing 32
filters and applying the GELU activation function, followed
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by batch normalization. Subsequently, three residual blocks
with Self-Attention mechanisms are employed. Each block
encompasses a depthwise convolution layer with a 3x3 kernel
and either a stride of 1 (for the first block) or 2 (for subsequent
blocks), maintaining spatial dimensions with ’same’ padding.
Batch normalization and Swish activation functions follow.
The block also features a 1x1 convolutional bottleneck with
varying filter sizes (64, 128, and 256, respectively, for each
block) to capture and transform features. Self-Attention layers
are introduced to capture long-range dependencies within the
data. The model also comprises a Global Average Pooling
(GAP) layer, succeeded by two dense layers consisting of 128
and 256 units, both utilizing GELU activation and dropout
with a rate of 0.15 for regularization. Finally, the output layer
is a dense layer employing the softmax activation function for
classification into 15 human interaction classes. The model
has 419,279 trainable parameters. This architecture offers a
versatile and customizable framework for image classification
tasks, with the flexibility to fine-tune hyperparameters based
on specific datasets and requirements. The layered diagram
representing the proposed AdaptiveDRNet with ML-Attention
model, which is employed to implement the proposed work,
is illustrated in Fig. 3.

Fig. 3. Proposed adaptiveDRNet ML-attention model.

The proposed AdaptiveDRNet ML-Attention model archi-
tecture is outlined as follows:

Input Layer: The model takes input images with a shape
of 224x224 pixels and three color channels (RGB).

Initial Convolution Layer: The input images are processed
by a convolutional layer with 3x3 kernels having 32 filters,
batch normalization (BatchNorm) layer, and a GELU activa-
tion function. This layer extracts basic features from the input

images. The choice of a GELU activation function is pivotal,
as it captures non-linearities more effectively than traditional
activation functions. This layer’s primary role is to extract
low-level features from input images while maintaining spatial
dimensions. Batch normalization aids in faster convergence
and mitigating overfitting, ensuring smoother training. The first
convolution layer applies a set of filters to the input, followed
by batch normalization and a GELU activation function, which
introduces non-linearity. The 2D convolution operation is rep-
resented as illustrated in Eq. (1). Here, y(q, r) is the output at
position (q, r) denotes the feature map, x(q, r) represents the
input feature map, w(l,m) are the convolutional filter weights
and b denotes the bias term.

y(q, r) =

L−1∑
l=0

M−1∑
m=0

x(q + l, r +m) · w(l,m) + b (1)

Batch Normalization Layer (BatchNorm): Batch Normal-
ization is a method employed to standardize the output of a
layer. This process involves subtracting the mean of the batch
and dividing it by the batch standard deviation. This process
can be mathematically represented as illustrated in Eq. (2). In
this equation, yB represents the normalized output, I is the
input to the BatchNorm layer, µ denotes the batch mean, σ2

stands for the batch variance, β denotes the shifting parameter
(learnable), ϵ is a small constant added for numerical stability,
γ represents scaling parameter (learnable).

yB =
I − µ√
σ2 + ϵ

· γ + β (2)

Res-Attention Block: The proposed model comprises three
Residual Attention (Res-Attention) blocks that serve as a pow-
erful feature extraction unit. This block consists of several key
layers, starting with a depthwise separable convolutional layer,
followed by the BatchNorm layer and the Swish activation.
Each block follows a consistent pattern, commencing with
depthwise convolution, which performs spatial convolutions
independently for each channel, preserving spatial dimensions.
This is particularly beneficial for capturing fine-grained details
in the image.

The DepthwiseConv2D layer performs a depthwise con-
volution operation, where each input channel is convolved
separately with its own set of learnable filters. The Depth-
wiseConv2D operation can be represented as illustrated in Eq.
(3) The operation is performed independently for each input
channel, resulting in an output with the same number of chan-
nels as the input. Here, Yi,j,k is the value of the output feature
map at position (i, j) and channel k, X(i+d−1),(j+e−1),k is the
value of the input feature map at position (i+d−1, j+e−1)
and channel k, Kd,e,k is the value of the depthwise convolution
filter at position (d, e) and channel k, Bk is the bias term for
channel k and the summation is over the filter size D and both
spatial dimensions.

Yi,j,k =

D∑
d=1

D∑
e=1

X(i+d−1),(j+e−1),k ·Kd,e,k +Bk (3)

The proposed model incorporates Swish activation func-
tions [28], a choice made due to their well-known smoothness
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characteristics and effectiveness in enhancing overall model
performance. Subsequently, a 1x1 convolutional bottleneck fur-
ther processes the features. The distinctive feature is the Self-
Attention Layer, which calculates attention scores between
spatial locations, allowing the block to weigh the significance
of different regions and capture global dependencies. Like
the residual blocks, the Attention Block includes a residual
connection that adds the Self-Attention output to the original
input feature map. This combination of residual connections
and Self-Attention enables the block to effectively capture
both local and long-range contextual information, making it
a valuable building block for image recognition tasks where
understanding spatial relationships and context is crucial for
accurate classification.

Attention Mechanism: The role of the attention mechanism
is pivotal in augmenting the performance of the proposed
AdaptiveDRNet model. The attention mechanism, based on
the scaled dot-product attention mechanism, is employed to
selectively emphasize and de-emphasize features within the
intermediate representations of the network. Its importance lies
in its ability to capture and focus on crucial information while
discarding less relevant details. The attention mechanism is
represented using mathematical equations illustrated in Eq. (4),
Eq. (5) and Eq. (6).

At first, the Query (Q), Key (K), and Value (V) are obtained
by projecting the input (X) using learnable weight matrices
Wq , Wk, and Wv , respectively.

Q = X ·WqK = X ·WkV = X ·Wv (4)

The attention logits are calculated as the dot product of Q
and K, scaled by the square root of the dimension of K. Here,
dk denotes the dimension of the key vectors.

AttLogits =
Q ·KT

√
dk

(5)

The attention weights are computed by applying the soft-
max function to the attention logits (AttLogits) as illustrated
in Eq. (6).

AttWeights = softmax(AttLogits) (6)

Finally, the attention output is obtained by taking the
weighted summation of the values (V) utilizing the attention
weights (AttWeights) as illustrated in Eq. (7).

AttOutput = Att Weights · V (7)

Here, the “Multi-level Attention” aptly characterizes the
attention mechanism within our proposed model due to its
ability to operate on multiple levels or scales of information.
This means that it can simultaneously focus on fine-grained
details and broader context within the input data. It’s not
limited to a single level of attention but rather incorporates
various levels, making it a versatile tool for capturing nuanced
relationships and patterns in the data. The attention mech-
anism’s significance in the proposed model is multifaceted.

Firstly, it aids in the model’s ability to focus on relevant regions
of the input, thereby improving feature selection. Secondly, it
enhances feature refinement by amplifying important informa-
tion. Lastly, it facilitates gradient flow during training, as it
provides a clear path for gradients to propagate through the
network.

Global Average Pooling (GAP) Layer: After the residual
attention blocks, GAP is performed, which reduces the spatial
dimensions to a single vector for each feature map while
retaining essential information. This operation helps in creating
a fixed-size representation of the features extracted by the
previous layers. GAP calculates the average value of each
feature map, effectively summarizing the presence of specific
features across the entire image. This is essential for making
the model translation-invariant, allowing it to recognize objects
regardless of their position in the image. GAP contributes to re-
ducing the model’s computational complexity and parameters,
making it more efficient. The GAP operation is represented
using Eq. (8). Here, GAP (Y3)[c] represents the spatial average
value of channel c in the feature map Y3, which is the output
of Res-Attention Block 3 in the model. K and L are the
spatial dimensions of the feature map, and C is the number
of channels. The GAP operation is applied independently to
each channel, calculating the spatial average of values across
the entire spatial region of Y3.

GAP (Y3)[c] =
1

K · L

K∑
i=1

L∑
j=1

Y3[i, j, c] (8)

Fully Connected Layers: The proposed model comprises
two dense layers (fully connected) with GELU activation. The
initial dense layer comprises 128 units, succeeded by a dropout
layer configured having a 0.15 dropout rate, strategically
employed to mitigate overfitting. The subsequent dense layer
consists of 256 units, accompanied by yet another dropout
layer with an identical dropout rate. These layers enable the
model to learn complex patterns and relationships in the feature
representations produced by the earlier layers. The dropout
layers further prevent overfitting by randomly deactivating a
fraction of neurons during training.

The GELU activation function applied to the fully con-
nected dense layer is mathematically represented using Eq.
(9). This activation function introduces a layer of non-linearity
into the network, enabling it to capture intricate relations and
patterns within the data. Let’s denote the input to the fully
connected layer as I, which is a vector of activations from
the previous layer. The GELU activation denoted by G(I) is
applied element-wise to each element of the input I. In Eq. (9)
and Eq. (10), I represents the input to the fully connected layer,
tanh is the hyperbolic tangent function,

√
2
π is a constant

and 0.044715 is a constant. GELU helps with the vanishing
gradient problem and is utilized in the proposed model for
improved performance.

G(I) =
1

2
I (1 + tanh(R1)) (9)

R1 =

(√
2

π

(
I + 0.044715I3

))
(10)
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Output Layer: The ultimate layer of the proposed model
consists of a dense layer comprising 15 units, as there are 15
human interaction categories. It employs softmax activation to
produce probabilities for each human interaction class, making
it suitable for multi-class classification.

The illustration in Fig. 4 emphasizes the filter outputs stem-
ming from an image belonging to the ‘Pointing’ interaction
class. Specifically, it highlights the outputs originating from
the 1st DepthwiseConv2D layer (1st Res-Attention block), the
2nd DepthwiseConv2D layer (2nd Res-Attention block), and
the 3rd Conv2D layer (2nd Res-Attention block). It’s worth
noting that the numbering of these layers aligns with the
sequence provided in the layered diagram of the model, which
is depicted in Fig. 3.

Fig. 4. Feature map visualization of some layers.

Thus, this model architecture incorporates convolutional
layers for feature extraction, deep residual blocks with atten-
tion mechanisms to capture important features, global average
pooling to reduce spatial dimensions, and fully connected
layers with dropout enable classification. The attention mech-
anism between the convolutional layers allows the model to
focus on relevant image regions, which can be crucial for tasks
with complex visual patterns. The final output layer provides
class probabilities for making predictions.

The proposed AdaptiveDRNet model architecture is metic-
ulously designed to capture features at different levels, from
low-level details to high-level contextual information with
Multi-level Self Attention. The Self-Attention mechanism is a
key innovation, enhancing the model’s ability to capture spatial
relationships, making it well-suited for image classification
tasks where context and object dependencies are critical. The
Multi-level Attention mechanism enables the model to adap-
tively focus on important features within the data, enhancing
feature selection and representation learning.

C. Loss Function Details

In addressing the multi-class nature of this study, the
Regularized categorical cross-entropy (RCCE) loss function is

employed to quantify the error that the model seeks to decrease
throughout its training. The Standard categorical cross-entropy
loss (SCCELoss) is expressed as illustrated in Eq. (11). Here,
y
(k)
tp represents actual probability of class k and y

(k)
pp represents

the anticipated probability of class k.

SCCELoss = −
M=15∑
k=1

y
(k)
tp · log(y(k)pp ) (11)

The RCCELoss function adds an extra term, which is
the L2 regularization [29] term (LT), to the standard loss as
mathematically illustrated in Eq. (12).

RCCELoss = SCCELoss + LT (12)

The L2 regularization term (LT) is mathematically ex-
pressed as shown in Eq. (13). Here, ytp denote the true prob-
ability distribution (one-hot encoded labels) of class member-
ship, yp denote the predicted probability distribution (model’s
output) of class membership and value of M is 15 which
denotes the number of interaction classes in the dataset.

LT =

M=15∑
k=1

(y
(k)
tp − y(k)pp )2 (13)

The Nadam optimizer is then utilized with an initial learn-
ing rate set at 0.001 to effectively reduce the error function
linked to the proposed model.

D. Advantage of AdaptiveDRNet ML-Attention Model

In the proposed model, three residual blocks with attention
having varying filter sizes (64, 128, 256) help in hierarchical
feature extraction. The use of multiple residual blocks with
increasing filter sizes allows the model to learn hierarchical
features from low-level to high-level representations. Smaller
filter sizes (64) in the initial layers help capture fine-grained
details and edges, while larger filter sizes (128 and 256) in
subsequent layers capture more abstract and complex features.
Each residual block typically includes a convolutional layer
with a stride greater than 1, which downsamples the spatial
dimensions of the feature maps. Starting with a stride of 2 in
the first block and possibly increasing it in later blocks helps
reduce the spatial resolution of the feature maps. This down-
sampling reduces computational complexity and increases the
receptive field of the network. By using progressively larger
filter sizes, the model increases its capacity to learn more
complex patterns and features in the data. The skip connections
in residual networks enable the reuse of features from prior
layers. With multiple blocks, each incorporating its attention
mechanism, the model can selectively leverage features from
different network stages. This allows the model to focus
on fine-grained and high-level features, improving prediction.
Therefore, the design choice of three residual blocks with
attention and varying filter sizes facilitates efficient feature
learning and representation across different scales and com-
plexities.
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IV. EXPERIMENTAL RESULTS

This proposed research is conducted in Google Colab
using Python programming, emphasising resource efficiency
without utilizing any GPU. It leverages an Intel-Xeon CPU
with 2.3GHz clock speed, 13GB of RAM, and approximately
80GB of disk space, diverging from the current practice of
relying on GPUs for deep learning tasks. In this section,
we have provided the details of our curated H2HId dataset,
including available datasets, thorough performance evaluation,
and comprehensive analysis of the results.

A. Dataset Details

Several publicly accessible datasets related to human in-
teractions include HII [27], HIIv2 [6], and Stanford40 [30].
In this work, we have introduced a substantial dataset called
the Human-Human Interaction Image dataset (H2HId) 1, a
comprehensive collection of images sourced from a variety of
online platforms and social media. To ensure effective catego-
rization, images depicting diverse human interaction scenarios
were systematically organized into distinct directories. The
H2HId dataset is noteworthy for its unbiased representation of
human interactions across various individuals and scenarios,
aiming for universality without demographic, ethnic, or re-
gional bias. The proposed dataset encompasses a diverse range
of human interactions, encompassing 15 distinct categories and
containing a total of 4,049 images. The human interaction
categories considered are Celebrating, Dancing, Dining, Hand-
shaking, Hugging, Protesting, Punching, Pointing, Waving,
Kicking, Kissing, Highfive, RaisingHands, Talking, Teaching.

B. Performance Evaluation

The effectiveness of the proposed research is assessed
through a range of metrics, including measures like training
and validation accuracy, F1-score (F1s), AUC-score, classifi-
cation performance, and the analysis of the confusion matrix.

Fig. 5. Accuracy curve of proposed adaptiveDRNet attention model.

Fig. 5 illustrates the proposed model’s training and val-
idation accuracy curve. It is seen from the curve that the
proposed model shows 99.57% train accuracy and 97.20%
validation accuracy. After 28 epochs, the performance of the
proposed model did not improve much, so we stopped the

1H2HId Dataset Link: https://sites.google.com/view/h2hid/home

training process at that point by utilizing the callback func-
tions. The hyperparameters of the proposed AdaptiveDRNet
ML-Attention model are highlighted in Table I.

TABLE I. HYPERPARAMETERS OF PROPOSED MODEL

Parameter(s) Considered Value
Input Shape 224X224
Batch Size 5
Epochs 28
No. of Classes 15
Kernel 3X3
Initial Learning Rate 0.001
Loss Function Regularized CCE
Metrics Accuracy
Optimizer Nadam

The proposed work has been evaluated with several bench-
mark deep learning models, all of which were trained from
scratch. Table II presents the training accuracy (Train Acc) and
validation accuracy (Val. Acc) and F1-Score (F1s) of VGG-16,
ResNet50, InceptionResNetV2, NASNet Mobile, ConvXNet,
EfficientNet [22], and our proposed model on the H2HId
dataset. The proposed model significantly outperforms the
benchmark deep models in terms of accuracy and achieves an
impressive 97.20% accuracy on the validation data, surpass-
ing the performance of the EfficientNet [22], NASNet Mo-
bile, ConvXNet, InceptionResNetV2, ResNet50 and VGG-16
model. Additionally, the InceptionResNetV2, NASNet Mobile,
ConvXNet and EfficientNet [22] models also exhibited strong
performance in classifying the images of the H2HId dataset,
achieving validation accuracies (Val. Acc) of 95.30%, 94.76%,
94.60%, and 96.52% respectively.

TABLE II. ASSESSMENT OF DEEP LEARNING MODELS’ PERFORMANCE
ON H2HID DATASET

Model Train Acc Val. Acc F1s AUC
VGG-16 96.21% 94.27% 0.92 0.95
ResNet50 97.08% 94.54% 0.93 0.96
InceptionResNetV2 97.61% 95.30% 0.95 0.98
NASNet Mobile 97.85% 94.76% 0.94 0.97
ConvXNet 98.28% 94.60% 0.94 0.97
EfficientNet [22] 98.70% 96.52% 0.95 0.98
Proposed Model 99.57% 97.20% 0.96 1.0

When considering the F1-score (F1s), the Proposed Model
performed exceptionally well, achieving the highest F1s of
0.96, whereas the EfficientNet [22], and InceptionResNetV2
model achieved the second highest F1s of 0.95 on our H2HId
dataset. This indicates that the proposed model exhibits a
balanced combination of precision and recall score, making it
highly effective in human interaction classification. However,
it’s worth noting that the proposed model maintains its high
F1s while simultaneously achieving the highest validation
accuracy, demonstrating its consistency and robustness in
performance. In evaluating deep learning models on the H2HId
dataset, their performance was further assessed using Area
Under Curve (AUC) scores [31], a crucial metric for measuring
their ability to discriminate between positive and negative
instances. The results revealed that the Proposed Model stands
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out as the top performer with a perfect AUC score 1.0. This
achievement showcases its exceptional capability in effectively
distinguishing between classes. Following closely, the Effi-
cientNet [22] and InceptionResNetV2 model exhibited strong
performance with an AUC score of 0.98. In comparison, the
other models, including InceptionResNetV2, NASNet Mobile,
ConvXNet, ResNet50, and VGG-16, demonstrated descending
levels of AUC scores, with the VGG-16 model having the
lowest AUC score at 0.95. These findings emphasize the
superiority of the proposed model and EfficientNet [22] in
terms of their ability to discriminate between positive and
negative instances on the H2HId dataset.

Confusion Matrix: It provides a clear and informative
snapshot of a model’s predictions aligning with actual ground
truth values. In this visualization, the rows represent the true or
actual classes, while the columns depict the predicted classes.
Each cell in the matrix indicates the number of instances that
fall into a particular category. The confusion matrix of the
H2HId dataset utilizing the proposed model is depicted in Fig.
6. It serves as a powerful tool for fine-tuning and optimizing
classification models.

Fig. 6. Confusion matrix of H2HId dataset utilizing proposed model.

Classification Performance: The performance of our Pro-
posed model in classifying human interactions is visually
depicted in Fig. 7, showcasing the F1-scores (F1s) for the
H2HId dataset.

It is observed that most of the interaction categories in the
H2HId dataset exhibit high F1s, exceeding 0.95. However, a
few categories, such as “Celebrating” (0.85 F1s), “Dining”
(0.90 F1s), “Hugging” (0.93 F1s), and “Pointing” (0.92
F1s), demonstrate slightly lower but still respectable F1s. The
proposed AdaptiveDRNet with Multi-level Attention model
demonstrates outstanding classification performance on the
H2HId dataset. The proposed AdaptiveDRNet model has ac-
curately predicted all the human-human interaction test image
samples taken for further evaluation as depicted in Fig. 8.

Fig. 7. Classification score of H2HId dataset utilizing proposed model.

Fig. 8. Test result of proposed model.

C. Result Analysis

The analysis of results with the proposed AdaptiveDRNet
with Multi-level Attention model on various Optimizers is
depicted in Table III. In this context, the remaining model
parameters, including a fixed learning rate (LR) of 0.001, the
utilization of the Regularized Cross-entropy loss (RCCE) as
the loss function (Loss Func.), a consistent number of training
epochs set to 28, and a batch size of 5, were maintained
unchanged throughout the optimizer analysis.

TABLE III. ASSESSMENT OF PROPOSED MODEL ON VARIOUS
OPTIMIZERS

Optimizer Epochs Loss Fun. Val. Acc MCC Val.
SGD 28 RCCE 94.20% 0.9447
RMS 28 RCCE 94.60% 0.9509
Adagrad 28 RCCE 95.35% 0.9517
Adam 28 RCCE 96.43% 0.9640
Nadam 28 RCCE 97.20% 0.9726

In the assessment of the proposed model’s performance
on the H2HId dataset using various optimizers, a nuanced
understanding of the optimizer’s impact on model accuracy
becomes evident. Starting with Stochastic Gradient Descent
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(SGD), which achieved a Validation accuracy (Val. Acc) of
94.20%, we observed steady progress with Root Mean Square
Propagation (RMS) and Adagrad, reaching Val. accuracies
of 94.60% and 95.35%, respectively. However, the Adam
optimiser notably improved the model’s accuracy, achieving
96.43%. It is observed that the best performance is produced
by the use of the Nadam optimizer, which stood out among
the optimizers with a remarkable accuracy of 97.20%. These
results emphasize the significance of optimizer selection in
fine-tuning deep learning models, with Nadam proving to be
the most effective choice for maximizing the model’s accuracy
on the H2HId dataset. Further, the optimizers’ performance
in the proposed model is evaluated utilizing the Matthews
Correlation Coefficient (MCC) values [32] to gauge the quality
of multi-class human-human interaction classifications. This
metric is crucial in evaluating the model’s ability to provide
precise predictions while considering both false positives and
false negatives. Upon examining the MCC values (MCC Val.)
for each optimizer, a clear trend emerged. The Nadam opti-
mizer outshone others, securing the highest 0.9726 MCC value.
This achievement signifies a remarkable level of agreement
between the model’s predictions and the true labels. The
Nadam optimizer stands out as the top performer, demonstrat-
ing exceptional classification capabilities. This emphasizes the
significant influence of optimizer selection on a model’s ability
to generalize and make accurate predictions.

The proposed technique is compared with various standard
CNN models to test the efficacy, as demonstrated in Table
IV. It depicts the accuracy results of different deep learning-
based models with various benchmark datasets, namely HII
[27], HIIv2 [6] and our H2HId dataset. Among all the models
considered for evaluation, the proposed model attained the top-
most accuracy of 96.38% on the HII dataset, followed by the
EfficientNet [22] and EnsembleNet [33] models with 95.83%
and 95.37% accuracy, respectively. Our method demonstrated
high classification performance on the two benchmark datasets,
namely the HII and HIIv2, yielding remarkable accuracies.

TABLE IV. COMPARATIVE EVALUATION OF DEEP LEARNING MODELS IN
HUMAN INTERACTION RECOGNITION

Method(s) HII HIIv2 H2HId TP (M)
VGG-16 93.20% 81.36% 94.27% 134.70

ResNet-50 93.56% 81.20% 94.54% 25.60

MobileNetv2 94.54% 82.16% 94.67% 3.50

DELVS1 [23] 94.20% 82.28% 95.82% >140

IncepResNetV2 95.24% 82.67% 95.30% 55.90

EnsembleNet[33] 95.37% 82.40% 96.21% –

EfficientNet [22] 95.83% 83.17% 96.52% 1.03

Proposed Model 96.38% 83.42% 97.20% 0.41

Notably, the proposed model achieved the highest accuracy
across all three datasets, showcasing its exceptional ability to
accurately identify human interactions. The proposed model
attained 96.38% on HII, 83.42% on HIIv2, and 97.20% on
H2HId datasets. On the HIIv2 dataset, EfficientNet [22] and
EnsembleNet [33] attain 83.17% and 82.40% accuracy respec-

tively. The InceptionResNetV2 (IncepResNetV2), DELVS1
[23], and EfficientNet [22] model attain 95.30%, 95.82% and
96.52% accuracy, respectively on our H2HId dataset. let’s
consider the comparison based on the number of trainable
parameters (TP). The proposed model features a comparatively
streamlined design, comprising merely 0.41 million (M) TP.
In contrast, some of the benchmark models have significantly
larger numbers of trainable parameters. For instance, VGG-
16 and ResNet50 have 134.70 million and 25.60 million
TP, respectively. DELVS1 [23] model has 140+ million TP,
IncepResNetV2 has 55.90 M, MobileNetv2 has 3.50 M, and
EfficientNet [22] has 1.03 million TP. The proposed model’s
advantage lies in its ability to achieve superior accuracy while
maintaining significantly smaller trainable parameters than
these well-established benchmark models. This is particularly
important in real-world applications where computational ef-
ficiency and memory constraints are critical factors.

The F1-Score (F1s) on both the Stanford40 [30] and the
HII [27] datasets demonstrates strong classification perfor-
mance across multiple established deep learning models, as
depicted in Fig. 9. Stanford40 is a still image action dataset
with 40 action categories, which is also considered in the
analysis.

Fig. 9. Performance analysis of various models on stanford40 and HII
datasets.

The proposed model emerges as the top performer, show-
casing its outstanding classification performance with 0.83 F1s
on the Stanford40 dataset and an impressive 0.96 F1s on
our HII dataset. This model consistently demonstrates superior
classification capabilities in recognizing human interactions
and actions. Both the EfficientNet [22] and EnsembleNet [33]
model attains 0.95 F1s on HII dataset. The InceptionRes-
NetV2 model achieves 0.81 F1s on Stanford40, whereas the
EnsembleNet [33] model achieves 0.83 F1s on Stanford40
dataset, and both these model attains F1s above 0.95 on HII
dataset.

V. CONCLUSION AND FUTURE SCOPE

Human-human interaction recognition from still images
using deep learning is a rapidly evolving field with vast impli-
cations across various domains. Recognizing complex human
interactions from static visual cues using the proposed model
finds applications in social behavior analysis, surveillance,
market research, education, content tagging, and human-robot
interactions. The proposed network in this research combines
multi-level attention mechanisms and residual networks to
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enhance its ability to recognize human interactions, allowing it
to focus on relevant features within images automatically. This
approach aims to improve accuracy and effectiveness in recog-
nizing intricate human-human interactions, making it valuable
in computer vision and video analysis. The study’s main contri-
butions include the development of a new dataset for Human-
Human Interaction Recognition (H2HID) with comprehensive
labelling, the introduction of a novel AdaptiveDRNet Multi-
level Attention Network for recognizing human interactions
in images, and an extensive result analysis involving various
well-established deep learning models based on accuracy and
the number of trainable parameters, utilizing established re-
lated benchmark datasets for a comprehensive evaluation. The
Multi-level Attention in our model excels by operating on
multiple information scales, enabling simultaneous focus on
fine-grained details and broader context. Its versatility lies in
its ability to encompass attention at various levels, capturing
nuanced relationships and data patterns. The suggested model
is suitable for operation on devices with limited resources
since it employs minimal trainable parameters. This research
underscores the potential of deep learning in advancing our
understanding of human interactions from visual data and its
wide-ranging applications in diverse fields.

The future scope of this research encompasses several
promising avenues for further exploration and enhancement.
Firstly, there is a significant potential for expanding the dataset
size used in this study. A larger dataset would not only increase
the diversity and representativeness of human interactions but
also enable the model to generalize better across various
scenarios. Furthermore, the inclusion of additional and more
diverse human interaction categories within the dataset would
enhance the model’s capability to recognize a broader spectrum
of interactions. Another important direction for future research
involves the creation of improved classifiers that prioritize
energy efficiency to ensure the feasibility and scalability of
the proposed work in real-world settings.
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