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Abstract—In recent years, Artificial Intelligence (AI) has sig-
nificantly transformed various aspects of human activities, includ-
ing text composition. The advancements in AI technology have
enabled computers to generate text that closely mimics human
writing which is raising concerns about misinformation, identity
theft, and security vulnerabilities. To address these challenges,
understanding the underlying patterns of AI-generated text is
essential. This research focuses on uncovering these patterns
to establish ethical guidelines for distinguishing between AI-
generated and human-generated text. This research contributes
to the ongoing discourse on AI-generated content by elucidating
methodologies for distinguishing between human and machine-
generated text. The research delves into parameters such as sylla-
ble count, word length, sentence structure, functional word usage,
and punctuation ratios to detect AI-generated text. Furthermore,
the research integrates Explainable AI (xAI) techniques—LIME
and SHAP—to enhance the interpretability of machine learning
model predictions. The model demonstrated excellent efficacy,
showing an accuracy of 93%.Leveraging xAI techniques, further
uncovering that pivotal attributes such as Herdan’s C, MaaS,
and Simpson’s Index played a dominant role in the classification
process.

Keywords—Detecting AI generated text; computer generated
text; AI generated text; text classification; machine learning;
pattern recognition; Stylistic features; Explainable AI; Lime; Shap

I. INTRODUCTION

Artificial Intelligence (AI) has had a significant impact on
how humans perform daily tasks [1], such as composing text,
in recent years. The technology behind it has improved to the
point that computers are now capable of generating text that
closely resembles human writing. This has resulted in issues
such as circulating false information and stealing identities. It’s
also made things less apparent, which could be dangerous for
security. Given the importance of these dangers and issues [2],
it is critical that the underlying patterns used by various text
generation techniques are uncovered. The research paper sets
ethical guidelines for emulating human styles or perspectives
by distinguishing AI-generated writing from human-generated
language or examining the patterns formed by AI.

Researchers have tried several methods to understand how
AI generates material. Curvature-based hypothesis and pertur-
bation discrepancy detection of machine-generated text. The
hypothesis argues that machine-generated text will be at the
negative curvature and human-generated text will be at the
positive curvature.If the perturbation discrepancy is more than

0, the text is machine-generated; if it goes to 0, it is human-
generated [3].

As input, many textual properties such as length, punc-
tuation, and word choice are utilized. On five models, an
ensemble technique with Logistic Regression is used for binary
classification (text is either human or machine-generated).
Three models are utilized directly without cross-validation
for multiclass classification (to determine which deep neural
model was used for text synthesis) [4].

The primary focus for detecting AI-generated text is lin-
guistic analysis [5], which breaks out syntactic patterns, word
choices, and sentence structures. When a person uses too many
words, repeats the same thing, or breaks the rules, this is a red
signal. Investigating AI prompts and replies that don’t match
is crucial. If the AI model doesn’t make sense or changes
style, a machine may be implicated. Metadata is another
option. AI creation may be indicated by unusual timestamps
or IP addresses. Anomaly detection methods point out when
language patterns are broken. Machine learning models trained
to spot anomalies can distinguish AI writing from human-
written language. Determining if writing was created by AI
is complicated and ever-changing. Linguistic signals, inconsis-
tency analysis, information inspection, stylometric quirks, bias
identification, outliers, and purpose-built models are crucial.

Detecting AI-generated text remains an evolving effort,
with several uncharted areas that demand attention for more
robust and accurate identification. Firstly, there’s a need to
collect a diverse and thorough corpus of training data, spanning
various AI models, linguistic styles, and genres, to ensure the
detection system’s adaptability. Fine-tuning detection models
for specific AI language generators could improve precision by
honing in on the unique attributes of each model. Contextual
understanding remains a problem, as AI-generated text often
lacks coherence. Developing methods that examine contextual
disparities and irregularities could support the detection of AI-
generated text. The rise of multimodal AI-generated content
demands the development of detection models that can study
and correlate text, images, and videos, expanding the scope
of accurate identification. To counter evolving AI models,
adversarial approaches must be adaptive, having a constant
back-and-forth development between detection and generation.
Ensuring real-time detection capabilities is crucial, especially
for online platforms, necessitating the creation of lightweight,
quick-response systems that analyze text as it’s created.

This research paper aims to explore various methods for
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identifying AI-generated text. The paper discusses various
factors that need to be considered while detecting AI-generated
text. These include parameters such as average syllable count,
average word length, average sentence length by word, count
of functional words, punctuation count ratio, and many more.
Further, it implements xAI techniques which are LIME and
SHAP to assist in interpreting and comprehending the predic-
tions provided by the machine learning models.It contributes
to the continuing discussion concerning AI-generated material
by throwing light on the methodologies and approaches used
to distinguish between human and machine-generated text.

Section II covers a wide range of techniques for detecting
and understanding AI-generated text. The section provides
insights into various approaches used to differentiate between
machine and human-generated content, underscoring the evolv-
ing nature of this research. Section III provides a comprehen-
sive overview of the technologies employed in this research
and Section IV discusses the proposed model. In Section V,
experimentation done using fine-tuning of hyperparameters
is discussed and Section VI discusses the results with the
conclusion in Section VII followed by future scope in Section
VIII.

II. REVIEW OF LITERATURE

Various features extracted from the text, such as length,
punctuation, and word choice, are used as input. For binary
classification (text is whether human or machine generated),
an ensemble technique with Logistic Regression is applied to
five models().For multiclass classification (to determine which
deep neural model was used for text generation), three models
are used directly without cross-validation [4].

The paper explores various detection methods, including
classifiers trained from scratch, zero-shot classifiers utiliz-
ing pre-trained TGMs, and fine-tuning pre-trained languages
models like RoBERTa and GROVER. While the RoBERTa
detector shows promising results, it requires a substantial
number of training examples, making it less practical (). The
paper highlights the difficulties faced by the state-of-the-art
RoBERTa detector, including identifying short and fluent MGT
instances, factual errors, spurious entities, contradictions, and
violations of common sense reasoning [6].

In the context of text recognition using the GLTR model,
the underlying assumption of their methods is to generate
natural-looking text. Most systems sample from the head
of the distribution through max sampling, k-max sampling,
beam search,temperature-modulated sampling, or even implic-
itly with rule-based templated approaches. [7].

A curvature-based criterion that makes use of hypothesis
and perturbation discrepancy to detect machine-generated text.
The hypothesis states that if the text is machine-generated,
then it will lie at the negative curvature and if it is human-
generated, then it will occupy the positive curvature. If the
perturbation discrepancy is greater than 0, it implies that the
text is machine-generated and if the perturbation discrepancy
tends to 0, it implies that the text is human-generated [3].

The author in [8] explores various approaches such as
Multimodal Explanation, Deep Visual Explanation, and Deep
Tensor Networks to create models that can provide explana-
tions for their decisions using visual and textual modalities. In

the context of understanding and interpreting AI models and
their decisions, the paper emphasizes the crucial role of xAI. It
emphasizes the need for AI systems to provide explanations for
their decisions in sensitive areas like healthcare. It also presents
different approaches for the explainability of AI models. The
paper concludes by discussing the importance of xAI.

Researchers collected a dataset of 500 data points by
gathering responses from computer science students for essay
and programming assignments [9]. Each response was labeled
as either Human-written or machine-generated. To analyze the
text, they used a technique called Term Frequency-Inverse
Document Frequency (TF-IDF) for feature extraction, which
converts the text into numerical representations that machine
learning models can understand.

The researchers created an open dataset for the Russian
language consisting of long texts generated by different models
with varying parameters and sampling methods, balanced with
human-written text, and experiments with data mixing which
shows that blending samples from different generative mod-
els improved the generalization ability of the detector mod-
els particularly helping RoBERTa-based models in detecting
machine-generated text [10]. They further increased the input
length sequence which then improved the model’s understand-
ing of the context and led to better detection performance and
Multi-Task learning where the model simultaneously trains on
multiple tasks, proved beneficial for improving the quality of
the discriminator.

This research work focused on improving the stability of
the LIME algorithm in xAI. LIME (Local Interpretable Model-
Agnostic Explanations) is used to explain AI algorithms [11].
The researchers identified two main stability issues with LIME
which are Segment Ordering and Region Flipping and to
improve LIME’s stability, they proposed two strategies: High
Sample size and Average Segment Weights.

The paper [12] provides a guided tutorial of the xAI
implementation in the field of Software Engineering. It pro-
vides an introduction to xAI. Further, it provides fundamental
knowledge of defect prediction models. It addresses three
successful case studies where xAI is used in defect prediction
models.

The authors explore challenges in distinguishing Large
Language Models (LLMs) and human-generated text. They
derive complexity bound for detecting AI-generated text, in-
dicating a number of samples needed for detection [13].
The researchers also discuss different existing approaches for
detecting AI-generated text, highlighting the ethical concerns
related to the misuse of LLMs.

In the study [14], various methods for detecting AI-
generated text are explored. There are several techniques that
include analyzing word pair frequency, linguistic characteris-
tics, lexicographical features, and many more. The paper pro-
vides details on the methodology and results of each method.
Further, it concludes that there is no single best method, and
further evaluation of standardized datasets is necessary.

In the research, three decoding strategies are examined.
They show that the improvement in these methods is for
fooling humans, rather than difficult detectable text. These
decoding strategies include top-k and untruncated random
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sampling [15]. The authors emphasize the importance of
using both human and automatic detection methods to assess
the humanness of text generation systems. They call for
further research in improving language models, building better
automatic detectors, and developing tools to improve human
detection of machine-generated text.

The research proposes a classification model for detecting
essays generated by ChatGPT [16]. The model is based on
XGBoost. It is trained and further evaluated on a dataset
generated by ChatGPT and written by humans. It also explores
feature engineering for better results. It specifically explores
TF-IDF and other hand-crafted features.

The research examines various Machine Translation meth-
ods and assesses the linguistic complexity of their translations
in terms of both vocabulary and grammar [17]. The study
uses different metrics to measure diversity, such as lexical
richness and morphological variety and applies these metrics
to translations produced by MT models.

This study evaluates 13 lexical diversity metrics for track-
ing the progression of French learners’ written productions.
[18]They used a semi-longitudinal corpus of learners’ essays
and applied random forests to predict the production wave.
The metrics show varying correlations and the ability to detect
differences between productions achieving 69% accuracy in
predicting production waves

The study presents a variety of techniques, including lin-
guistic analysis, frequency counting, perplexity-based filtering,
and more. [14]These methods leverage different aspects of
the text, such as syntactic patterns, linguistic features, and
statistical properties, to differentiate between human-written
and machine-generated content.

In order to analyze complex machine learning models,
the study introduces a unifying framework termed SHAP.
The framework determines the significance of each feature
in a model for a certain prediction [19]. The framework
introduces new ways and unites six current methods to en-
hance computational efficiency and compatibility with human
intuition. To illustrate how well SHAP works at understanding
model predictions, the paper includes theoretical findings,
computational experiments, and user studies.

The authors of this scientific study suggest a categorization
method for categorising research paper abstracts using several
machine-learning approaches. The goal is to automatically
classify the papers into three categories: business, social sci-
ence, and science [20]. Four machine learning techniques
are tested by the authors: Support Vector Machines (SVM),
Naive Bayes, K-Nearest Neighbour (KNN), and Decision Tree.
Tokenization, stemming, and stop word removal are used in the
pre-processing of the abstracts. For feature extraction, Bag of
Words and TF-IDF vectorization techniques are applied. The
authors contend that the algorithm could function even better
with more data. Overall, the study shows that machine learning
approaches may successfully categorize research articles based
on their abstracts.

The article proposes a GPT language model and investi-
gates its Python code-writing capabilities [21]. In contrast
to GPT-3’s performance of 0% and GPT-J’s performance of

11.4%, the researchers are able to provide better results. Fur-
thermore, they find that frequent sampling from the model is
an extremely effective technique for coming up with workable
solutions to difficult problems. The model has a number of
faults, including problems with binding operations to variables
and docstrings that provide detailed information. Finally, the
paper goes over the wider effects that utilizing strong code
generation methods might have on safety, security, and eco-
nomics.

In summary, the literature survey illuminates the complex-
ities and multifaceted nature of AI-generated text analysis,
revealing that advancements in the field are often accompanied
by intricate challenges and unexplored areas. This research
paper endeavors to offer a comprehensive solution to the intri-
cate challenge of detecting text that originates from artificial
intelligence (AI) systems.

III. OVERVIEW OF TECHNOLOGIES USED

Technologies used in this research can be broadly classified
into three groups:

A. Machine Learning Algorithms

For AI-generated text detection, various machine learning
models were chosen such as Decision Tree, Random Forest,
Logistic Regression, and Support Vector Machine (SVM),
Gradient Boosting. These models were chosen with the specific
intention of utilizing xAI.

The selection of these models for xAI was driven by several
key considerations such as:

1) Interpretability: For eg, Decision Trees provide a clear and
intuitive decision-making structure represented by tree-
like diagrams making it easier to understand. Interpretable
coefficients provided by models like Logistic Regression
and SVM indicate the impact of each feature on the
outcome.

2) Balancing complexity: These models strike a balance be-
tween performance and complexity. While more complex
models like neural networks may help in achieving higher
accuracy, they are difficult to interpret. The chosen models
provide a reasonable trade-off between predictive power
and interpretability.

(A) Logistic Regression [22]: It is a statistical method used
for binary classification tasks by making use of the
logistic function also known as sigmoid function, which
transforms a linear combination of predictor variables
into a value between 0 and 1. The logistic regression
is expressed by:

P (Y = 1|X) =
1

1 + e−(β0+β1X1+β2X2+...+βpXp)

(1)
(B) Decision Tree [23]: It employees the Gini index to

make informed decisions during the process of creating
a tree like structure for classification tasks. It uses a
recursive process to partition the feature space into
regions to minimise impurity and improve classification
accuracy. The Gini index is a measure of impurity and
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its formula is given by:

Gini(t) = 1−
C∑
i=1

(p(i|t))2 (2)

(C) Gradient Boosting [24]: It is an advanced machine
learning method that builds a strong predictive model
by combining multiple weak learners. It makes use of
Gradient Descent optimization to minimise the predic-
tive errors.

F (x) =

M∑
m=1

γ × fm(xi) (3)

(D) Support Vector Machines (SVM) [25]: It is a powerful
classification technique that aims to find a hyperplane
in a high-dimensional feature space that best separates
different classes of data points. The main idea behind
SVM is to maximise the margin between the classes,
which is the distance between the hyperplane and the
nearest data points of each class.

h(x) = sign(

nSV∑
i=1

aiyi ×K(x1xi) + b) (4)

(E) Random Forest [26]: It is an ensemble learning method
that combines multiple decision trees to improve the
classification accuracy. It uses random subsets of data
and features to build diverse trees , thus making inde-
pendent predictions.

ŷ =
1

N

N∑
i=1

fi(x) (5)

B. xAI Libraries

xAI for classification refers to the application of techniques
that provide transparent and interpretable explanations for the
predictions made by classification models. It also refers to
the concepts and techniques used to make artificial intelli-
gence models more transparent and interpretable to humans.
In classification tasks, where the model assigns input data
to specific categories or classes, xAI techniques focus on
revealing the contributing factors that led to a particular
classification outcome. Commonly used techniques and models
include LIME, feature importance, PDP(Partial Dependency
Plots), and SHAP.

1) LIME - It is a technique designed to explain the predic-
tions made by complex ML models, particularly “black-
box” models, in a more understandable and interpretable
way. LIME helps bridge the gap between the often opaque
nature of advanced ML algorithms and the need for
human-understandable explanations.

2) SHAP - SHAP, which stands for “SHapley Additive
exPlanations,” is a powerful technique used in machine
learning to explain the predictions of various models. It
provides a unified framework for explaining the output of
any machine learning model by assigning “importance”
values to each feature in a prediction. SHAP values are
based on cooperative game theory and offer a comprehen-
sive understanding of feature contributions to individual
predictions.

C. Stylistic features

TABLE I. STYLISTIC FEATURES AND VARIOUS SCORES CALCULATED FOR
THE DATA POINTS

Linguistic
Features

Scores Description

Average Word
Length [27]

This gives us the average word length of the con-
cerned text in terms of the number of characters
used.

Average
Sentence
Length By
Word [28]

This gives us the average number of syllables used
per word in the concerned text.

Lexical
Features

Functional
Words
Count [29]

Functional words are grammatical connectors or
mood-defining words within phrases, lacking sig-
nificant linguistic value on their own.

Punctuation
Count

This gives us the ratio of the number of punctua-
tions used to the number of characters used in the
concerned text.

Readabili-

Flesch
Reading
Ease [30]

This metric assesses a text’s readability by ana-
lyzing its ease of comprehension.

Score Range: The scores range from 0 to 100.
Text with a higher score is more likely to be easier
to read.

ty Score Flesch-
Kincaid Grade
Level [31]

This metric estimates the U.S. school grade level
required to grasp the material.

Score Range: Scores can be any value greater than
zero.
Lower scores suggest that comprehension is pos-
sible at lower grade levels.

Gunning Fog
Index [32]

The Gunning Fog Index determines how many
years of official schooling are required for a person
to fully understand a text.
Score Range: The scores range from 0 to 20.
Lower scores indicate simpler text.

Dale-Chall
Readability
Formula [33]

Dale-Chall The readability formula considers a set
of well-known words and uses their presence to
determine the readability of the text.
Score Range: Approximately similar to US grade
levels.
Lower scores imply that the text is easier to read.

The research uses various stylistic features which are
calculated for every text in the data set. These features include
lexical features, readability, and diversity and richness of
vocabulary. These features are important and used further
in the research for model training and to discover patterns
and information regarding the text that are not visible and
perceptible to the human eye. Table I and Table II explain
the various features that are noted and calculated for the texts
present in the data set.

IV. PROPOSED METHODOLOGY

The proposed methodology for this research consists of two
major pipelines:

1) Dataset Generation Pipeline
2) Model Training and xAI Pipeline

All the steps occurring in both pipelines are explained in
detail below.

A. Dataset generation pipeline

Fig. 1 represents the flow for the creation of the two
datasets used in this research.

1) Prompt generation for every data point: The proposed
model’s datasets are constructed using introductions from
Wikipedia articles, specifically human-generated texts.
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TABLE II. STYLISTIC FEATURES AND VARIOUS SCORES CALCULATED
FOR THE DATA POINTS (DIVERSITY AND RICHNESS OF VOCABULARY)

Linguistic
Features

Scores Description

Yule’s Charac-
teristic K [34]

Yule’s Characteristic K measures text ”disorder-
liness” by analyzing word frequency distribution,
calculating the ratio of total words to the square
root of its inverse. A lower value indicates greater
vocabulary diversity, while a higher value suggests
more word repetition and lower vocabulary rich-
ness.

Herdan’s
C [35]

Herdan’s C quantifies word frequency distribution
in a text by subtracting the logarithm of total
words from the logarithm of unique words. It of-
fers insights into the text’s vocabulary distribution.

Diversity
and
Richness
of Vocab-
ulary

Maas [36] Maas is a measure derived using a formula by
Mueller involving variables like ”logeV0,” repre-
senting vocabulary expansion, where natural loga-
rithm is employed, and incorporating variables a,
logV0, and V to indicate proportional vocabulary
expansion across the text.

Mean
segmental
TTR(Type
Token Ratio)
(MSTTR) [37]

Mean Segmental TTR (MSTTR) calculates the
average Type-Token Ratio (TTR) over consecutive
text segments, where TTR is the ratio of unique
words to total words in a segment. It detects shifts
in vocabulary diversity within the text.

Simpson’s In-
dex [38]

Measure that quantifies the likelihood of two
words randomly selected from a text being iden-
tical. The scale spans from 0, representing a state
of high diversity, to 1, indicating a state of low
diversity.

Fig. 1. Dataset creation pipeline

The creation process involves employing a prompt in the
format “200-word Wikipedia-style introduction on ’title’
starter text.” Here, ’title’ represents the Wikipedia page
title, and ’starter text’ comprises the first seven words
from the introduction paragraph of the respective article.

2) LLMs used to generate text: Two large language mod-
els, namely “ggml-gpt4all-j-v1.3-groovy” [39]and “orca-
mini-3b.ggmlv3.q4 0.bin” [39], are utilized to generate
a set of 10,000 data points for each model. These data
points are then combined with the human-generated text,
resulting in two separate datasets, each containing 20,000
data points. The final datasets are created by shuffling the
data points independently for each of the models along
with the human-generated text.

3) AI text generation: Both LLMs then produce 10000 AI-
generated texts each for a better variety and spread of
data.

4) Combining the data: All the AI-generated texts from both
LLMs are then combined with 10,000 human-generated
texts individually from the two LLMs.

5) Shuffling data: All of these data points are then shuffled so
that the machine learning models used ahead do not learn

any unintended patterns from the data, thereby impeding
the performance of the model. This step denotes the
creation of an intermediate datasets for this research.

6) Calculating Scores & Final Datasets: Every data point in
the intermediate datasets, undergoes a series of calcula-
tions that help determine various style characteristics and
linguistic features of the text such as readability, richness
and correctness of vocabulary, and semantic spread of
the text, and lexical features that are not lucid and
discernible to the human eye. Each of these characteristics
has been attributed to various scores that help determine
such features in the text. These scores are then appended
to the intermediate dataset thus completing the dataset
generation process and thereby creating two datasets for
the LLMs used.

Fig. 2. Model Training and xAI pipeline

Following is the brief of all the scores used to extract the
stylistic features later on in this research.

(A) Lexical Features: One of the ways in which AI generated
text and human text can be distinctly identified is by
its lexical structure. Usually, human text is erroneous
in terms of appropriate punctuation - punctuation marks
are fairly missed or used improperly. Similarly, there are
disparities in other areas of lexical architectures such as
the differences in word lengths and thus the number of
syllables (AI tends to use heavier words), differences in
typical sentence lengths, the varied usage of functional
words such as she, these, or, and, etc. and so on. Hence,
these factors are calculated for both classes of texts and
used in this research paper to identify the trends for the
same.

(B) Readability Scores: Readability scores seek to identify
the reading level of a particular text, usually in terms of
the minimum education level required to read the text
with ease. Since human texts and AI texts are bound to
differ in terms of readability ease, this paper made use of
the following readability metric formulae to quantitatively
identify the reading ease of human and AI generated text
both:
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a) Flesch Reading Ease:

206.835−1.015(
totalwords

totalsentences
)−84.6(

totalsyllables

totalwords
)

(6)
b) Flesch-Kincaid Grade Level:

0.39(
totalwords

totalsentences
)+11.8(

totalsyllables

totalwords
)− 15.59

(7)
c) Gunning Fog Index:

0.4 · [( totalwords

totalsentences
) + 100(

complexwords

totalwords
)] (8)

d) Dale-Chall Readability Formula: The Dale-Chall For-
mula compares its wordlist to the provided text and
then determines the U.S. grade level based on the
number of difficult words and average sentence length.

(C) Diversity and richness of the vocabulary: The vocabulary
used by AI to generate texts and that used by human writ-
ers is vastly different. Human text considers several other
factors apart from the meaning and semantics while se-
lecting a word, such as cultural relevance, formal/informal
style, text’s context and usage, etc. AI on the other hand
tends to focus more on the textbook definition rather
than these factors, thus causing a disparity with human
text even between sentences meant to convey the same
meaning. The following vocabulary richness and diversity
metric formulae were used in determining the vocabulary
levels for both the classes of texts:

a) Yule’s Characteristic K:

K =
104

N2

V∑
i=1

(ni − c)2 (9)

Where,
N is the total number of words in the text.
V is the vocabulary size (the number of distinct
terms/words).
ni is the frequency of the ith word.
c is the mean frequency of all words.

b) Herdan’s C:

C =
log(V )

log(N)
(10)

Where:
V is the vocabulary size (the number of distinct
terms/words).
N is the total number of words in the text.

c) Maas:

a2 =
log(N)− log(V )

log(N2)
(11)

log V0 =
log V√
1− log V 2

logN

(12)

The term “logeV0” is equivalent to ‘logV0”, but it
should be noted that the natural logarithm (with base
e) is employed for the logarithmic computations. Fur-
thermore, the computations incorporate the variables
a, log(V0) (which exhibit dissimilarity from their prior
values), and V ′, which function as indicators of the
proportional expansion of vocabulary across the text.

d) Mean segmental TTR(Type Token Ratio) (MSTTR):

Mean Segmental TTR =
Total TTR in all segments

Number of segments

e) Moving Average TTR(Type Token Ratio) (MATTR):
The formula remains the same as for MSTTR, how-
ever MATTR computes the average Type-Token Ratio
(TTR) by considering a sliding window of words
instead of mutually exclusive segments as in MSTTR.

f) Simpson’s Index:

D = 1−
V∑
i=1

(
ni

N
)2 (13)

Where:
V is the vocabulary size (the number of distinct
terms/words).
ni is the frequency of the ith word.
N is the total number of words in the text

B. Model Training and xAI Pipeline

Fig. 2 demonstrates the classification and xAI pipeline as
a whole which includes training of the datasets on various
machine learning models and then using xAI libraries like
LIME and SHAP to get various insights regarding the data
points.

1) Machine Learning and Classification: Both generated
datasets are trained on classification models such as
Logistic Regression, Decision Tree Classifier, Random
Forest, Support Vector Machines, and Gradient Boosting.
This is done to see which model will perform better on
these data sets. The classification task is whether a given
text is AI-generated or human-generated.

2) Top Model Selection: The best two of the five models
trained before are chosen for xAI analysis using LIME
and SHAP as these models will provide better insights
than the others. The top two models are selected on the
basis of classification metrics such as accuracy,f1-score,
precision, and recall.

3) xAI Analysis: Arbitrary data points of AI-generated are
chosen and LIME and SHAP analysis is implemented.
Model weights of the two best machine learning algo-
rithms are used. The same is done for human-generated
text as well. How LIME and SHAP were used in this
research is discussed later.

4) Identifying Common Patterns: Upon conducting these
xAI techniques, the ensuing analysis reports offer a wealth
of insights. These insights are subsequently juxtaposed,
whereupon commonalities amongst the patterns identified
by various models are isolated. This convergence of iden-
tified features in both AI and human-generated text serves
as a critical juncture, underpinning the suggestion of a
preferred technique for discerning between AI-generated
and human-generated text.

C. xAI

1) LIME(Local Interpretable Model-agnostic Explana-
tions): LIME is effectively implemented to interpret models
used to classify between AI-generated and human-generated
text in a dataset. In this scenario, the goal is to understand
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how the model distinguishes between texts created by artificial
intelligence systems and those written by humans. LIME can
provide insights into which features or patterns the model relies
on for making such distinctions.

In this research, LIME is implemented on various test data
points to check which features were chosen by a particular
model for classification. To implement LIME, a subset of
data points is chosen randomly, comprising both AI-generated
and human-generated text samples. Then LIME is used to
identify the prevailing scores and metrics, and subsequently
patterns congruous to AI as well as human-generated texts are
studied and determined. These patterns are discussed later in
this research.

2) SHAP (SHapley Additive exPlanations): SHAP is a
powerful method that, like LIME, is used to interpret classi-
fication models for human-generated and AI-generated text. It
helps in figuring out which parts of the text or words are most
important to model’s prediction of whether a piece of text was
written by a person or an AI system i.e. it can be used to reveal
the important factors influencing the model’s conclusions when
classifying AI-generated and human-generated text.

To use SHAP, a similar method of choosing a subset of data
points is used that includes both types of text examples. SHAP
then generates perturbed versions of these data points, similar
to what LIME does. But instead of fitting a separate model that
can be understood, SHAP uses an idea from cooperative game
theory called Shapley values. These numbers tell how much
each feature contributes to the prediction for a certain instance.
The following are some SHAP visualization techniques that are

TABLE III. HYPERPARAMETERS TUNED FOR ORCA AND GPT-J DATASET

Models Hyperparameters tuned
and tuned values for Orca
dataset

Hyperparameters tuned and
tuned values for GPT-J
dataset

Logistic
Regression

‘C’ (Regularisation
Strength):90.68

‘C’ (Regularisation Strength):
33.27

Random
Forest

n estimators’:
212, ’max depth’:
30,’min samples leaf’: 2,
’min samples split’: 4,
’bootstrap’: False

n estimators’: 761,
’max depth’: 35,
’min samples leaf’: 8,
’min samples split’: 4,
’bootstrap’: False

Gradient
Boosting

’n estimators’: 351,
’learning rate’: 0.18896,
’max depth’: 5,
’min samples leaf’:8,
’min samples split’: 8

’n estimators’: 486,
’learning rate’: 0.20436,
’max depth’: 9,
’min samples leaf’: 7,
’min samples split’: 3

SVM ’C’ (Regularization Parame-
ter): 9.05764, ’kernel’: ’lin-
ear’, ’degree’: 2, ’gamma’:
0.01

’C’(Regularization Param-
eter): 5.185706911647028,
’kernel’: ’rbf’, ’degree’: 3,
’gamma’: 0.1

used in this research to analyze the importance of individual
features in the model’s decision process:

1) Summary Plots: These graphs show how important each
trait is across the whole dataset. They show the Shapley
values for each feature, which show how they make the
model’s prediction move away from the average (base)
estimate.

2) Waterfall Plots: Waterfall plots show how the Shapley
value of each feature adds to the final prediction for
a single instance. It makes it easier to see how the
contributions add up.

3) Force Plots: Force plots are made to show how predictions
can be made for specific cases. They show how the value

of each attribute and its Shapley value interact to affect
the final prediction.

V. EXPERIMENTATION

A. Parameter tuning

All the models were subjected to hyperparameter tuning to
optimize the performance of various machine-learning models
for AI-generated text detection. The process involved sys-
tematically searching and evaluating different combinations
of hyperparameters to give the best set of hyperparameters
that maximized the model’s accuracy. For each model, a
range of hyperparameter values was specified and Random-
izedSearchCV was used which effectively sampled and cross-
validated these values. This meticulous process enabled the
models to better capture the patterns, resulting in improved
accuracy and predictive capabilities. Table III shows the var-
ious hyperparameters used and their respective “best” values
for model training to boost the accuracy of the models.

TABLE IV. CLASSIFICATION METRICS FOR ORCA GENERATED DATASET

Model Name Accuracy F1-Score Precision Recall
Logistic
Regression

0.92 0.92 0.93 0.93

Decision Tree 0.80 0.79 0.80 0.77
Support Vector
Classifier

0.91 0.92 0.93 0.92

Random Forest 0.86 0.86 0.84 0.89
Gradient Boosting 0.89 0.89 0.88 0.90

TABLE V. CLASSIFICATION METRICS FOR GPT-J GENERATED DATASET

Model Name Accuracy F1-Score Precision Recall
Logistic Regression 0.67 0.68 0.65 0.66
Decision Tree 0.78 0.76 0.75 0.76
Support Vector
Classifier

0.71 0.71 0.69 0.70

Random Forest 0.70 0.69 0.70 0.71
Gradient Boosting 0.65 0.65 0.64 0.61

From the above models, an ensemble model was created
combining the predictions of various models using a weighted
average based on their accuracy scores. The weights were
determined by normalizing the accuracy scores, ensuring their
sum equals 1.

VI. RESULTS AND DISCUSSION

A. Classification Results

Both the datasets, the ones generated by GPT-J and Orca
were trained on the various classification models mentioned
above — Logistic Regression, Decision Tree, Random Forest,
Support Vector Classifier, and Gradient Boosting. Both datasets
had varied accuracies for the models trained. The various
classification metrics such as accuracy, F1-Score, precision,
and recall [40] for both datasets are illustrated in Table IV
and Table V.

B. xAI Results and Inferences

xAI was then implemented to determine which features are
dominating and have a higher impact in determining the class
label of a particular data point.
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Fig. 3. LIME Interpretability Graphs for arbitrary AI-generated texts

LIME was then implemented on the Orca-generated dataset
as it yielded better results to determine which features played
an important role in how the model classified a data point
as either human-generated or AI-generated text. This feature
importance identification then helps in identifying what kinds
of lexical and other features related to text are prominent in
AI-generated and human-generated text.

The Fig. 3 has two LIME graphs for two separate AI-
generated text data points. In the first image— on the left—
LIME has Herdan’s C [35], MaaS [36], and Simpson’s in-
dex [38] have an abundant positive effect on the classification
of this data point as an AI-generated text whereas MATTR
and the average word length feature has a negative impact on
the classification. From looking at various LIME graphs for
data points being classified as AI generated the most dominant
features were Herdans C, MaaS, and the Simpson’s Index.

Herdan’s C was one of the features which highly impacted
the classification. Herdan’s C metric is used to determine a
text’s vocabulary richness and diversity. It computes the pro-
portion of unique words relative to the total number of words in
the text. A higher Herdan’s C value indicates a more diverse
vocabulary, whereas a lower value indicates a repetitious or
restricted vocabulary. It was observed from a sample of AI-
generated data points that most of AI-generated text has a
high value of this metric, meaning having a rich diversity of
vocabulary was present. This is because the language model
used to generate the data was pre-trained on massive datasets
containing a wide range of text sources(3 billion parameters for
Orca). But, there might be cases where the richness is abated
because the dataset on which that language model was trained
must not be up to standards.

The Simpson’s Index can be used to measure the diversity
of words in a given text within the context of text analysis.
A higher Simpson’s Index value would indicate less word
diversity, indicating that a small number of words are repeated

frequently. A lesser Simpson’s Index value indicates greater
word diversity or the use of a greater variety of words. Fur-
thermore, for Simpson’s Index, the values were high i.e. they
were between 0.65 to almost reaching 1. This indicates that the
phrases or words in the text are repeated often. Consequently,
the diversity decreases. This is because AI models, particularly
language models, can occasionally generate text that tends
to reuse certain phrases or patterns, resulting in a relatively
smaller vocabulary. These models may generate coherent text,
but they may lack the inherent variability and creativity of
human-generated text [41]. However, it’s important to note that
this can vary based on the specific AI model, the input data it
was trained on, and the prompt given for text generation [42].

Fig. 4 illustrates a set of examples of LIME interpretability
graphs for human-generated text. Many data points were
interpreted and the results were mostly opposite to the ones
inferred by the AI-generated ones. For instance, the Herdans
C constant was relatively low for various human-generated
text data points. It was either relatively low or it negatively
influenced the classification.

Fig. 5, Fig. 6, and Fig. 7 illustrate the summary, waterfall,
and force plots respectively generated by SHAP for the ORCA
dataset. Table VI shows some feature values characteristic to
AI and Human-generated texts.

TABLE VI. SOME FEATURE VALUES CHARACTERISTIC TO AI AND
HUMAN-GENERATED TEXTS

Feature AI-Generated Human Generated
Herdan’s C 0.9214 0.8901
Simpson’s Index 0.016 0.013
MATTR 0.9548 0.9203
Maas 0.0180 0.0196
Flesch-Kincaid
grade level

37.07 52.96

Gunning Fog Index 41.32 56.99
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Fig. 4. LIME Interpretability Graphs for arbitrary human-generated texts

Fig. 5. Summary plot for SHAP values for Logistic Regression model
trained on ORCA dataset

VII. CONCLUSION

In conclusion, this research delves into the intricate realm
of AI-generated text analysis and its differentiation from
human-generated text. As Artificial Intelligence continues to
revolutionize various facets of human activities, including text
composition, the challenges of identifying AI-generated con-
tent have become increasingly pertinent due to concerns about
misinformation, security vulnerabilities, and identity theft. The
research methodology is multifaceted, combining linguistic

Fig. 6. Waterfall plot for SHAP values for Logistic Regression model trained
on ORCA dataset

Fig. 7. Force plot for SHAP values for Logistic Regression model trained on
ORCA dataset

analysis, readability metrics, semantic spread measurements,
and vocabulary richness assessments to uncover essential tex-
tual attributes. By leveraging a composite ensemble of ma-
chine learning models, including Logistic Regression, Decision
Tree, Random Forest, Support Vector Classifier, and Gradient
Boosting, the research demonstrates impressive efficacy with
an accuracy of up to 93% in classifying AI-generated and
human-generated text.
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Moreover, the integration of xAI techniques, such as LIME
and SHAP, provides invaluable insights into the features and
patterns that influence the model’s classification decisions.
These insights reveal that certain attributes, such as Herdan’s
C, MaaS, and Simpson’s Index, play pivotal roles in distin-
guishing AI-generated text from human-written content. These
features highlight the richness of vocabulary, repetition of
certain phrases, and syntactic patterns that are characteristic
of AI-generated text.

The paper’s limitation lies in its reliance on non-state-of-
the-art models due to computational constraints, which may
not fully represent the latest advancements in the field. These
constraints, including limitations in computational resources
and data availability, result in a performance gap compared to
more advanced models. However, this limitation serves as a
catalyst for future research that can harness the power of deep
learning architectures and explainable AI (xAI) to delve into
AI-generated text with greater sophistication. Additionally, it
highlights the need to address ethical concerns and practical
applicability as AI models evolve, making this paper a foun-
dational stepping stone for deeper explorations in the future.

VIII. FUTURE SCOPE

The research’s future directions revolve around advanc-
ing AI-generated text analysis comprehensively. This entails
harnessing larger and more diverse datasets spanning vari-
ous domains, crucial for enhancing the detection system’s
real-world applicability. Alongside this, optimizing processing
power to expedite analysis processes tied to xAI techniques
like SHAP is essential. Incorporating additional style criteria
such as linguistic tendencies and sentiment analysis aims to
refine the methodology, deepening the grasp of distinguishing
AI text styles from human language. This extends to evaluating
a wider range of AI models beyond GPT-J and ORCA.
Diversification of Machine Learning algorithms like K-Nearest
Neighbors, Naive Bayes, and Neural Networks, as well as
integration of Deep Learning algorithms like Transformer-
based models, enhances AI text recognition. To fathom model
decision-making, XAI methods like Grad-CAM and Integrated
Gradients will be employed. Rigorous validation of authentic
AI text data will test the proposed approach, collectively
advancing differentiation between AI-generated and human-
composed texts and propelling the field forward.
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