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Abstract—The advances in genome sequencing and metabolic
engineering have allowed the reengineering of the cellular func-
tion of an organism. Furthermore, given the abundance of omics
data, data collection has increased considerably, thus shifting
the perspective of molecular biology. Therefore, researchers
have recently used artificial intelligence and machine learning
tools to simulate and improve the reconstruction and analysis
by identifying meaningful features from the large multi-omics
dataset. This review paper summarizes research on the hybrid
of constraint-based models and machine learning algorithms in
optimizing valuable metabolites. The research articles published
between 2020 and 2023 on machine learning and constraint-
based modeling have been collected, synthesized, and analyzed.
The articles are obtained from the Web of Science and Scopus
databases using the keywords: “Machine learning”, “flux balance
analysis”, and “metabolic engineering”. At the end of the search,
this review contained 13 records. This review paper aims to
provide current trends and approaches in in silico metabolic
engineering while providing research directions by highlighting
the research gaps. In addition, we have discussed the methodology
for integrating machine learning and constraint-based modeling
approaches.
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I. INTRODUCTION

Microorganisms have been used in industrial sectors such
as food processing, chemical manufacturing, pharmaceuticals,
fermentation, and others. Advances in genome sequencing
have resulted in several innovations that allow researchers
to gain in-depth knowledge and information about an organ-
ism. One of these advancements is metabolic engineering,
which reengineers the cellular function of an organism. In
the 1990s, metabolic engineering was introduced to describe
recombinant DNA technology for optimizing microbial activity
[1]. Metabolic engineering aims to optimize the synthesis
of desired metabolites by directing the metabolic flow and
the fluxes toward the desired metabolites. The designs are
categorized into two types: [1] targeting metabolic network
components, such as gene/reaction knockout/knock-in, and [2]

enhancing the metabolic network by altering it using network
reconstruction tools or incorporating new non-native pathways
into the host.

Over the previous few decades, there has been a noticeable
breakthrough, such as incorporating adenosylcobinamide phos-
phate biosynthesis from Rhadobacter capsulatus into the E.coli
strain, which improves the vitamin B12 to 307 µg/g [2]. In an-
other case, the yeast was engineered to improve the production
of rubusoside and rebaudiosides, leading to 1368.6 mg/L and
132.7 mg/L, respectively [3]. Although metabolic pathway
optimization technologies have shown promise, an incomplete
understanding of the connection between target cell pheno-
type and genotype impedes their further development. This
results in the prevalent utilization of conventional trial-and-
error methodologies and indirectly remains tedious, costly, and
time-consuming.

Therefore, constraint-based modeling (CBM) approaches
have been used to analyze organisms by providing significant
phenotypic knowledge based on genotypic perturbations. CBM
approaches, which include Flux Balance Analysis (FBA) and
its variants (Minimization of Metabolic Adjustment, MoMA;
Regulatory on/off minimization, ROOM; and Flux Variability
Analysis, FVA), are used to reveal metabolic phenotypes by
analyzing the optimality of an organism [4], [5]. However, a
significant challenge in CBM is that the desired flux is not
limited to a single solution due to biological network redun-
dancy and complex genome-scale metabolic model (GSMM),
thus permitting alternate optimum solutions. Furthermore, due
to the intricacy and interdependence of components in the
metabolic network, selecting appropriate and optimal reac-
tions/genes for knockout is difficult, laborious, and time-
consuming [6]. Hence, previous research has combined meta-
heuristic optimization algorithms such as genetic algorithm
(GA), differential search algorithms (DSA), flower pollination
algorithm (FA), and others [7], [8], [9], [10].

With the recent advancement of high-throughput technol-
ogy and the overwhelming amount of omics data, data collec-
tion has increased considerably, thus shifting the perspective
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on molecular biology [11]. Although big data in biology
enables data-driven science to comprehend complex biological
systems and events, interpreting data is still complicated.
Therefore, machine learning (ML) has been applied to deal
with biological omics data for various applications such as
prediction, classification, and discovery. The involvement of
ML in the data shows a great potential to reveal hidden and
detailed information in the data.

It has proven successful in diabetes disease prediction,
optical character recognition, face identification, and others
[12], [13], [14], [15]. ML is a set of algorithms to improve pre-
diction accuracy by learning and analyzing the patterns from
large experimental datasets. Recently, ML has been applied to
increase the accuracy of the genotype-phenotype relationship
by analyzing the integrated metabolic networks with regulatory
or signaling networks. Furthermore, ML requires fewer pa-
rameters than other statistical or computation approaches, thus
making them useful for various tasks, including predicting the
impact of genetic perturbations, reconstructing phylogenetic
trees, and others [16], [17].

This paper aims to review how ML techniques are applied
in metabolic engineering, specifically to optimize the produc-
tion of desired metabolites. The paper is organized as follows:
Section II introduces the definition of metabolic engineering.
Section III provides a brief on constraint-based modeling.
Section IV discusses machine learning in metabolic engi-
neering. Then, applications of machine learning in metabolic
engineering have been described in Section V. After that results
and discussion are provided in Section VI. In the last, the
conclusion is given in Section VII.

II. METABOLIC ENGINEERING

Each component in biological systems plays a vital role in
biological processes and interacts with each other. Therefore,
it is crucial to analyze the systems as a whole. The organism’s
function can be divided into three major biochemical pathways:
gene regulatory, signal transduction, and metabolic networks.
Gene regulatory involves a set of genes, proteins, and their
regulatory mechanisms that determine the expression of the
gene. Signal transduction networks communicate between and
within cells by mediating, detecting, amplifying, and integrat-
ing various external and internal stimuli to govern and coor-
dinate cellular activities. Meanwhile, the metabolic network is
a series of biochemical reactions involving the transformation
and modification of substrates into different products in which
the enzymes act as catalysis agents. The metabolic network is
essential in assessing a cell’s biochemical and physiological
properties. This research is mainly concerned with metabolic
networks.

Advancements in genome sequencing have brought about
many developments that allow biological researchers to have
more profound knowledge and information about an organism.
One of the developments is the establishment of metabolic
engineering (ME), which allows the researchers to probe in
detail the organizations of an organism, including the reactions,
pathways, metabolites, and genes, and exploit the organisms
for strain optimization. Metabolic engineering aims to optimize
the metabolism of organisms by exploiting and manipulating
their metabolic capabilities through modeling and, thus, gen-
erates economically and industrially viable organisms through

Fig. 1. Approaches in metabolic engineering.

optimization and predictive tools. In order to achieve this
objective, it is necessary to adapt current metabolic engineering
approaches by incorporating automated simulation techniques
instead of relying on previous in vivo or in vitro investigations.

In order to exploit and manipulate the metabolic capa-
bilities of an organism, the metabolic pathways within the
cell need to be modeled. A model is a simplified system
representation that allows the user to understand, predict, and
control the system [18]. An organism can be modeled based on
a dynamic or static approach. In ME, the metabolism of the
target organism was represented in the mathematical model.
Thus, the network’s precise respective pathway or reactions
that need to be manipulated and optimized can be identified.
Various computational modeling approaches and algorithms
have been developed and applied to aid the researchers [19].
Different approaches have been developed depending on the
representations, as shown in Fig. 1.

The approaches in metabolic engineering can be divided
into two, which are the dynamic approach and the static ap-
proach. Each approach varies in terms of metabolism represen-
tation, whereby the dynamic approach uses kinetic modelling
and static approach uses a stoichiometric matrix to represent
the metabolic network [20]. Furthermore, the difference be-
tween these two approaches is the model used. The dynamic
approach uses a kinetic model, and the static approach uses
a stoichiometric model or a metabolic network. Both of these
models consist of different information and representations.
The dynamic approach describes the changes in metabolite
concentrations over time, while the static approach does not
[21]. Table I defines the difference between the kinetic and the
stoichiometric models.

In stoichiometric models, the biochemical reactions in the
metabolic network are represented as a set of stoichiometric
equations, whereby the elements of different metabolites in the
metabolic network are denoted as stoichiometric coefficients
in the stoichiometric matrix. Consequently, the intracellular
metabolic fluxes can be determined at the steady state using the
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TABLE I. DIFFERENCES BETWEEN THE KINETIC AND STOICHIOMETRIC MODELS

Characteristics Kinetic model Stoichiometric model

Definition Describes changes in metabolite concen-
trations over time.

Assumes the system is at steady-state con-
ditions, where the concentrations of the
metabolites are constant over time.

What information resides
in the model?

1) Metabolites concentrations
2) Kinetic parameters

Stoichiometric information of all specified
reactions and genes

How do they represent the
model? Ordinary differential equations (ODE) Linear equation

Size of the metabolic
network for applicability Small-scale metabolic network Large-scale metabolic network

How do they work? It uses kinetic rate laws obtained from
biochemical and mechanistic information.

Imposes constraints and objective func-
tions

Drawback
1) Requires many parameters
2) Sometimes leads to uncertainty

in the model prediction
3) Not fully utilized in ME

1) Lead to underdetermine system;
the number of equations is larger
than the number of variables

2) Generate many possible solu-
tions

3) Solutions might not be unique

Time-consuming High Low

Computational extensive High Low

Accuracy High Low

mass balance constraints. However, stoichiometric models are
often underdetermined and eventually lead to many possible
non-unique solutions. Thus, the models require additional con-
straints to narrow the range of possible phenotypic solutions.
These constraints may include physicochemical, biological,
mass conservation, and thermodynamics. Stoichiometric mod-
els have been used to enumerate the fluxes in a metabolic
network by employing an objective function. The main ap-
plication of stoichiometric models is on metabolic networks,
specifically in metabolic engineering strategies [7], [8], [22],
[23].

III. CONSTRAINT-BASED MODELING

The constraint-based method (CBM) is an approach to
investigating the optimality of an organism by predicting and
describing the metabolic phenotypes [24]. In CBM, constraints
are applied to the systems, thus creating feasible flux distri-
bution space. Different types of constraints can be categorized
into physicochemical, topo-biological, environmental, and reg-
ulatory [25], [26]. These constraints can be expressed as equal-
ity or inequality constraints, as shown below, and have been
reviewed by [26]. The equation that describes the incoming
and outgoing fluxes accumulation for each metabolite in the
metabolic network is described in 1.

dx
dt

= S × v (1)

where S is the stoichiometric matrix of size m× n (m is the
number of metabolites and n is the number of reactions), X
is the m concentration vector, and v is the n flux vector. Each
metabolite’s production rate must equal the consumption rate

Fig. 2. Unconstrained (a) and Constrained (b) Solution space.

at the steady state. Therefore, the above equation is simplified
to Eq. (2).

S × v = 0 (2)

The imposition of constraints will further reduce the num-
ber of allowable flux distributions and constraints taken upon
the form in Eq. (3).

αi ≤ vi ≤ βi (3)

where i is the length of m reactions, αi and βi are the lower
and upper limits for the i reaction, respectively. The values
for αi and βi are determined based on reactions’ reversibility
or irreversibility and measured uptake rates. These constraints
may restrict specific phenotypes from existing in the solution
space. Fig. 2 illustrates the differences between unconstrained
and constrained solution space of feasible steady-state flux
distributions.
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As shown in Fig. 2, unconstrained steady-state solution
space is underdetermined due to the ratio of reactions typically
exceeding the number of metabolites. Eq. (1) provides a hyper-
plane that defines the allowable flux distributions. Considering
different constraints, the solution space is limited to specific
desired phenotypes. Therefore, CBM aims to describe and
predict the desired phenotypes of an organism by describing
the metabolic networks of an organism using the stoichiometric
framework and a series of constraints. Despite the imposition
of constraints and steady-state assumption, the solutions gener-
ated are not limited to a single solution. Instead, the solutions
generated are limited to the desired phenotypes.

In order to solve the underdetermined system, the problem
of measuring internal fluxes is solved using an optimization
problem [28]. Thus, an objective function is defined, as illus-
trated in Fig. 3. Generally, an objective function is a biological
assumption that an organism can be achieved. Then, linear
optimization is used to find the solution that optimizes the
desired objective function. Examples of objective functions
include minimizing ATP production and nutrient uptake and
maximizing growth rate. The most common objective function
is growth rate since organisms maximize their growth after
evolutionary pressures [29]. Referring to the above equations,
Eq. 1 to 3, the objective function for maximizing the growth
rate is mathematically represented by Eq. 4.

maxZ = vbiomass (4)

Generally, there are four CBM approaches - flux balance
analysis (FBA), flux variability analysis (FVA), minimization
of metabolic adjustment (MoMA), and regulatory on/off min-
imization (ROOM). Table II portrays the characteristics of the
four CBM approaches and the applications that have been
carried out.

As shown in Table II, FBA is a classical CBM method and
has become one of the most common approaches researchers
use [7], [8], [25], [30], [31]. Despite FBA’s non-uniqueness due
to the exclusion of regulatory and kinetic parameters, FBA ex-
cels in handling vast data within metabolic networks compared
to other approaches, such as predicting higher steady states for

biological objectives such as growth rate and production rate.
Moreover, despite the incompleteness of metabolic network
models, FBA can still determine the organism’s steady-state
fluxes.

FVA employs linear programming to identify multiple
biologically optimal solutions with the same objective value.
These solutions are non-unique due to the metabolic net-
work’s ability to achieve the same objective value through
different equivalent pathways, often represented by recessive
phenotypes. Unlike FBA, which examines the distribution
of flux within pathways, FVA focuses on determining the
feasible ranges of minimum and maximum fluxes for each
reaction. Meanwhile, MoMA employs quadratic programming
to minimize the Euclidean distance on flux space between the
wild-type and mutant, while ROOM predicts the post-genetic
perturbation steady state of metabolic networks. In contrast to
MoMA, ROOM identifies flux distributions that yield high-rate
solutions while minimizing flux deviations between wild-type
and mutant and preserving the linearity of fluxes based on
experimental measurements [10], [32]. Additionally, ROOM
can discover shorter alternative pathways for rerouting fluxes
after genetic perturbations, employing mixed integer linear
programming (MILP) to meet the same constraints as FBA.

IV. MACHINE LEARNING IN METABOLIC ENGINEERING

In silico metabolic engineering comprises computer sim-
ulations that predict and analyze an organism’s metabolic
network to improve the organism’s cellular activities [8].
The improvement involves manipulating metabolic, signal, or
regulatory networks. One approach to investigating the effects
of genetic changes on metabolite synthesis is in silico reaction
knockout modeling. The organism’s behavior can be predicted
through constraint-based modeling (CBM) methods by analyz-
ing the effects of phenotypic and genotypic perturbations on
the organisms.

High-throughput technologies such as gene sequencing,
protein purification/quantification, mass spectrometry, and oth-
ers have enabled a new era of biological information in which
the amount of biological data has significantly expanded over

Fig. 3. The conceptual basis of CBM [27].
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TABLE II. SUMMARY OF CONSTRAINT-BASED MODELING APPROACHES

Characteristics FBA FVA MoMA ROOM

Purpose Measure the optimal
flux value

Measure the ranges of
each flux

Compare the steady-
state fluxes between
mutant and wild-type

Minimize the num-
ber of significant flux
changes between mu-
tant and wild-type

Optimization model Linear programming Linear programming Quadratic
programming Mixed-integer LP

Able to predict the
lethality of genes? Yes No No Yes

Computational time Short Long Long Long

Size of model Large Large Small Large

Predicted solutions Multiple optimal solu-
tions

Assess the robustness
of flux distribution

Transient metabolic
states

The predicted solu-
tions are nearer to the
experimental data

time. The various omics biological datasets, ranging from
genomic to metabolomic and fluxomic, can provide direct
insight into an organism’s phenotype. An alternative approach
is therefore needed to analyze and process large amounts
of information quickly. Machine Learning (ML) has been
increasingly used in metabolic engineering to replace human
metabolic engineers [33], [34], [35]. Given its success in
pattern recognition, model prediction, and others [36], [37],
[38], [39], [40].

Machine learning (ML) is used to generate trial-and-error
inferences and improve the predictions from data without
a predefined set of rules. ML has been massively used in
data analysis and typically allows applications to develop
intelligently by understanding patterns in big data [1]. There
are two types of ML based on data: labeled and unlabeled
(Fig. 4). For the labeled data, algorithms learn from labeled
training data to help predict the outcomes of unlabeled data.
Meanwhile, unlabeled data use unsupervised learning to seek
patterns and clusters in an unlabeled dataset. Examples of
supervised learning algorithms include decision trees [41],
support vector machines [42], and regression [43], whereas
Principal Component Analysis (PCA) [44], [45] and K-means
clustering [46] are unsupervised learning algorithms. Another
ML type is reinforcement learning, in which the algorithm
interacts with experience and learns to maximize the desired
goal using experience, data, and trial-and-error interactions.
Reinforcement learning does not need labeled input/output but
focuses on balancing exploration and exploitation.

ML has recently played a significant role in biological
research [16], [39]. These algorithms focus on model perfor-
mance by training highly heterogeneous data. It is undoubtedly
an opportunity to integrate ML algorithms with CBM models
in various biological data sets such as gene expression, metabo-
lites, phenotypes, and others [4], [47]. The application of ML
in metabolic engineering will provide several benefits. First,
ML can be used in various in silico metabolic engineering
stages, from analyzing the metabolic flux data to designing
optimal metabolic pathways. Second, the full integration of
omics data, including genomic, transcriptomic, proteomic, and

Fig. 4. Machine learning categories.

metabolomic data, is crucial for predicting the metabolic path-
way as it provides valuable insight into biological networks
[48]. Furthermore, via gene expression analysis using ML, the
key regulators of a metabolic pathway can be identified based
on the genetic perturbations on cellular metabolism.

Therefore, by merging machine learning with other com-
putational tools in metabolic engineering, researchers may
optimize cellular metabolism for enhanced production of bio-
fuels, chemicals, and other essential molecules in a quick,
cost-effective, and sustainable way. As shown in Fig. 5, the
reactions and metabolites from GSMM are extracted and
represented in a stoichiometric matrix. These datasets comprise
instances (reactions and metabolites involved in the specific
pathway). The coefficient in the stoichiometric matrix repre-
sents the knockout (coefficient one) and non-knockout reac-
tions (coefficient zero) involved in that pathway. In this case,
different combinations of knockout reactions are obtained. The
training data, then, is used to train the chosen ML algorithms
and predict the response of the test dataset. The responses
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Fig. 5. Overview of the standard workflow of ML in ME.

Fig. 6. Integration of machine learning and constraint-based modeling. (a) Refers to the ML as input to CBM, while (b) is CBM as input to ML).

include growth rate, product rate of desired metabolites, and
different mutants with different combinations of knockout
reactions.

According to [24], [49], the merging of ML and CBM
can occur in three approaches. The first approach involves the
inclusion of ML after CBM generates fluxomic data by predict-
ing the growth conditions, cellular ML productivity, nutrient
consumption, gene essentiality, or biomass concentration. The
second approach uses a multi-omics data simplification process
before entering the CBM process. The results of fluxomic data
from CBM are then combined with the initial multi-omics data
for the prediction process using a specific ML algorithm. The
last approach uses ML on multi-omics data to get fluxomic
data. This paper deduces that merging CBM with ML can
occur in two ways, namely, ML as input to the CBM and

CBM as input to the ML.

In the prior case, machine learning methods can improve
metabolic models’ accuracy and predictive power by pre-
dicting and refining metabolic models. The metabolic fluxes
from omics data predicted using ML algorithms are input
constraints for the metabolic model. Furthermore, ML can
assist in identifying essential features (genes or reactions)
for improving specific metabolite production. Considering that
the metabolic model is complex, identifying crucial genes or
reactions is essential while maintaining the viability of a cell.
Meanwhile, in the post case, CBM can provide features, labels,
and model selection to machine learning. Constraint-based
approaches have been used to model the GSMM for simulating
the phenotypic behavior after genotype perturbations. With the
inclusion of machine learning methods, the selected features
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from CBM can be used to train ML models for predicting the
pathway activity, thus optimizing the metabolic model. Fig. 6
illustrates the integration of machine learning and constraint-
based modeling approaches.

V. APPLICATION OF MACHINE LEARNING IN METABOLIC
ENGINEERING

An unprecedented amount of information has now been
used to seek biological mechanisms at the molecular level.
The recent advancement of high-throughput technologies has
significantly boosted data collecting and fundamentally altered
how people view molecular biology [50]. However, predicting
bioproduction titers from microbial hosts has been challenging
due to complicated interactions between regulatory networks,
signaling, and metabolic networks [50]. There are several ways
to carry out experiments concerning metabolic engineering.
Machine learning, which has undoubtedly led to significant
improvements in recent research and is expected to surge
shortly, is a critical tool for analyzing, understanding, and
exploiting omic data.

A novel approach for predicting yeast metabolome using
machine learning based on quantitative proteomic data of
kinase knockouts was presented by [51]. The results showed
that the ML algorithm accurately predicts the metabolome with
complex genetic modification. However, the study assumes
that protein expression levels are proportional to changes in
metabolic flux. Nevertheless, when post-transcriptional or post-
translational modifications occur, the protein expression levels
may differ and not proportionate to the changes in metabolic
flux. Additionally, the dataset used is relatively small. Thus,
expanding the dataset to include a broader range of genetic
perturbations and experimental conditions could improve the
generalizability of the ML models.

In another research, the integration of knowledge mining,
genome-scale modeling, and ML for predicting the bioproduc-
tion of Yarrowia lipolytica has been proposed [50]. The pro-
posed framework integrates different data, including genomics,
metabolomics, and literature, to construct a knowledge-based
and optimal GSMM. Then, ML algorithms are applied to
predict bioproduction yields based on gene expression data
and environmental conditions. They have successfully outper-
formed the traditional methods. However, the complexity of
GSMM and lack of comprehensive knowledge may hinder
accurate predictions. Thus, further development and validation
are crucial to enhance its applicability and reliability.

Furthermore, [52] have proposed multi-omics data to an-
alyze and characterize key molecular pathways and features
essential for yeast growth based on different environmental
conditions. The pipeline incorporates biological knowledge in
the machine learning model to improve predictions. The pro-
posed pipeline outperforms traditional ML methods and gives
insight into the underlying biological mechanisms regulating
cell growth. However, the pipeline has several limitations that
need to be addressed. For instance, the pipeline relies on the
quality and completeness of data sources, which may vary and
be limited across different organisms.

A machine learning framework to assess microbial facto-
ries’ performance was proposed by [1], which thos micro-
bial are microorganisms that can produce various valuable

compounds. Like [50], [52], the researchers proposed the
integration of different data, including genomics, transcrip-
tomics, metabolomics, and fermentation data. This integra-
tion framework is used to model the relationship between
genetic and environmental factors and the production of target
compounds. The proposed framework uses feature selection,
regression, and classification algorithms to predict yields,
identify genetic targets for strain engineering, and optimize
the conditions. Although the proposed framework successfully
demonstrated promising results, however, the framework relies
on the availability of data sources. Furthermore, the complexity
of metabolic networks and the lack of kinetic transcriptional
or genomics data may affect the accuracy of prediction and
strain engineering.

In addition, Tachibana and his colleagues prepared a study
on Green Fluorescent Protein (GFP) extracted from engineered
Escherichia coli. They conducted using Deep Neural Network
(DNN) [53]. Before being assessed by machine learning to
assign the GFP intensities into a reasonable range for analysis
with the DNN technique, the GFP intensities were scaled down
by five orders of magnitude. All machine learning methods
utilized data from the yeast extract for double-validation
calculations. The remaining data were divided into learning
and test datasets for random cross-validation. DNNs were
built using tanh activations and four hidden layers (200, 100,
50, and 20 units). The average Mean Squared Error (MSE),
determined from the rearranged matrices for each variable,
was used to measure representative importance in their study.
Their research discovered that DNN showed high coefficients
of determination and low MSE values.

Different ML algorithms, including random forest, support
vector machine, and neural networks have been evaluated by
[54], to assess their accuracy in predicting the phenotypic traits
of three organisms: yeast, rice, and wheat. The study also
investigates the impact of different feature selection methods
and data preprocessing techniques on predictive performance.
Based on the research, the authors found that combinations
of ML algorithms and feature selection methods can achieve
high accuracy in predicting phenotypic traits based on genetic
data. In another domain, elastic net logistic regression has
been proposed to determine the functional and structural brain
alterations in female schizophrenia patients [55]. The study
combines functional magnetic resonance imaging and diffusion
tensor imaging to identify brain regions associated with the
disease. The elastic net logistic regression selects relevant
features and builds a predictive model. The study found that
the model improves the accuracy of classifying the patients.

The developed framework or pipeline proposed by previous
researchers demonstrates that machine learning can achieve
high accuracy in predicting phenotypic traits based on geno-
typic perturbations. Moreover, multi-omics data integration has
allowed ML algorithms to improve the accuracy of strain en-
gineering in selecting the optimal genetic perturbations. How-
ever, there are some limitations and challenges that need to be
addressed. Firstly, transcriptomic and genetic data availability
is only limited to specific organisms. Thus, predicting and
simulating genetic perturbations for less researched organisms
is challenging. In addition, the complexity of metabolic net-
works, thus the complexity of integrated networks, may hinder
the predictive capabilities and strain engineering. Therefore,
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further development and validation, including biological vali-
dation, is needed to enhance ML’s interpretability, robustness,
and applicability in predicting phenotype changes.

Shimizu and Toya in 2021 experimented with evaluating
the cellular performances of 13C- metabolic flux analysis
using artificial gene deletion [56]. It is essential to understand
the physiology of the metabolism in practical bioprocesses
to evaluate the efficiency of the desired model. They stated
that the quantitative imaging of microbial cells for metabolic
engineering is enabled by metabolic flux analysis (MFA).
The nonlinear least squares approach is used to compute
metabolic fluxes. A mathematical model that includes carbon
atom transfers and molecular mass balancing is provided.
Based on the solution space, it is possible to calculate the best
trajectory for a given growth and output rate. For the growth
phase, the individual growth rate is kept at its highest level
and shifted to the critical value, which produces the highest
specific production rate.

A. Combination of Unsupervised and Supervised Techniques

Moreover, many articles have reviewed the recent advances
in model-assisted metabolic engineering, which aims to design
and optimize the metabolic pathways of organisms to improve
the production of desired metabolites [39], [57], [58]. Mainly,
the review articles discussed the use of ML to assist in pre-
dicting the effects of genetic perturbations for integrated multi-
omics data. Previously, metaheuristics optimization algorithms,
such as Genetic Algorithm (GA), Differential Search Algo-
rithm (DSA), flower pollination algorithm, Bee Algorithm,
Particle Swarm Optimization (PSO), and others, have been
used to improve the design of strain. The improved production
of desired metabolites has proved the success of metaheuristic
algorithms. However, with multi-omics data integration, the
strain design becomes more challenging. Thus, using ML
approaches is highly needed to enhance the accuracy of model
predictions.

B. Unsupervised Techniques

Unsupervised techniques identify patterns based on prede-
termined mathematical criteria (such as the number of clus-
ters or variance independence). Large-scale biological datasets
have been analyzed using both learning techniques, which have
also been combined with FBA. For the unsupervised technique,
Sahu et al. developed the “Split Lipids into Measurable Entities
reactions” (SLIMEr) approach to model the lipids in genome-
scale metabolic models in yeast [59]. SLIMEr later divides
lipid components into acyl chain distributions and lipid classes
using a mathematical framework, imposing limitations on both
[59]. Subsequently, Sahu and his colleagues also established a
framework to examine growth-related mechanisms of several
S. cerevisiae strains by combining FBA with Multimodal Arti-
ficial Neural Networks [59]. The study was to use mechanistic
knowledge to integrate data-driven ML techniques to over-
come their ”black-box” restriction in flux distributions. The
framework was evaluated using 1,484 strains of S. cerevisiae
with single gene knockouts. Growth rates were designated
as constraints in pFBA. The study shows that Multimodal
Artificial Neural Networks and FBA can train and predict
the individual gene expression data for analyzing the flux
distributions.

Jalili et al. (2021) performed cancer-specific metabolic
signatures using Random forest classification with PCA and
FBA [60]. For each cancer model, flux distributions were com-
puted using FBA. After that, using PCA and Random Forests
techniques, FBA-based characteristics were generated. PCA
generates the variation of flux distributions in cancer models
representing the response variables. Random Forests then
employed these response variables to categorize crucial fluxes
(which showed the impacted sub-cellular systems). Based on
their study, the authors discovered that the pentose phosphate
route, extracellular transport, mitochondrial transporters, fatty
acid production, and other metabolic characteristics are the
factors that distinguish between normal and abnormal cell
metabolisms for the cancer model.

Meanwhile, unsupervised ML mainly creates clusterings
or representations of the unlabeled dataset to reduce the
dimensional complexity of data. Principal Component Analysis
(PCA) and K-means clustering are examples of unsupervised
ML. In ME, unsupervised ML techniques can be implemented
to identify the appropriate and non-appropriate reactions in-
volved in producing desired metabolites. Moreover, unsuper-
vised clustering techniques have been used to distinguish
different cell types, such as healthy and non-healthy, cancer
and non-cancer markers, and stressed and non-stressed. Fig. 7
below illustrates the unsupervised methods in ME.

In another study, Barbosa and the team researched
the effects of production factors such as sugar, nitrogen
level, and fermentation temperature on wine quality in non-
Saccharomyces yeasts [61]. The Exploratory Data Analysis
(EDA) activity was enhanced by employing unsupervised
machine learning on the entire experimental data set. Latent
variable techniques, such as Principal Component Analysis,
were used to investigate the responses of multivariate struc-
ture. Using agglomerative hierarchical clustering (AHC), 18
responses of natural groups were found. Consequently, the
forward stepwise variable selection method is used to deter-
mine the input variables for the regression model. The study
successfully found direct patterns between different production
factors, signifying positive and negative correlations.

They stated that the correlation distance was used to
identify clusters or groups of functionally related fermentation
metabolites [61]. It was anticipated that the first principal
component for the cluster-specific PCA models would explain
the majority of the overall variability in the cluster due to
highly correlated variables generating clusters. Upon com-
pleting PCA, supervised ML was also applied. They used
a forward stepwise variable selection method to determine
which input variables (experimental factors and their higher-
order terms) should be included in the regression model. The
stepwise selection technique involved picking and incorporat-
ing components one at a time. When there are no variables
whose inclusion or exclusion from the model would result in
a change in the model’s explanatory power that is statistically
significant, the method finally ends.

For unsupervised ML, they found that clear patterns of
linked variables can be seen in the loading plots, such as those
that cluster together or lie in the other direction, signifying
positive and negative correlations, respectively, as in Fig.
8. This exploratory PCA analysis supports the necessity to
investigate the modular structure of the answers in more detail
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Fig. 7. Unsupervised ML in ME.

Fig. 8. Result using PCA. a) Scores plot, b) Loading plot [61].

and to identify the linked responses’ natural building blocks. In
order to uncover the natural blocks or clusters of variables, they
implemented an agglomerative hierarchical variable-clustering
approach (AHC). As a result, the variables are closer to
each other, thus reducing the agglomeration distances [61].
For supervised ML, the considerable changes seen in the
exploratory analysis section are confirmed by the modeling
results utilizing main effects, second-order interactions, and
quadratic terms, indicating the critical influence of the param-
eters on the fermentation process.

VI. RESULT AND DISCUSSION

The first activity of this review is collecting the references.
We first searched the Scopus and Web of Science databases
with the keywords “Machine learning”, “Flux balance anal-
ysis”, and “Metabolic engineering” to find relevant literature
in recent years. Then, we filtered for references related to the
integration between ML and CBM from the results obtained.

After searching the keywords “Machine learning”, “Flux

balance analysis”, and “Metabolic engineering”, 223 research
studies were extracted through automatic search from Scopus
and Web of Science databases. Of the majority of these 223
studies, 32 were duplicate studies and review papers and thus
were eliminated from the list. Based on the title, abstracts, and
keywords, the remaining 191 research studies were examined,
and 90 studies were excluded. Next, the remaining 101 studies
were further selected, in which papers published from 2020 to
2023 were selected and left with 13 studies.

Then, the selected relevant references are synthesized.
Table III illustrates the synthesis results of 13 relevant studies
in the sources. In the table, 17 machine learning approaches
are integrated into constraint-based modeling, namely, binary
classifier, random forest, PCA, SVM, KNN, Decision tree,
gradient tree boosting, DNN, CNN, t-SNE, ensemble learning,
kMeans, lasso, multiview neural network, regularized logistic
regression, ANN, and reinforcement learning. Out of those 13
studies, only two use the kinetic model, whereas most use
the stoichiometric model. Since the stoichiometric model does
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TABLE III. SUMMARY OF SELECTED RELEVANT STUDIES

ID Title Year Model CBM ML Purpose Strategy Ref.

S1 Prediction of gene essentiality using
machine learning and genome-scale
metabolic models

2022 S FBA Binary classi-
fier

Improves the identification
of the essential genes

1 [31]

S2 Identifying metabolic shifts in Crohn’s
disease using’ omics-driven contextual-
ized computational metabolic network
models

2023 S FBA Random for-
est

Identify biomarkers for
Crohn’s disease

1 [62]

S3 Genome-scale modeling of Chinese ham-
ster ovary cells by hybrid semi-parametric
flux balance analysis

2022 S FBA PCA Integrate parametric and
non-parametric constraints
for reducing the search
space and improve the pre-
diction of FBA

2 [29]

S4 Computational Framework for Machine-
Learning-Enabled C-13 Fluxomics

2022 S MFA SVM, KNN,
decision tree,
random
forest,
gradient
tree boosting,
DNN

Predict the flux ratio based
on solvability and feature
screening

2 [63]

S5 Machine learning-guided evaluation of ex-
traction and simulation methods for cancer
patient-specific metabolic models

2022 S FBA CNN, t-SNE Identify the biological fea-
tures based on cancer
patient-specific GEMs

1 [64]

S6 Integrated knowledge mining, genome-
scale modeling, and machine learning for
predicting Yarrowia lipolytica bioproduc-
tion

2021 S FBA Ensemble
learning

Reconstruct Yarrowia
lipolytica GSM to improve
organic acids’ productions.

2 [50]

S7 Integration of machine learning and
genome-scale metabolic modeling identi-
fies multi-omics biomarkers for radiation
resistance

2021 S FBA Ensemble
learning

Identify biomarkers that
are associated with radia-
tion resistance

1 [65]

S8 In silico Design for Systems-Based
Metabolic Engineering for the Bioconver-
sion of Valuable Compounds From Indus-
trial By-Products

2021 S FBA Random for-
est

Improve the production
of glycerol by integrating
transcriptomics data with
metabolic network

1 [39]

S9 A Hybrid Flux Balance Analysis and
Machine Learning Pipeline Elucidates
Metabolic Adaptation in Cyanobacteria

2020 S rFBA PCA,
kMeans,
Lasso

Identify the key cross-
omics features

1 [66]

S10 A mechanism-aware and multiomic
machine-learning pipeline characterizes
yeast cell growth

2020 S pFBA Multiview
neural
network

Improve the prediction of
phenotypic traits of inter-
est.

1 [52]

S11 A biochemically-interpretable machine
learning classifier for microbial GWAS

2020 S popFVA PCA,
regularized
logistic
regression

Estimate the functional ef-
fects of genetic-associated
alleles

1 [67]

S12 A Machine Learning Approach for Effi-
cient Selection of Enzyme Concentrations
and Its Application for Flux Optimization

2020 K FBA PCA, ANN Select the optimized en-
zyme concentration for op-
timal yield

1 [68]

S13 Strain design optimization using rein-
forcement learning

2022 K FBA Reinforcement
learning

Improve production of L-
tryptophan

1 [69]

Note : S represents the stoichiometric model; K represents the kinetic model; 1 represents CBM as input to ML; 2 represents ML as input to CBM.
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not require intracellular experimental parameters, which are
hardly known, stoichiometric models are more favorable for
biologists to exploit the detailed capabilities of cell metabolism
and [70] outperform kinetic model when the dataset used has
large networks [71]. Though kinetic models provide detailed
quantitative descriptions of the processes involved in the
systems, thus revealing a system’s actual dynamic biological
behavior, the kinetic model is only limited to the small-scale
and newly curated metabolic network [25].

Meanwhile, flux balance analysis (FBA) is the most widely
used model assessment method because FBA uses linear
programming that is easier to apply than MoMA and ROOM,

which use quadratic programming and mixed-integer linear
programming. Moreover, although the solutions provided by
FBA are non-unique as it does not consider regulatory and
signal data, the existing metabolic networks are still incomplete
[23]. Regardless of these imperfections, FBA can determine the
steady-state fluxes of organisms and predict the optimal long-
term evolved state of the cells. In contrast, MoMA and ROOM
predict the immediate initial outcome of genetic manipulations.
However, cells will evolve from a minimized flux distribution
state to an FBA solution [4]. In other words, genetic manipu-
lations will first lead to flux distribution predicted by MoMA
and ROOM, eventually converging to a solution predicted by
FBA.

TABLE IV. SUMMARY OF MODEL, ADVANTAGE, AND DISADVANTAGES OF MACHINE LEARNING BASED ON THE RELEVANT STUDIES

ID Dataset Result Disadvantage

S1 GEMs of
Escherichia coli

The proposed approach showed that will-type
FBA solutions contain enough information to
predict essentiality, without perturbation such as
reaction or gene knockout.

There is no a standar strategy on machine
learning utilized for essentiality prediction
generally.

S2

RISK cohort data,
gene expression data
for all mucosal ter-
minal ileal biopsies.

A framework that is a potential to identify path-
ways of clinical relevance in Crohn’s disease,
discover of novel diagnostic biomarkers, and
therapeutic targets.

There is the discrepancy in the generated
metabolic models of Crohn’s disease in
both RISK-derived tissue and enteroids.

S3
GEMs of Chinese
hamster ovary
(CHO) cells

The proposed hybrid FBA by involving the mech-
anistic and non-parametric constraints can effi-
ciently reduce the solution space and improve the
prediction result of FBA.

Need the experimental fluxes datasets with
the guaranteed high accuracy.

S4 13 C fluxomics
The proposed approach is reliable for fluxomics
method readily and applicable to high-throughput
metabolic phenotyping.

Computationally expensive especially in
the large-scale metabolic network.

S5 Cancer patient-
specific GEMs

The results show that tINIT and GIMME has the
high performance, but FBA and pFBA has poor
performance in cancer metabolism.

Computationally expensive especially in
the large GEMs.

S6 GEMs of Yarrowia
Lipolytica

This study succeed in integrating knowledge
mining, feature extraction, GEMs, and ML for
predicting chemical titers in Yarrowia lipolytica.

This model can not capture biosynthesis
bottlenecks, consequently, the predictabil-
ity for low-performance strains is not op-
timal.

S7 Transcriptomic and
genomic datasets

GEMs from patient tumors generated from tran-
scriptomic and genomic datasets. The proposed
approach, namely integrating ML and the gen-
erated GEMs, can identify prognostic metabolite
biomarkers and predict radiosensitivity for indi-
vidual patients.

Need to collect a larger datasets with the
guaranteed high quality.

S8

GEMs of
Escherichia coli
and transcriptomics
data

The proposed method, namely the combination
of transcriptome, GEMs, and machine learning
can improve the production rate of glycerol.

It does not involve other parameters that
influence metabolic processes, such as en-
zyme, transcriptional regulation, and sig-
naling.

S9

GEMs of
Synechococcus
sp. PCC 7002,
transcriptomics

The proposed approach, namely model-generated
flux data, are potential for predicting the growth
rates.

Depends on Important information such as
the specific metabolite uptake constraints
and the nutrient uptake rates that are dif-
ficult to obtain directly.

Continued on the next page
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TABLE IV. SUMMARY OF MODEL, ADVANTAGE, AND DISADVANTAGES OF MACHINE LEARNING BASED ON THE RELEVANT STUDIES–CONTINUED

ID Dataset Result Disadvantage

S10 Model of Saccha-
romyces cerevisiae

The proposed framework, namely, a multimodal
learning framework, is capable for undestanding
and manipulating complex phenotypes and in-
creasing the prediction accuracy.

It does not involve other parameters that
influence metabolic processes, such as en-
zyme, transcriptional regulation, and sig-
naling.

S11

Dataset of
drug-tested
Mycrobacterium
tuberculosis strains

The proposed approach, namely metabolic allele
classifier (MACs), can predict antimicrobial re-
sistance (AMR) phenotypes with accuracy on par
with mechanism-agnostic ML.

Not suitable for microbial genome-wide
association studies.

S12

The input data of 121
balances of four en-
zymes in the upper
part of glycolysis

The ANN algorithms usedto select the enzyme
concentration for the upper part of glycolysis

The ANN algorithms that was used to
select the enzyme concentration for the
upper part of glycolysis could select the
optimum enzyme concentrations, improve
flux up to 63%, and decrease a cost up to
25%.

S13

GEMs of
Escherichia coli,
k-ecoli457 and
Saccharomyces
cerevisiae

The proposed method, namely MARL, could
optimize the L-tryptophan production in S. cere-
visiae and specific metabolite in the k-ecoli457.
MARL could also be used to optimize metabolic
gene expression levels.

Its application is still restricted to the
particular target enzymes.

As for integrating machine learning with constraint-based
models, most those relevant studies employed the first strategy
in which biological insights from CBM are used as input to
ML. Given the intricacy of biological data and certain bio-
logical phenomena or systems that cannot be comprehensively
described and examined mechanistically. In the table, there
are 10 studies utilized the first strategy to integrate ML into
CBM. The task of ML in those studies are to identify, improve,
estimate, and select. In identifying, ML have been applied
to identify the essential genes [31], biomarker [65], [62], the
biological features [64], and the key cross-omics features [66].
Then, the application of ML in the improving process are
to improve the production of glycerol [39], the prediction of
phenotypic [69], and the production of L-tryptophan [69]. At
the rest, ML was applied in estimating the functional effect of
genetic-associated aleles and selecting the optimized enzyme
concentration for optimal yield.

Nevertheless, some research studies employ a second strat-
egy in which ML analyzes multi-omics data for CBM model
reconstruction. In this strategy, ML have useful in the reducing,
predicting, and reconstructing processes. In reducing, PCA
has been implemented by integrating parametric and non-
parametric constraints for reducing the search space in order
to improve the prediction of FBA [29]. Then, several machine
learning approaches have been utilized in the predicting pro-
cess to get the optimal flux ratio based on solvability and fea-
ture screening [63]. Meanwhile, for reconstructing, Ensemble
learning has been applied to reconstruct GSMMs of Yarrowia
lipolytica in order to improve organic acids’ productions [50],
where the reconstruction of GSMM involves multiple steps,
including annotation, gap filling, and refinement.

Table IV provides results, dataset used, and disadvantages
of the relevant studies from Table III. Based on the synthesis
and analysis results obtained from the relevant studies, there

are several potentials of ML to contribute in in silico metabolic
engineering. Integrating ML in traditional algorithms, such as
flux balance analysis, can improve the production of the de-
sired metabolites and even promise to guide strain optimization
based on hybrid models, namely, the mechanistic and data-
driven models. Moreover, ML has given positive influences on
the prediction results by involving several experimental data
such as fluxomic, transcriptomic, metabolomic, and proteomic
in the process of constraint-based modeling. Also, it has been
shown that ML can construct GSM, predict the essential genes,
reduce the dimensionality of cross-omics features, and study
the pattern of omic data. Based on those potentials, ML needs
to be considered in metabolic engineering processes using
CBM.

VII. CONCLUSION

The advancements in biology, bioinformatics, and compu-
tational tools have led to the development of efficient software
for modifying organisms for industrial use. Furthermore, the
successful reconstruction models of complex biological sys-
tems by integrating data from various molecular levels have
yielded valuable insights into organisms, thus offering accurate
insights into cell activities during organism perturbations.
However, this integration can complicate the identification of
near-optimal reaction knockouts due to complex biological
networks. Therefore, machine learning (ML) and constraint-
based modeling (CBM) are employed to facilitate and enhance
prediction accuracy.

This review introduced different structure models for repre-
senting organisms’ systems. Due to the traditional approaches
that are costly and irreversible, constraint-based methods have
been introduced to overfit the production of valuable metabo-
lites. Though it provides near-optimal solutions, integrating
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diverse omics data holds substantial promise in predicting the
future state of computational biology systems. Over the coming
decade, there will be a growing need for machine learning
methods that can be effectively utilized and tailored for these
large datasets. Therefore, machine learning methods were
integrated into CBM methods to improve the reconstruction of
GSMM and the prediction accuracy of genetic perturbations.

We also reviewed several algorithms and applications de-
veloped and their different strategies and approaches used in
metabolic engineering. As mentioned before, the integration
of ML and CBM can happen in two ways. The first way is
to apply ML to the integrated biological networks in which
ML will identify the essential and meaningful features using
the classification technique (supervised ML). This step mini-
mizes the solution space and reconstructs a reduced integrated
network for modeling in CBM. The second way is to analyze
simulation modeling results from CBM (unsupervised ML).

In conclusion, ML is a superior technique for identifying
meaningful features and patterns, which can help reconstruct
integrated biological networks that represent the true nature of
a cell, thus improving the predictive capabilities of identifying
near-optimal reactions knockout for optimizing the production
rate of valuable metabolites and growth rates of mutants for
industrial purposes.
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