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Abstract—In recent years, significant advancements have been
made in the realm of plant disease classification, with a particular
focus on leveraging the capabilities of deep learning techniques.
This study delves into the utilization of renowned Convolutional
Neural Network (CNN) models, including EfficientNetB5, Mo-
bileNet, ResNet50, InceptionV3, and VGG16, for the purpose
of plant disease classification. The core methodology involves
employing transfer learning, wherein these established CNN
models are employed as a foundation and subsequently fine-
tuned using a publicly accessible plant disease dataset. The study
also compared the results with some deep learning models and
with state-of-the-art. Among the tested CNNs, EfficientNetB5 has
shown the best performance. EfficientNetB5 has outperformed
another model and obtained 99.2% classification accuracy.

Keywords—Classification of diseases on leaves; transfer learn-
ing; fine-tuning; image classification; deep learning

I. INTRODUCTION

Plant diseases are a pervasive and complex aspect of
agriculture and horticulture, exerting significant impacts on
global food production and ecosystem health. Plant diseases
can manifest in various ways, from visible symptoms like
wilting, discoloration, and lesions to more subtle signs of
stunted growth and reduced yield. The management of plant
diseases necessitates a multifaceted approach, combining prac-
tices such as crop rotation, the use of disease-resistant cultivars,
proper sanitation, and judicious application of pesticides. As
the world grapples with the challenge of feeding a growing
population, understanding and mitigating plant diseases is
of paramount importance to ensure sustainable agricultural
systems and safeguard global food security [1].

Hence, numerous studies in this field have been conducted,
deploying various methods such as classical machine learning
models and state-of-the-art deep learning techniques [2] [3] [4]
[5]. Authors have also employed data preprocessing methods
to enhance model accuracy. Besides, there have been studies
focusing on feature extraction using traditional techniques like
SUREF [6], HOG [7], etc.

In this study, we used a CNN [8] model, including Effi-
cientNetB5, MobileNet, ResNet50, InceptionV3, and VGG16,
to classify plant diseases within an existing dataset. Addition-
ally, the study compared the results with other deep learning
models and state-of-the-art methods. The obtained results were
highly satisfactory, achieving an accuracy and Fl-score of
99.2% and 99.22%, respectively.

This article is divided into five sections. The first section
is the introduction. In the subsequent Section II, we present

related works. Moving forward, Section III is the proposed
methodology. The experimental procedures and outcomes are
discussed in Section IV. Lastly, the conclusion wraps up the
article.

II. RELATED WORKS

Numerous research have been conducted in recent years to
address the issue of plant disease. Researchers are continuously
finding new, creative ways to increase their accuracy.

In the article [9], the author proposed a deep learning-based
method for tomato disease detection that utilizes the Condi-
tional Generative Adversarial Network (C-GAN) to generate
synthetic images of tomato plant leaves. Then, a DenseNet121
model is trained on synthetic and real images using transfer
learning to classify the tomato leaves images into ten categories
of diseases. The results obtained accuracy of 99.51%, 98.65%,
and 97.11% for tomato leaf image classification into five
classes, 7 classes, and 10 classes, respectively.

In [10], a comprehensive four-step procedure is presented
for enhancing the accuracy of plant disease detection and
classification in images. The process commences with pre-
processing, employing a Wiener filter to mitigate background
noise. Disease spots are subsequently identified using the hue
histogram in the HIS model, followed by precise segmentation
through the K-means algorithm and highest hue value calcula-
tion in the HSV color model. Afterward, seventeen color and
texture features are extracted from the disease-affected regions
and input into a forward-propagation deep neural network
(FPDNN) classifier. To improve results, the Bayesian regular-
ization back propagation algorithm is applied. Impressively,
the FPDNN was subjected to testing with varying hidden
layers, achieving its peak accuracy of 97.18% with 19 hidden
layers. This underscores the effectiveness of this methodology
in accurate plant disease identification and classification.

In [11], the authors concentrated their efforts on crafting an
integrated model for the precise detection of tomato diseases
through the utilization of image data. To achieve this, they
rigorously assessed the performance of seven distinct neural
network architectures, including renowned ones like VGG16,
ResNet50, and various EfficientNet variants, all fine-tuned
through transfer learning methodologies. After a thorough
evaluation, the most proficient models were selected, and a
weighted average ensemble technique was applied to amalga-
mate them. This amalgamation resulted in the proposal of a
final model boasting an impressive accuracy rate of 98.1%.

www.ijacsa.thesai.org

1065 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

This study [12], the identified diseases were categorized
into three distinct groups: bacterial, viral, and fungal infections.
The research delved into a thorough exploration of these
aspects and employed a range of machine learning (ML) and
deep learning (DL) techniques. The ML methods employed in
the study encompassed SVM, KNN, RF (Random Forest), and
LR (Logistic Regression), while the DL approach featured the
use of Convolutional Neural Networks (CNN) for disease pre-
diction in plants. Among the machine learning classifiers, the
RF (Random Forest) yielded the highest accuracy, achieving
an impressive rate of 97.12%. However, the CNN classifier,
representing the deep learning model, outshone them all with
an even higher accuracy of 98.43%.

In the study [13] conducted by Nagamani H S and Saro-
jadevi H, the focus was directed towards the detection and
classification of diseases that impact tomato leaves, employing
a range of machine learning techniques. This comprehensive
investigation encompassed the utilization of FuzzySVM, Con-
volutional Neural Network (CNN), and Region-based Convo-
lutional Neural Network (R-CNN) models. The researchers ex-
ecuted an array of sophisticated image processing and feature
extraction methodologies to enhance the predictive capabilities
of their models. Remarkably, their findings unveiled that the
R-CNN model emerged as the standout performer, achieving
an impressive accuracy rate of 96.735% in the classification
of various disease types afflicting tomato plants.

In research [14] of Nishant Garg and colleagues , the model
was meticulously trained on a substantial dataset consisting of
8,000 images across the relevant classes and rigorously tested
on a separate test set comprising 2,000 images. The hybrid
methodology employed a fusion of Convolutional Neural Net-
work (CNN) for effective feature extraction from input data
and a finely tuned Support Vector Machine (SVM) classifier
for precise classification. This synergistic combination proved
to be highly effective, achieving an impressive accuracy rate
of 92.6%. The authors, in [15], used a Convolutional Neural
Network (CNN), specifically the VGG model, to detect Multi-
Crops Leaf Disease (MCLD) by classifying diseased and
healthy crop leaves. They achieved impressive results with an
accuracy of 98.40% for grapes and 95.71% for tomatoes.

In their research paper [16], the authors conducted a com-
prehensive assessment of deep learning techniques, leveraging
pre-trained CNN models within the PyTorch framework for
the classification of tomato plant diseases. They evaluated var-
ious models, such as EfficientNetB0O, ResNext-50-32x4d, and
MobileNet-V2, with ResNext-50-32x4d emerging as the top
performer, achieving an impressive accuracy rate of 90.14%.
In the paper cited as [17], the authors introduce a novel
approach for classifying seven distinct types of tomato diseases
employing Deep Learning models. Their models were trained
on an extensive dataset comprising 10,448 images, and the
results were striking. The trained models exhibited remark-
able accuracy, with the highest testing precision achieving an
impressive 95.71%.

This article [18] used deep learning for crop disease
detection. They employed a Convolutional Neural Network
(CNN) with two convolutional and two pooling layers in
the model. The results are quite promising, as the proposed
CNN model outperformed well-known pre-trained models like
InceptionV3, ResNet 152, and VGG19. The CNN achieved
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an impressive 98% training accuracy and maintained a strong
88.17% testing accuracy. This paper [19] focuses on the
identification of tomato plant diseases, utilizing a transfer
learning approach with the EfficientNetB3 model. The dataset
comprises 11 distinct types of leaves and is sourced from
an online database. The EfficientNetB3 model undergoes 15
training iterations with a batch size of 32, employing two
optimizers, Adamax and Adam. Notably, the use of the Adam
optimizer resulted in an accuracy of 94%.

In this research [20], a prediction model for Tomato
Early Blight Disease (TEBD) was developed using image-
based data. The TEBD dataset was improved through various
image processing techniques such as Background Removal,
Augmentation, Resizing, Noise Removal, and Segmentation.
Subsequently, a Convolutional Neural Network (CNN) was
employed to train the model on the enhanced dataset. The
model’s performance was exceptional, achieving a remarkable
mean accuracy of 98.10%, demonstrating its capacity to accu-
rately predict TEBD with a batch size of 64 and 15 training
epochs.

In the study described in [21], the researchers employed
established CNN architectures like AlexNet, ResNet50, and
VGG16 for feature extraction. Subsequently, they applied the
minimum redundancy maximum relevance feature selection al-
gorithm to refine these features for optimal performance. These
selected features were then combined through concatenation.
To classify the concatenated features, the researchers uti-
lized well-known machine learning classification algorithms.
Remarkably, their proposed approach achieved outstanding
results, boasting an impressive accuracy of 98.3% for tomato
leaf disease detection and 96.3% for the Taiwan dataset.

In this study [22], an innovative approach was intro-
duced by fusing two pre-trained models, namely Efficient-
NetB3 and MobileNet, collectively referred to as the EffiMob-
Net model, for highly precise tomato leaf disease detection.
The researchers conducted thorough hyperparameter tuning
to meticulously select the ideal settings for constructing the
most suitable model. The performance of this hybrid model
was rigorously assessed, focusing on accuracy metrics specifi-
cally chosen for disease detection. Impressively, the proposed
EffiMob-Net model achieved an exceptional success rate of
99.92%. In reference [23], the research leveraged pre-trained
CNN models, namely Inception V3 and Inception ResNet
V2, to effectively classify images of tomato leaves as healthy
or unhealthy. Remarkably, their approach yielded outstanding
results, boasting a remarkable accuracy rate of 99.22%. Addi-
tionally, they managed to keep the loss to an impressively low
0.03. This achievement was made possible through strategic
use of dropout rates, with 50% for one model and 15% for the
other.

In [24], authors employed a dataset comprising tomato
leaves, encompassing six distinct disease types along with a
class for healthy tomato leaves. This dataset, consisting of
6,594 tomato leaf images, was sourced from Plant Village. In
addtional, approach of study, utilizing the ResNet-50 model,
delivered a remarkable outcome, achieving a substantial ac-
curacy rate of 96.35% when tested on a balanced dataset
split, with 50% used for training and the remaining 50%
for testing. In this study [25], Sanjeela Sagar and Jaswinder
Singh conducted an experimental and comparative analysis of
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tomato leaf disease classification, employing both traditional
machine learning algorithms such as random forest (RF),
support vector machines (SVM), and naive bayes (NB), as
well as a deep learning convolutional neural network (CNN)
algorithm. Notably, our findings revealed that the CNN, specif-
ically when integrated with a pre-trained Inception v3 model,
outperformed traditional methods. This advanced approach
achieved an impressive accuracy rate of over 95%.

In [26], Irene Sultana and her team have introduced a
substantial dataset consisting of 14,529 tomato leaf images
encompassing ten distinct infections. In their study, they har-
nessed the power of deep learning by employing InceptionV3
and ResNet-50 as the learning algorithms, capitalizing on
transfer learning techniques for classifier training. Their inno-
vative deep learning model delivered commendable outcomes,
achieving an accuracy rate of 85.52% for InceptionV3 and an
even more impressive 95.41% for ResNet-50. In this research
paper [27], authors focus on the crucial task of cassava
plant disease detection, recognizing that deep learning models
surpass traditional machine learning methods, as observed in
prior research. In additional, Prashant Giridhar Shambharkar
and Saurabh Sharma employ the EfficientNet-BO architecture
in conjunction with k-fold cross-validation to develop a highly
effective disease detection model. EfficientNet’s reputation for
superior classification, speed, and scalability across various di-
mensions makes it an ideal choice. Result attains an impressive
96.68% accuracy when evaluated on a collect Kaggle dataset.

The common challenge for researchers is the difficulty
in increase accuracy to classification of plant diseases on
leaves. Therefore, in this study, we have conducted several
experiments on several Machine Learning models (including
pre-trained Deep Learning models) to validate their better
performance in the scenario.

III. BACKGROUND
A. Image Classification

One of the most pivotal and burgeoning research domains
in contemporary times is image classification, particularly
within the realm of medical imaging analysis. Image classifi-
cation, also referred to as image categorization, plays a critical
role in determining the presence of diseases by generating
a classification output based on input images. Its primary
objective is to assign a specific label to an image, which proves
instrumental in various applications.

Image classification extends its relevance to numerous
real-world sectors and industries, encompassing environmental
studies, agriculture, remote sensing, urban planning, surveil-
lance systems, geographic mapping, disaster management, and
item identification. This versatile and transformative tech-
nology not only aids in medical diagnoses but also finds
widespread utility in addressing a multitude of challenges and
opportunities across diverse fields.

B. Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) stand as a cor-
nerstone in the domain of deep learning, particularly in the
realm of image analysis and recognition [8]. CNNs leverage
a distinctive mathematical technique known as convolution,
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which involves performing an operation on two functions to
derive a third function, illustrating the transformation of one
function by the other. In CNN architecture, convolution plays
a pivotal role in extracting hierarchical features from input
images, enabling the network to progressively discern complex
patterns. CNNs are composed of multiple layers of artificial
neurons, which function as mathematical units responsible for
aggregating input information and generating activation values,
closely mirroring the information processing capabilities of
human neurons, as they assimilate sensory inputs and pro-
duce corresponding responses. This structural and functional
alignment with biological neural systems contributes to CNNs’
extraordinary efficacy in tackling intricate image-based tasks
and solidifies their status as a cornerstone technology in
modern deep learning.

Kernel convolution [8] serves as a foundational element
not only in Convolutional Neural Networks (CNNs) but also
in various Computer Vision methodologies. This technique
involves the application of a small matrix, referred to as the
kernel or filter, to modify an image based on the filter’s values.
In the context of the mathematical representation, the input
image is symbolized as g and the kernel is represented as p.
The process can be expressed using the following formula,
which is instrumental in generating subsequent feature map
values. The indices for the rows and columns of the resulting
matrix are typically denoted as a and b, respectively, as
indicated in equation (Eq. 1). This fundamental operation
forms the basis for extracting important visual information and
features from images, underpinning a wide range of computer
vision applications.

Gla,b] = (g * p)[a,b] = Z Zp[z',j]g[a —i,b—j] (D)

Within the Convolutional Neural Network (CNN) archi-
tecture, the first layer is the convolutional layer, tasked with
the process of disentangling diverse features from the input
images. In this layer, a Nz N sized filter is employed in tandem
with the input image to execute the convolution operation. The
forward propagation through this layer unfolds in two phases.
Initially, the first step is to determine the intermediate value X,
which is produced when the input data from the previous layer
is convolutioned with the Y tensor (which contains filters), and
then bias d is added. The next involves using our intermediate
value as the input for a non-linear activation function (our
activation is denoted by h). For the fans of matrix equations,
the subsequent formulas, encapsulated as Eq. (2) and (3).

XU =vyl.cli—1)+d 2)
cll = pli (X[l]) 3)

C. ResNet50 Model

ResNet [28] represents a distinctive variant of a convo-
Iutional neural network (CNN) that was first presented in
the research paper titled “Deep Residual Learning for Image
Recognition” in 2015. This concept is introduced by He Kaim-
ing, Zhang Xiangyu, Ren Shaoqing, and Sun Jian. ResNet-50 is
a convolutional neural network that is 50 layers deep, including
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48 convolutional layers, one MaxPool layer, and one average
pool layer. Residual neural networks are a type of artificial
neural network (ANN) that constructs networks by assembling
residual blocks [29].

D. MobileNet Model

MobileNet [30] is a simple but efficient and not very
computationally intensive convolutional neural networks for
mobile vision applications. MobileNet is widely used in many
real-world applications which includes object detection, fine-
grained classifications, face attributes, and localization. In this
lecture, I will explain you the overview of MobileNet and how
exactly it becomes the most efficient and lightweight neural
network. MobileNet uses depthwise separable convolutions. It
significantly reduces the number of parameters when compared
to the network with regular convolutions with the same depth
in the nets. This results in lightweight deep neural networks.

E. VGGI16 Model

VGG16 [31] is a convolutional neural network model pro-
posed by K. Simonyan and A. Zisserman from the University
of Oxford in the paper “Very Deep Convolutional Networks
for Large-Scale Image Recognition” [32]. The model achieves
92.7% top-5 test accuracy in ImageNet, which is a dataset of
over 14 million images belonging to 1000 classes. It was one
of the famous model submitted to ILSVRC-2014. It makes
the improvement over AlexNet by replacing large kernel-sized
filters (11 and 5 in the first and second convolutional layer,
respectively) with multiple 3x3 kernel-sized filters one after
another. VGG16 was trained for weeks and was using NVIDIA
Titan Black GPU’s.

F. InceptionV3 Model

InceptionV3 [33] is an image recognition model that has
been shown to attain greater than 78.1% accuracy on the
ImageNet dataset. The model is the culmination of many ideas
developed by multiple researchers over the years. It has a
total of 42 layers and a lower error rate than its predecessors.
Additional, it is introduced on the original paper: “Rethinking
the Inception Architecture for Computer Vision” by Szegedy,
et. al. [34].

G. EfficientNetB5 Model

EfficientNetB5 [35] is part of a family of eight DCNN
models called EfficientNet, introduced by Google Al [36]. The
eight models of EfficientNet range from BO to B7 where the
largest is B7. EfficientNets showed higher accuracy and better
efficiency in comparison to existing CNNs. The EfficientNet
architectures are based on a scaling approach that uses a
compound coefficient to consistently scale the three dimen-
sions (resolution, depth, and width). This results in higher
performance and greater accuracy of the models.

IV. PROPOSED ARCHITECTURE

Fig. 1 shows our proposed approach. The goal of this
process is to increase the amount of data large enough for
deep learning models to bring high efficiency to the model.
Then, the data will be divided into three parts: training set,
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validating set and testing set. Next, pretrain models with the
ImageNet dataset are used without the output layer. We reuse
all the trained weights from the ImageNet dataset. After input
layer, we create an additional layer called AugmentedLayer,
this layer is responsible for enhancing data from the input
dataset with different techniques such as: flip, rotation, zoom
and contract. After that, we proceed to add layers in turn:
Dense with 256 hidden units, followed by activation layer with
ReLu, Batch Normalization layer, dropout layer with value 0.3,
dense layer and final is output layer.

Weight transfarred from pr-train model New layers
N J
r r 1 .
Trin 2z 8
— | — | | iRt »ga [ -
Vode
2

Input  Augmzntzd
Ly Ly Layern

oureuT

8889

Fip  Rotafion Zoom ~ Contrast
Augmeniatcn

Techriques
Tt

Fig. 1. Our proposed architecture.

The details of the input and output of each layer and the
number of parameters of the proposed architecture are shown
in Table I.

TABLE I. SUMMARY OF PROPOSED MODELS

Layer (type)

Output Shape [ Param #

inputLayer (InputLayer) [(None, 224, 224, 3)] 0
AugmentationLayer (Sequential) (None, 224, 224, 3) 0
efficientnetb5 (Functional) (None, 2048) 28513527
dense_3 (Dense) (None, 256) 524544
activation_1 (Activation) (None, 256) 0
batch_normalization_1 (BatchNormalization) (None, 256) 1024
dropout_1 (Dropout) (None, 256) 0
dense_4 (Dense) (None, 38) 9766
activationLayer (Activation) (None, 38) 0

Trainable params: 534,822

Non-trainable params: 28,514,039

V. EXPERIMENTS
A. Dataset and Experimental Environment

The dataset [37] used contained 87,867 images of fruits
and vegetables belonging to 38 different categories. The pre-
split data consists of three sets: training, validation and testing.
The training set includes 70,295 images. The validation set
has 15,814 images. The test set contains 1,758 images. Each
photo will contain a plant-diseases of leaves. Fig. 2 shows the
distribution of data of the training set.

In this experimental, we train the data with the proposed
model. The experiment was performed on a computer with
the following configuration: Core i5 12400F, 32GB RAM, and
Geforce RTX 3060 12VRAM graphics card.

www.ijacsa.thesai.org

1068 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

Training data images count per class
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Fig. 2. Data distribution.

B. Experiment 1: Evaluation of the Proposed Model

In this experiment, we performed on the hyperparameter set
with the specified values as follows: batch_size=32, epoch=15,
learning_rate=0.00001, and optimizer=Adam. The Table II
compares the results between some deep learning models based
on our approach. In which, (1) is train loss, (2) is train
accuracy, (3) is validation loss, (4) is validation accuracy, (5)
is test loss, (6) is test accuracy and final is F1-Score.

TABLE II. COMPARISON BETWEEN THE PROPOSED MODEL AND SOME
OTHER MODELS

Models @) 2) 3) “@ ®) (6) @
EfficientNetBS | 0.22 | 0.92 | 0.14 | 0.95 | 0.02 | 0.992 0.992
InceptionV3 1.70 | 0.50 | 1.92 | 0.45 1.35 | 0.587 0.585
MobileNet 0.65 | 0.79 | 0.67 | 0.78 | 0.57 | 0.82 0.82
ResNet50 0.06 | 097 | 0.10 | 0.96 | 0.03 | 0.9898 | 0.9898
VGG16 024 | 091 0.21 092 | 0.06 | 09829 | 0.9829

From the comparison table above, we can see that the fine-
tune EfficientNetBS model achieves a performance of 99.2
with both accuracy and F1 measure. Fig. 3 shows the accuracy
and loss in training data of it.

And the confusion matrix of the fine-tune EfficientNetB5
model is shown in Fig. 4.

C. Experiment 2: Compare the Results with Some other Deep
Learning Models and State-of-the-Art

In Experiment 2, to have a basis for evaluating the effec-
tiveness of the proposed approach, we also compare the results
of the proposed model (fine-tuned EfficientNetBS5 model with
highest accuracy in Experiment 1) with the state-of-the-arts.
The results are shown in the Table III.

From the results in Table II and Table III, we can see that
our approach is quite simple but achieves high effectiveness
in the applied classification problem. With a large amount of
image data (87,867 images) combined with augmented layer,
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Fig. 4. Confusion matrix of fine-tuned efficientNetBS model.

this study demonstrates superiority over most other models.
However, in some cases, it is not as effective as [22] and [23].

VI. CONCLUSION

The problem of plant disease classification based on images
plays a significant role in real-life scenarios, particularly in
contributing to addressing issues related to the quality and
quantity of agricultural produce. The results of research on leaf
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TABLE III. COMPARISON WITH STATE-OF-THE-ARTS

Refs Dataset No. Classes | No. Images | Accuracy
9] tomato plantvillage 5 16,012 0.971 - 0.995
[22] Plantvillage 11 32,535 0.9992
[10] plant village 19 75 0.9718
[11] plant village tomato leaf 10 14500 0.981
[12] plant village 30 53200 0.9843
[16] plantvillage 38 163,000 0.9014
[13] tomato leaf disease 7 735 0.96735
[17] Plantvillage 7 11,165 0.9571
[18] Plantvillage 14 3,000 0.98

[23] Plantvillage 14 54,305 0.9922
[24] Plantvillage 6 6,594 0.9635
[14] tomato leaf disease 8 10000 0.926
[15] plantvillage 38 54,303 0.984
[25] Plantvillage 5 11,123 0.95

[26] Plantvillage 10 14,529 0.9541
[27] Cassava disease leaf 5 22,031 0.9668
Ours | Plant Disease 38 87,867 0.992

disease classification also aid in more accurate identification
of various diseases affecting plants. In the realm of plant
disease classification, numerous studies have explored various
methodologies, including classical machine learning models,

deep

learning models, transfer learning, and fine-tuning tech-

niques. However, the results have not yet been obtained really

high
set is
that,

such as: the number of plant disease leaves in the data
small or the accuracy achieved is not high. Because of
this study has proposed an approach through building

a CNN model that is relatively simple but helps bring about

high
plant

accuracy. The study tested on a data set of 38 classes of
disease leaves. The results are very satisfactory with the

accuracy and F1-Score of 99.2% and 99.22%, respectively.

In th

e future, we will build new models or combine from

many different models to further improve the accuracy of this

probl
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