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Abstract—Transformer models have achieved significant mile-
stones in the field of Artificial Intelligence in recent years,
primarily focusing on text processing and natural language
processing. However, the application of these models in the
domain of image processing, particularly on aerial images data,
is actively research. This study concentrates on the experimental
evaluation of Transformer-based models such as DETR, DAB-
DETR, and DINO on the challenging Visdrone dataset, which is
also essential for aerial image data processing. The experimental
results indicate that Transformer-based models exhibit substan-
tial potential, especially in object detection on aerial image data.
Nevertheless, their application is not without challenges, including
low resolution, dense object occurrences, and environmental
noise. This work provides an initial glimpse into both the capa-
bilities and limitations of Transformer-based approaches within
this domain, with the aim of stimulating further development
and optimization for practical applications, including traffic
monitoring, environmental protection, and various other domains.
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I. INTRODUCTION

One of the foundational tasks in the computer vision field is
untangling the Object Detection problem. The purpose of this
task is to predict the location and classify various objects in an
image, thereby fostering an enhanced understanding of visual
content. This serves as a critical cornerstone for numerous
computer vision applications and various practical technol-
ogy domains, including healthcare, security, transportation,
education, etc. In recent years, the emergence of unmanned
aerial vehicles (UAVs, drones, and flycams) has resulted in
a surge of aerial data, presenting abundance of advanta-
geous opportunities that conventional sources cannot provide,
such as diverse perspectives and panoramic views (Fig. 1).
Successfully tackling this task holds significant potential for
enhancing and broadening intelligent applications like security
monitoring or smart transportation. Hence, object recognition
in aerial image data is a subject of paramount importance and
a vigorously researched area. However, this task presents a
myriad of challenges, including but not limited to small object
dimensions, high object densities, and low image resolutions
[1], [2].

Research on object detection in recent years can be cate-
gorized into three major divisions: two-stage methods, known
for their high accuracy, with Faster R-CNN [3] serving as a
representative example; one-stage methods, with YOLO [4]
algorithm as a prominent representative, known for its fast
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inference time; and end-to-end methods. End-to-end meth-
ods have gained popularity within the research community
in recent years due to their simplicity, efficiency, ease of
integration, utilization of global information, and time and cost
savings during setup and training phases (see Fig. 2). For these
reasons, conducting research on end-to-end methods for object
detection is essential to enhance performance and facilitate
their integration into real-world applications in the field of
computer vision [5].

An abundance of end-to-end methods have been proposed
to address object detection, including several Transformer-
based end-to-end models, such as DETR [6], DAB-DETR
[7], and DINO [8]. These methods are evaluated on general
objects across standard datasets, such as Pascal VOC [9]
and MS-COCO [10]. Each method has its own strengths and
weaknesses. In contrast, there is still a limitation in evaluation
of these methods in the aerial data domain. Exploring and
analyzing the advantages and disadvantages of end-to-end
methods promises to provide valuable information for future
research.

Therefore, this study focuses on surveying and analyzing
three representative end-to-end models, namely DETR [6],
DAB-DETR [7], and DINO [8]. Experiments are conducted on
standard aerial image datasets VisDrone2019 [11]. Challenges
in the aerial image data domain will be highlighted and
discussed, along with potential approaches to address the
difficulties encountered by these models.

The remaining part of the paper is organized as follows:
In Section II, we present related research. Three Transformer-
based end-to-end object detection methods, including DETR,
DAB-DETR, and DINO, will be described in Section III. The
detailed experimental results of the Transformer-based end-to-
end method on the VisDrone dataset are reported and discussed
in Section IV, along with provided evaluations. Finally, Section
V will conclude this paper and suggest directions for future
research.

II. RELATED WORKS

Object detection represents a foundational task within the
field of computer vision, requiring the precise classification
and localization of objects of interest within both images
and video content.This task holds an essential position in
a variety of practical applications, ranging from traditional
utilizations like image annotation to modern applications such
as autonomous vehicles, robots, surveillance systems, and
augmented reality [12]. Over the past decade, object detection
methods based on deep learning have garnered significant
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Fig. 1. Images acquired from ground-level vantage points (below) and those obtained from aerial perspectives (above) provide a comparison in terms of
perspective and scope. Aerial images (above) offer a wide field of view, encompassing diverse angles and densely distributed small objects. Ground-captured

images (below) showcase finer details and focus on more distinct objects.

attention due to the rapid advancements in deep learning
techniques [13]. However, there are still a substantial number of
challenges, including balancing accuracy and efficiency, han-
dling multi-scale objects, and developing lightweight models.

Traditional object detection methods have primarily relied
on convolutional neural networks (CNNs), including Faster R-
CNN [3], SSD [14], and YOLO [4]. Some YOLO-based meth-
ods, including PH-YOLOv5 [15], AVS-YOLO [16], YOLOv7-
Drone [17], and so on, have been specifically developed for
object detection in aerial images. Leveraging the considerable
success of Transformer in natural language processing (NLP),
researchers have been striving to apply Transformer architec-
tures to computer vision tasks. As a result, an extensive number
of vision models based on Transformer have emerged in recent
years, achieving comparable or even superior performance
compared to CNN-based variants.

Transformer architecture [18], which were initially pro-
posed as a self-attention mechanism for machine translation
tasks, have increasingly gained attention in object detection,
especially in the last three years. High-performance models
such as DETR [6], DAB-DETR [7], DINO [8], and many oth-
ers have been proposed. Currently, Transformer-based models
have become a novel approach to object detection, making
systematic analysis and evaluation of these models essential
for future research.

In recent years, unmanned aerial vehicles (UAVs) have been
steadily developing, becoming more affordable, capable of
longer flights, and highly maneuverable. Researchers leverage
these advantages to employ drones in supporting various daily
activities, including rapid delivery services, security surveil-
lance, traffic monitoring, border patrols, and even military use.
This has led to the generation of a vast number of images and
videos, posing new challenges for object detection. While an
abundance of object detection methods have been proposed
and have achieved high effectiveness on common datasets like

Pascal VOC [9] and MS-COCO [10], they often yield inferior
results when tested on non-standard datasets, particularly in the
aerial domain. This underscores the need for object detection
algorithms and models capable of handling diverse object
sizes, densities and viewing angles, as well as adapting to
noisy images and low-resolution data resulting from remote
sensing. Evaluating Transformer-based methods in the aerial
domain is important, as it can provide valuable insights into
the challenges of this unique data domain.

III. METHODOLOGY

A. DETR [6]

In two-stage object detection models, bounding boxes are
estimated based on proposals using Region of Interest (RoI),
while one-stage detector rely on anchors. Research has shown
that the model’s performance is significantly influenced by
how initial predictions are generated. In mid-2020, Nicolas
Carion and Francisco Massa along with other colleagues
introduced a completely new approach to the object detection
problem. The DETR model (Fig. 3) considers object detection
as a set-based matching problem, performs detection and clas-
sification in an end-to-end pipeline harnessing the Transformer
architecturea distinct paradigm when juxtaposed with one-stage
modelsfor comprehensive image processing. DETR also does
not generate RoIs or other intermediate steps (e.g., anchor
boxes) as in two-stage models.

Two key factors that contribute to DETR’s direct object
detection capability are a loss function called bipartite match-
ing loss, which ensures a unique match between predictions
and ground truth; a network architecture capable of predicting
sets of objects and modeling the relationships between them
(Fig. 3). DETR is renowned for its revolutionary architecture
that reduces the complexity of object detection while achieving
strong performance in various scenarios.
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Fig. 2. The framework of the three common object detection methods. Figure a) represents a one-stage object detection model. Figure b) represents a two-stage
object detection model. Figure c) represents an end-to-end object detection model.[6]

In contrast, DETR has several limitations, including slow
training convergence time compared to other object detection
models like Faster R-CNN and subpar performance when
detecting small-sized objects. The underlying reason of these
problems can be attributed to the absence of components in
the Transformer architecture while processing a set of object
features. Initially, the attention modules assign random weights
to all pixels in the object feature set. A considerable number
of epochs is necessary during the training process to allow
the attention weights to be learned, focusing on important and
sparse pixels [19].

B. DAB-DETR [7]

The DAB-DETR introduces a new query formulation,
which is applied within the DETR (Detection Transformer)
model, aiming to enhance the understanding of the role of
queries in DETR. This new query formulation directly utilizes
the coordinates of bounding boxes as queries during the
decoding process of the Transformer and dynamically updates
them across model layers. This approach has led to significant
improvements in the similarity between queries and bounding
box features, simultaneously solving the slow convergence
issue during DETR training. By using bounding box coor-
dinates as queries, the authors have been able to integrate
explicit location information into the querying process and
adjust attention maps’ positions based on the width and height
information of each bounding box.

This representation allows the deployment of queries in
DETR as a soft Region of Interest (ROI) aggregation and layer-
wise classification stacking process. Specifically, the DAB-
DETR method utilizes 4D anchor box coordinates (x, y, w,
h) as queries in DETR, as shown in Fig. 4, and updates
them across layers. With the information about the size of
each anchor box (w, h), Gaussian positional constraints can be
adapted to better fit objects of different scales. Additionally,
shaping queries as anchor boxes allows for using the center
position (x, y) of anchor boxes for feature extraction, increasing
the similarity between queries and features and eliminating
the slow convergence issue during training. This provides a
simpler implementation and a deeper understanding of the role
of queries in DETR.

C. DINO [8]

Research directions stemming from DETR are increasingly
receiving attention and continuously evolving. The weaknesses
of DETR have been addressed and improved continuously.
However, most of the improvements have been focused on
individual modules and have not resulted in a significant
breakthrough. DINO synthesizes prior advancements and in-
troduces superior methods, which have led to a significant leap
forward for end-to-end approaches. DINO is a model similar to
DETR, with an end-to-end architecture comprising a backbone,
a multi-layer Transformer encoder, a multi-layer Transformer
decoder, and multiple prediction heads. The overall pipeline is

www.ijacsa.thesai.org 1074 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 10, 2023

Fig. 3. The architecture of DETR consists of three main components: a CNN network serving as the backbone to extract image features, a Transformer
encoder-decoder architecture, and a feed-forward network (FFN) to generate the final predictions [6].

Fig. 4. DAB-DETR directly uses dynamically updated anchor boxes to
provide both a reference query point (x, y) and a reference anchor size (w,

h) to improve the cross-attention computation [7].

depicted in Fig. 5.

In this approach, multi-level features are extracted from
input images using backbones like ResNet or Swin Trans-
former. These features, along with positional embeddings, are
then processed through a Transformer encoder. A unique query
selection strategy is introduced to initialize anchors as position
queries for the decoder, while content queries are left for
learning. The model utilizes these initialized anchors and learn-
able content-based queries in conjunction with a deformable
attention mechanism to merge features from encoder outputs
and update queries at each layer and stage. The ultimate output
is generated from adjusted anchor boxes, and classification
results are predicted using fine-tuned content features.

Just like DN-DETR, this model incorporates a denoising
branch (DN) to carry out noise reduction during training. Be-
yond the conventional DN technique, a novel noise-contrastive
reduction training method is introduced, taking into account
challenging negative samples. To maximize the utilization of

information from the modified boxes in later stages, which aids
in optimizing neighboring stage parameters, a unique "look
forward twice" technique is introduced to facilitate the gradient
propagation between adjacent layers.

IV. RESULTS AND DISCUSSION

A. Dataset

In this work, the VisDrone-DET (object detection in im-
ages) dataset [11] is utilized. This dataset comprises images
collected through drones in various real-world scenarios, using
different types of drones, across multiple locations (14 cities
in China spanning thousands of kilometers), and under various
weather and lighting conditions. VisDrone-DET contains a to-
tal of 8,629 images, with 6,471 for training, 1,610 for test-dev,
and 548 for validation (Table I). The dataset also includes over
350,000 bounding boxes for labeled objects across 12 classes:
ignored regions, pedestrian, people, bicycle, car, van, truck,
tricycle, awning-tricycle, bus, motor, and others. Excluding the
2 classes, ignored regions and others, the study delves into the
remaining 10 object classes. Some images of the dataset are
shown in the Fig. 6

B. Experimental Configuration

Experiments were carried out on Detrex Toolbox [20],
Ubuntu 20.04.1 LTS operating system (Linux 5.8.0-53-generic
x86-64), Python version 3.8.17, CUDA 11.3, PyTorch 2.0.1,
and 2 NVIDIA GeForce RTX 2080 Ti GPUs. Pretrained
models are employed for both the training and evaluation
processes of three methods: DETR, DAB-DETR, and DINO,
all utilizing the R50 backbone. The Average Precision (AP)
metric introduced in MS-COCO [10] is used in the object
detection process.

C. Discussion

After training the DETR model with a ResNet-50 back-
bone, the best mAP result obtained was 7.64%. This data
reveals that DETR struggles with objects of small or very
small sizes. Table II has been presented, showcasing the AP
results for each class of interest. Upon analysis, the classes
bus (19.29%) and car (21.70%) achieved the highest scores.
Overall, individual class scores remain limited, displaying
significant variation. In comparison to other models in this
study, DETR’s performance on the VisDrone dataset remains
notably low.
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Fig. 5. Illustration of the DINO framework. The main improvements mainly focus on the Transformer encoder and Transformer decoder. The top-K encoder
features in the last layer are selected to initialize query positions for the Transformer decoder, while content queries are retained as learnable parameters. The

decoder also includes a DeNoising Contrastive component with both positive and negative samples [8].

Fig. 6. Some sample images from the VisDrone dataset [11].

TABLE I. STATISTICAL INFORMATION ABOUT THE VISDRONE2019 DATASET

Class/
Subset Ignore Pedestrian People Bicycle Car Van Truck Tricycle Awning-tricycle Bus Motor Others

Train 8,813 79,337 27,059 10,480 144,867 24,956 12,875 4,812 3,246 5,926 29,647 1,532
Validation 1,378 8,844 5,125 1,287 14,064 1,975 750 1,045 532 251 4,886 32
Test-dev 2,180 21,006 6,376 1,302 28,074 5,771 2,659 530 599 2,940 5,845 265

Total 12,371 109,187 38,560 13,069 187,005 32,702 16,284 6,387 4,377 9,117 40,378 1,829

Upon examining the AP scores for each class in DAB-
DETR, it is evident that the classes car and bus attained the
highest scores at 36.40 and 34.86 AP points, respectively.
Interestingly, the car class has the highest number of labels
in the training dataset, with 144,867 labels, whereas the bus
class has significantly fewer labels, specifically 5,926 labels.
However, the AP score for the bus class is nearly on par with
that of the car class.

Two other classes, van and truck, also achieved relatively
good AP scores, with 22.31 and 20.81 AP points, respectively.
The remaining classes, including motor, bicycle, tricycle,
awning-tricycle, people and pedestrian, all had AP scores less
than half of those for the car, bus, van, and truck classes.

Bicycle and people had the lowest AP scores, with only 5.36
and 4.35, respectively.

According to the results presented in Table II, a prominent
observation arises, demonstrating DINO’s distinction as the
top-performing object detector, boasting an mAP score of
24.83%. This achievement can be partly attributed to DINO’s
notable performance in discerning object categories charac-
terized by resemblances, for instance, pedestrian and people,
with respective scores of 15.60 and 9.38, as well as tricycle and
awning-tricycle, exhibiting scores of 17.25 and 16.76, which
appear relatively subdued compared to other object classes.
However, it is worth noting that DINO still exhibits relatively
weaker performance when compared to other popular methods,
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TABLE II. THE EVALUATION RESULTS OF THE DETR, DAB-DETR, AND DINO METHODS ON THE VISDRONE DATASET USING THE AP METRIC

Class /
Method Pedestrian People Bicycle Car Van Truck Tricycle Awning-tricycle Bus Motor mAP (%)

DETR 2.41 1.23 1.01 21.70 10.13 8.92 2.71 1.32 19.29 2.57 7.64
DAB-DETR 7.88 4.35 5.36 36.40 22.31 20.81 10.01 7.04 34.86 9.26 16.56

DINO 15.60 9.38 9.98 47.71 31.14 30.56 17.25 16.76 45.05 17.57 24.83

Fig. 7. Visualizing the results of the three object detection methods in challenging scenarios with occlusion and truncation.

such as YOLOv4 and YOLOv5 [1].

When using three models namely DETR, DAB-DETR, and
DINO for inference on challenging images from the VisDrone
dataset, each model yielded different results. Specifically, in
Fig. 7, which shows a scenario with multiple small-sized,
densely packed, and heavily occluded cars, the DETR model
exhibited issues with multiple occlusion bounding boxes, im-
precise positioning and sizing. On the other hand, the DAB-
DETR and DINO models showed fewer instances of occlusion
bounding boxes compared to DETR. While some objects were
only detected when using a specific model, however, all three
models failed to detect a partially obscured car in the distant
corner.

Fig. 8 is captured in a more challenging scenario charac-
terized by low lighting conditions, blurred and out-of-focus
elements, and a higher density of both smaller and larger
objects. The DETR model, while still experiencing bounding
box overlap, managed to detect more objects in this context.
Both DAB-DETR and DINO yielded relatively similar results,

particularly in detecting small pedestrian objects. DAB-DETR
outperformed the other two models by detecting a bus object
in the center of the image, which remained undetected by
the other two methods. Due to the significant number of
missed object detections, all three models have not yet achieved
satisfactory results when confronted with blurred images, small
objects, and high object density.

In Fig. 9, where the object density is not too high but the
scene is considerably darker, causing objects to appear more
blurred, the DETR model managed to detect most objects in
the image, although a few objects were mislabeled, and there
was an instance of bounding box overlap. DAB-DETR and
DINO, on the other hand, detected fewer objects but provided
more accurate results.

From the three examples above, it is evident that the DETR
model excels in detecting more objects when images are dark
and blurred. However, it faces challenges with a significant
number of overlapping bounding boxes, and its accuracy in
terms of bounding box size and position is not very high.
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Fig. 8. Visualizing the results of the three methods for dark, blurry, and densely populated image scenarios.

This often results in mislabeling of objects. Conversely, the
DAB-DETR and DINO models exhibit higher accuracy and
stability. However, they are less effective when operating on
dark, blurred, or fuzzy images.

V. CONCLUSION

To offer a fresh perspective on the task of object detection
in aerial image domains, we conducted experiments using
three novel end-to-end object detection methods based on the
Transformer architecture. These methods include DETR, DAB-
DETR, and DINO, and they were evaluated on the well-known
VisdroneDET2019 dataset. When using mAP as the evaluation
metric, we observed that these end-to-end Transformer-based
models achieved promising performance. While DETR was
a pioneering method in tackling end-to-end object detection,
it achieved a modest mAP score of 7.64. In contrast, DAB-
DETR achieved a higher mAP score of 16.56 by employing
the Dynamic Anchor Boxes technique. Specifically, the model
achieving the highest mAP score among the three experimental
methods is DINO, with an AP of 24.83. This is attributed
to the application of several advanced techniques compared
to DETR and DAB-DETR, such as Contrastive denoising
training, Mixed query selection, and “Look forward twice".
This is a stable and promising result for the object detection
task using the end-to-end Transformer-based approach. This
paper represents a crucial milestone for us to undertake more
effective improvements in future research.
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