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Abstract—Gene expression data has emerged as a crucial
aspect of big data in genomics. The advent of high-throughput
technologies such as microarrays and next-generation sequencing
has enabled the generation of extensive gene expression data.
These datasets are characterized by their complexity, fast data
generation, diversity, and high dimensionality. Analyzing high di-
mensional gene expression data offers both challenges and oppor-
tunities. Computational intelligence and deep learning techniques
have been employed to extract meaningful information from these
enormous datasets. However, the challenges related to prepro-
cessing, reducing dimensionality, and normalization continue to
exist. This study explored the effectiveness of the Wrapper-based
Modified Particle Swarm Optimization (WMBPSO) algorithm
in reducing dimensionality of big gene expression data for
Alzheimer’s disease (AD) prediction, using the GSE33000 dataset.
The reduced dataset was then used as input to a CNN-LSTM
model for prediction. The WMBPSO method identified 4303
genes out of a total of 39280 genes as being relevant for AD.
These genes were selected based on their discriminatory power
and potential contribution to the classification task, achieving
an accuracy score of 0.98. The performance of the CNN-LSTM
model is evaluated using these selected genes, and the results were
highly promising. The results of our analysis are 0.968 for mean
cross-validation accuracy, 0.995 for AUC, and 0.967 for recall,
precision, and F1 score. Importantly, our approach outperforms
conventional feature selection methods and alternative machine
and deep learning algorithms. By addressing the critical challenge
of dimensionality reduction in gene expression data, our study
contributes to advancing the field of AD prediction and under-
scores the potential for improved diagnosis and patient care.
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I. INTRODUCTION

In the rapidly evolving landscape of genomics and bioin-
formatics, the emergence of gene expression data as a prime
example of big data presents both opportunities and formidable
challenges. Big data, characterized by its immense size and
complexity, demands innovative approaches for efficient pro-
cessing and analysis [1]. Gene expression data, in particu-
lar, involves measuring the activity levels of thousands of
genes across various biological samples or conditions. This
surge in data generation has been fueled by advances in
high-throughput technologies, such as microarrays and next-
generation sequencing, ushering in an era of information
abundance [2]. The following are some key aspects of gene
expression data as big data:

• Volume: gene expression data is typically charac-

terized by its sheer volume. Experiments can yield
thousands to millions of data points, each representing
the expression level of a specific gene in each sample.
These large datasets require substantial storage and
computational power to manage and analyze effec-
tively [3].

• Variety: gene expression data comes in various for-
mats, such as raw intensity values from microarrays
or read counts from RNA sequencing experiments.
Additionally, it often includes associated metadata,
such as sample annotations, experimental conditions,
and clinical information. The integration and analysis
of these diverse data types add complexity to the big
data challenge [4].

• Velocity: the generation of gene expression data can
be incredibly fast due to high-throughput technologies.
With the ability to generate a massive amount of data
in a short time, there is a need to find new ways to
process and analyze the data rapidly [5].

• Complexity: analyzing gene expression data involves
complex statistical and computational techniques to
identify differentially expressed genes, perform clus-
tering and classification, and infer gene regulatory
networks. The complexity of these analyses increases
with the size of the dataset [6].

• High dimensionality: each gene expression dataset
typically consists of multiple samples (e.g., individ-
uals, cells, or tissues) and thousands of genes. As a
result, the data becomes high-dimensional, making it
challenging to analyze and interpret effectively [7].

• Diversity of data sources: gene expression data is
collected from diverse sources, including different
tissues, organs, cell types, and experimental condi-
tions. Integrating data from multiple sources adds
complexity to the analysis and requires sophisticated
data processing techniques [8].

While these characteristics offer tremendous insights into
biological processes, they also present formidable analytical
challenges. In light of these challenges, our study sets out to
address two pivotal research questions that drive the core of
our investigation.

Research Question 1: How can we effectively tackle the
inherent complexity and high dimensionality of big gene
expression data, specifically in the context of Alzheimer’s
Disease (AD) prediction?
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As gene expression data exhibit substantial volume, diverse
formats, rapid generation, inherent complexity, high dimen-
sionality, and diverse data sources, it becomes paramount
to devise innovative approaches to streamline the analysis
process.

Research Question 1: How can we harness the power of
Particle Swarm Optimization (PSO) to enhance deep learning
models for gene selection, thereby improving AD prediction?

To overcome the challenges posed by high-dimensional
gene expression data, we seek to integrate PSO into the feature
selection process of deep learning models. This integration
aims to harness PSO’s optimization capabilities to select the
most relevant genes, ultimately enhancing the performance of
AD prediction models.

Alzheimer’s Disease (AD) prediction stands out as a com-
pelling application of gene expression data analysis. AD is
a complex neurodegenerative disorder marked by progressive
cognitive decline and memory loss [9]. Early and precise AD
prediction is pivotal for timely interventions and personalized
treatment strategies, with gene expression datasets serving as
invaluable resources for identifying potential biomarkers and
elucidating the underlying molecular mechanisms. Leveraging
deep learning models and Particle Swarm Optimization (PSO)
holds great promise in enhancing AD prediction accuracy and
selecting the most relevant genes associated with the disease
[9].

Deep learning models, such as convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs), have
revolutionized diverse fields by excelling in complex tasks like
image recognition, natural language processing, and speech
synthesis [10] [11]. Their capacity to automatically extract
intricate hierarchical representations from data makes them
particularly well-suited for gene expression data analysis in
AD prediction tasks [12]. However, the effectiveness of deep
learning models hinges on the availability of high-quality
features that encapsulate pertinent information from the input
data.

Feature selection plays a pivotal role in identifying and
extracting the most informative features, thereby mitigating
computational complexity and enhancing model interpretabil-
ity [13].

Nonetheless, gene expression datasets often grapple with
high dimensionality, encompassing a multitude of genes that
may not all be pertinent for AD prediction [14]. Feature
selection methods aim to tackle this challenge by combining
the merits of filter and wrapper approaches. Filter methods
gauge genes based on their statistical relevance to AD, utilizing
metrics such as correlation or mutual information. In contrast,
wrapper methods assess gene subsets using specific prediction
algorithms.

Among these feature selection techniques, PSO has gained
traction as an optimization algorithm for identifying the op-
timal gene subset [15]. Inspired by social behavior, PSO
simulates the collective movement of particles within a search
space, with each particle representing a potential solution
guided by its own best position and the swarm’s best position
[16].

PSO has demonstrated effectiveness in solving optimiza-
tion problems, including gene selection for AD prediction,
through efficient exploration of the search space and conver-
gence toward promising solutions.

This study’s primary objective is to combine the strengths
of deep learning models and PSO-based feature selection to
enhance feature selection efficiency and deep learning model
performance. By integrating PSO into the feature selection
process of deep learning models, these hybrid approaches aim
to overcome the limitations of traditional feature selection
techniques and unlock the full potential of deep learning archi-
tectures. The utilization of PSO for feature selection involves
two main stages: initialization and iterative optimization [17].
In the initialization stage, the PSO algorithm initializes a
population of particles, each representing a potential feature
subset. These particles traverse the search space, evaluating
their fitness based on a fitness function that quantifies fea-
ture subset quality. The iterative optimization phase entails
updating particle positions and velocities based on their own
best positions and the best position discovered by the swarm,
continuing until a termination criterion is met [18].

The integration of deep learning models with PSO-based
feature selection offers several advantages. Firstly, it reduces
input data dimensionality, crucial for managing large-scale
datasets and mitigating overfitting risk. Secondly, it enhances
model interpretability by selecting a subset of features most
relevant to the target task. Lastly, it augments deep learning
models’ generalization capability by focusing on discrimina-
tive features, potentially leading to superior overall perfor-
mance.

Having outlined these research questions, our study pro-
vides comprehensive answers and innovative solutions. We
introduce a gene selection method based on a wrapper-based
binary PSO (WBPSO) for dimensionality reduction. This
method identifies the optimal subset of genes relevant to
AD. Additionally, we propose a hybrid convolutional neu-
ral network (CNN) and long short-term memory (LSTM)
deep learning model for precise AD prediction. Our study
investigates the effectiveness of this approach in improving
gene selection efficiency and deep learning model performance
across various tasks. Comprehensive experiments conducted on
benchmark gene expression datasets allow us to compare our
method with other gene selection techniques and validate its
superiority.

The remainder of this paper is organized as follows:
Section II offers an examination of previous research con-
cerning feature selection techniques and their integration with
machine and deep learning models for Alzheimer’s Disease
(AD) prediction. Section III outlines the materials and methods
employed in our proposed approach. Section IV delves into
the experimental setup and presents an analysis of the results
obtained from our experiments. Section V provides the limita-
tions of the study and some future directions. Lastly, in Section
VI, we wrap up the paper by summarizing our discoveries,
highlighting the most important findings, and specifying our
contribution.
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II. LITERATURE REVIEW

This section provides an overview of various investigations
concerning feature selection techniques and the prediction of
Alzheimer’s disease (AD) using machine and deep learning ap-
proaches with gene expression data. Each study is summarized
and evaluated for its contributions and limitations.

Martinez et al. [19] introduced a methodology to identify
AD-associated genes using decision trees, quantitative associ-
ation rules, and hierarchical clustering. While this approach
effectively detected genes with significant expression changes,
its scalability was limited for large-scale datasets.

In their work, Park et al. [20] proposed a deep learn-
ing model for AD prediction by integrating gene expression
and DNA methylation data. Although their model showed
improved accuracy compared to traditional machine learning
methods, it faced limitations, including a small sample size,
potential overfitting, and a lack of benchmarking with logistic
regression or other deep learning algorithms.

Sharma et al. [21] employed random forest and regularized
regression models (specifically LASSO) to analyze microarray
datasets across four brain regions. This approach aimed to
identify genetic biomarkers for AD prediction, achieving high
accuracy. However, it faced challenges in handling high-
dimensional data and potential overfitting.

Chen et al. [22] highlighted the significance of differen-
tial network analysis to uncover AD-related genes using the
JDINAC machine learning method. This method successfully
identified differential networks associated with AD pathology,
contributing to a better understanding of the disease.

Patel et al. [23] focused on differentiating individuals with
AD from others using gene expression biomarkers in blood
samples. While their XGBoost classification models achieved
success, there was a need to improve sensitivity and establish
a more specific blood signature for AD.

Bogdanovic et al. [24] emphasized proper experimental
design and preprocessing techniques to analyze a large dataset.
Their approach, based on XGBoost, achieved competitive
performance and offered interpretability, highlighting the im-
portance of explainable machine learning in AD diagnosis.

In [25], an autoencoder (AE) was employed to integrate
DNA methylation and gene expression data for AD prediction.
The approach demonstrated improved accuracy, addressing the
challenges of high-dimensional, low-sample size datasets.

Mahendran et al. [26] developed a gene selection pipeline
for AD, combining mRmR, WPSO, and Autoencoder methods.
They used Bayesian Optimization to tune hyperparameters and
achieved promising results.

Lee et al. [27] utilized three publicly available datasets
to investigate AD-related genes and develop classifiers. Their
approach demonstrated predictive performance, even across
different datasets.

Kamal et al. [28] employed machine learning techniques
to classify AD using both image and gene expression data.
The CNN achieved high accuracy for image data, while SVC
demonstrated accuracy for gene expression data, with the aid
of LIME for interpretability.

Maj et al. [29] combined deep learning and machine learn-
ing techniques to analyze gene expression data in AD. Their
study highlighted the potential of recurrent neural networks
(RNNs) in modeling gene expression data, although limitations
included sample size and sex-specific considerations.

Kim et al. [30] used the SpliceAI framework, based on a
variant of convolutional neural networks (CNNs) called the
residual CNN model, to predict Alzheimer’s disease (AD)-
specific nucleotide alteration sites in pre-messenger RNA
(mRNA) sequences. They identified 14 splicing sites in the
PLCG1 gene with single-nucleotide variants (SNVs) occurring
at the same position in both humans and the AD mouse model
cortex. The study’s limitation lies in investigating only one
gene and lacking comparison with existing models. Future
studies should consider analyzing more genes and incorpo-
rating high-quality gene expression data for a comprehensive
evaluation of model performance.

The work in [31], a deep learning model based on
Wasserstein Generative Adversarial Networks (GANs) with
a gradient penalty term was utilized to predict the virtual
disease/molecular progression of Alzheimer’s disease (AD)
using gene expression data from a mouse AD model. The
latent space interpolation of GANs was leveraged to describe
pathological pathway cascades in AD progression. However,
the study had limitations, including a small number of differ-
entially expressed genes (DEGs) used for training data and a
small sample size of gene expression profiles, which hindered
drawing conclusive results. Additionally, the proposed model
was not compared to existing models to demonstrate its
performance, and future studies should consider incorporating
more genes and high-quality augmentation data.

Xie et al. [32] introduced MLP-SAE, a deep learning
regression model for predicting gene expression based on
genetic variation. The model outperformed other methods,
highlighting the potential of deep learning in genomics data
analysis.

Alhenawi et al. [33] conducted a systematic review of
feature selection methods for microarray data analysis, high-
lighting the prevalence of hybrid feature selection methods as
a promising research direction.

The existing methods, while contributing significantly to
AD prediction using gene expression data, face limitations
ranging from scalability to interpretability. These limitations
have created a notable research gap, particularly concerning
high dimensionality and feature selection accuracy

In this paper, we introduce a novel gene selection method
based on a wrapper-based binary Particle Swarm Optimization
(PSO) algorithm (WBPSO). Our approach is designed to
overcome the limitations of existing feature selection tech-
niques by efficiently selecting informative genes for AD pre-
diction. Furthermore, we extend our approach by integrating
the selected genes into a hybrid convolutional neural network
(CNN) and long short-term memory (LSTM) deep learning
model. This integration aims to enhance model interpretability
and significantly reduce dimensionality, potentially improving
overall AD prediction performance.

Table I provides a summary of some recent research inves-
tigating the prediction of Alzheimer’s disease (AD) through
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the analysis of gene expression data, utilizing various gene
selection (GS) techniques and machine and deep learning (ML)
models.

III. MATERIALS AND METHODS

This section presents the proposed method, a comprehen-
sive account of the dataset employed, the preprocessing steps
applied to the microarray dataset, and the techniques employed
for gene selection and AD prediction. As illustrated in Fig.
1, the overall approach consists of four main components:
Preprocessing, Gene Selection, AD Prediction, Performance
Evaluation. Utilizing this framework enables the opportunity
to create a powerful AD prediction system that merges deep
learning models with wrapper-based feature selection method
that is inspired by nature. This system leverages big gene
expression dataset to produce precise and dependable predic-
tions, ensuring accuracy and reliability. The following sections
provide a comprehensive explanation of each individual com-
ponent in the proposed approach.

Fig. 1. The overall dimensionality reduction and AD prediction approach.

A. Dataset

The dataset utilized in this study was obtained from the Na-
tional Center for Biotechnology Information-Gene Expression
Omnibus (NCBI-GEO) database [42]. Specifically, the dataset
corresponds to the access number GSE33000. It comprises four
DNA microarray data profiles, representing multiple tissues
in the human brain. These profiles were collected from three
distinct brain regions of AD patients: prefrontal cortex (PFC),
visual cortex (VC), and cerebellum (CR). However, the focus
of the GSE33000 dataset is exclusively on the PFC. In total,
the dataset consists of 624 demented and non-demented control
cases, each characterized by 39,280 genes.

B. Preprocessing

To prevent training bias, it is crucial to normalize the input
data within a specific range when training models using large
channel values. The GSE33000 dataset is preprocessed by the
following:

1) Filling the missing values (NaN) by using the mean
Let G is the set of genes and C is the set of cases

that have value, and C ′ is the complementary set of
cases that are missing (denoted as NaN or NULL)
For each case ci : If the value of case ci in gene gj
is missing, then its value is filled using the available
values by the following formula:

mci,gj =

∑
ci∈Cgj

vci,gj

|Cgj |
(1)

where mci,gj represents the missing value of case i
in gene j.

2) Scaling and Normalization: In this step we used the
StandardScaler. In this scaler, the mean is subtracted
from each sample and then scaled to have a unit
variance. The data is re-scaled in a way that ensures
it has a mean of 0 and a standard deviation of 1. The
standard score z of a sample x is calculated using the
formula:

z = (x− u)/s (2)

Where u represents the mean and s denotes the
standard deviation.

C. Wrapper-based Modified Binary Particle Swarm Optimiza-
tion(WMBPSO)

To address research question 1, which focuses on the
utilization of Particle Swarm Optimization (PSO) for gene
selection, we employ the Wrapper-based Modified Binary
Particle Swarm Optimization (WMBPSO) algorithm. The Par-
ticle Swarm Optimization (PSO) algorithm is a metaheuristic
optimization technique inspired by the social behavior of bird
flocking or fish schooling in a search space. For gene selection,
the PSO algorithm seeks to find the optimal set of genes that
will maximize the performance of the deep learning model. In
order to do this, the PSO algorithm assigns each gene a weight,
and then iteratively updates these weights based on the fitness
of the current solution. Binary Particle Swarm Optimization
(BPSO) is a variant of PSO that is specifically designed for
binary optimization problems. The Wrapper-based Modified
Binary Particle Swarm Optimization (WMBPSO) algorithm
includes some modifications compared to the base BPSO
algorithm. Fig. 2 depicts the flowchart of the WMBPSO, and
the following are the key modifications:
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TABLE I. SUMMARY OF SOME RECENT RESEARCH INVESTIGATING THE PREDICTION OF AD THROUGH THE ANALYSIS OF GENE EXPRESSION DATA,
UTILIZING VARIOUS GS TECHNIQUES AND MACHINE AND DEEP LEARNING MODELS

Study Dataset GS Method Model Performance
GSE33000 DMP

[20] GSE44770 DEG DNN Acc = 82.3%
GSE80970

[34] Proteomic Belief Network DBN Acc > 90%
GSE33000
GSE5281 NONE SVM AUC=0.879

[35] GSE122063
GSE97760
GSE33000

[36] ADNI Importance Scores PINNet AUC=0.97
F1=0.96

GSE33000 Chi squared
[37] GSE44770 ANOVA SVM ACC=0.975

GSE44771 MI AUC=0.972
GSE44768

[38] GSE33000 DEG SVM-RFE AUC=0.954
LASSO RF

[39] GSE63060 LASSO SVM Acc= 0.781
GSE63061 AUC=0.859

[40] GSE63061 RFE RF Acc=0.657
DCR AUC= 0.724

mRmR Sensitivity=94.54
[26] GSE5281 WPSO IDBN Specificity=96.17

Autoencoder Accuracy=96.78
FMeasure=95.09

GSE63060 CFG DNN AUC=0.874
[27] GSE63061 CFG SVM AUC=0.804

ADNI CFG DNN AUC=0.657
GSE63060 AUC=0.859

[41] GSE63061 LASSO SVM Acc= 0.781

[40] GSE5281 t-test SVM AUC=0.894

Fig. 2. WMBPSO flowchart.

1) Initialize the population: Each particle represents a
subset of genes to be selected.
Let X = [x1, x2, ..., xn] be the binary feature vector

for a particle, where n is the total number of features.
The value of each feature xi is either 0 (not selected)
or 1 (selected).

2) Evaluate the fitness: Train a CNN-LSTM model using
the selected subset of features (genes). Evaluate the
fitness of each particle based on the performance met-
rics (accuracy, F1, AUC, recall, precision) achieved
by the model on the AD prediction task.

3) Update the velocity of each particle using Eq. 3:

v(t+ 1) = w ∗ v(t) + c1 ∗ r1 ∗ (pbest− x(t))

+c2 ∗ r2 ∗ (gbest− x(t))
(3)

Here, v(t) represents the current velocity, w is the
inertia weight, c1 and c2 are acceleration coefficients,
r1 and r1 are random numbers, pbest represents the
personal best position (best subset of genes) for the
particle, and gbest represents the global best position
(best subset of genes) among all particles.

4) Update the position of each particle by rounding the
sigmoid output of the velocity using the equation:

x(t+ 1) = round
(

1

1 + exp(−v(t+ 1)

)
(4)

5) Apply boundary conditions to ensure that the posi-
tions of particles (gene subsets) stay within the valid
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range of feature selections.
6) Evaluate the fitness of each particle based on the

performance of the CNN-LSTM model using the
updated feature subset. Update the personal best po-
sition (pbest) and fitness for each particle if its fitness
improves. Update the global best position (gbest) and
fitness if any particle achieves a better fitness than the
current global best.

D. Hybrid Convolutional Neural Network (CNN) and Long
Short-Term Memory (LSTM)

To answer research question 2, which revolves around
enhance deep learning models for gene selection, thereby
improving AD prediction, we incorporate the architectures of
Convolutional Neural Networks (CNN) and Long Short-Term
Memory (LSTM) along with WMBPSO for AD prediction
into our model. The CNN-LSTM model combines the CNN
and LSTM architectures to process both spatial and temporal
information in the gene dataset.

1) Convolutional Neural Network (CNN): A Convolutional
Neural Network (CNN) is a powerful deep learning technique
that has found extensive use in various applications, including
image classification, object detection, speech recognition, com-
puter vision, video analysis, and bioinformatics [43]. Unlike
traditional neural networks, CNNs are characterized by their
deep architecture, incorporating multiple layers [44]. These
networks utilize weights, biases, and nonlinear activation func-
tions to process input data effectively. At its core, a CNN
consists of convolutional layers, pooling layers, and fully
connected layers, forming a comprehensive architecture for
feature extraction and classification tasks [45]. Fig. 3 portrays
the basic structure of CNN network.

Fig. 3. Basic structure of CNN model.

The CNN’s core operation is convolution, which employs
convolution kernels to perform convolutions on the inputs. It
differs from fully connected structures by leveraging informa-
tion from adjacent areas of the data matrix. Sparse connec-
tions and weight sharing significantly reduce the parameter
matrix size. The pooling layer creates feature maps through
averaging or taking the maximum value, compressing features
and mitigating overfitting. CNN allows for constructing multi-
layer convolution and pooling operations [46]. Deeper layers
extract more abstract features. These abstract features are then
merged using a fully connected layer. Finally, classification
and regression problems can be addressed using softmax or
sigmoid activation functions. In our case, we utilize one-
dimensional convolution in CNN to effectively extract spatial
features from gene expression data. The convolution layer
operates as a filter and subsequently undergoes activation
through a non-linear activation function, as described in Eq.
5:

ai,j = f

(
M∑

m=1

N∑
n=1

wm,n · xi+m,j+n + b

)
(5)

where ai, j is the activation, f denotes a non-linear func-
tion, wm, n represents the m×n matrix of convolution kernel
weight, xi+m,j+n refers to the activation of the upper neurons
and connected to the neuron (i, j), and b represents the bias
value. In this study, the convolutional layers utilize rectified
linear units (ReLU) for computing the feature maps. The non-
linear function associated with ReLU is defined in Eq. 6:

σ(x) = max(0, x) (6)

Where x is the input value and 0 is a threshold. The ReLU
activation function takes an input x and computes the output
as follows: If x is greater than or equal to 0, the function
returns x. If x is negative, the function returns 0. In essence,
the ReLU activation function linearly activates the positive part
of the input, while any negative input is turned off (outputting
0).

2) Long Short-Term Memory (LSTM): An LSTM network
belongs to the class of recurrent neural networks (RNNs) and
offers significant advantages over traditional RNNs, allowing
for faster learning and addressing issues such as vanishing and
exploding gradients [46]. By incorporating memory blocks and
employing a cell state, an LSTM network can effectively store
and retrieve long-term information. This is achieved through
the utilization of input, forget, and output gates, which enable
the network to retain relevant past data and connect it with
the present inputs. As a result, LSTM networks are capable
of solving complex tasks that were challenging for earlier
RNN architectures, making them a valuable tool in various
applications [43]. The cell state is the main component of
LSTM, which involves three essential processes. The initial
step entails deciding the type and quantity of information to
be eliminated from the cell state, accomplished through the
forget gate. Subsequently, the input gate determines the new
information to be incorporated into the cell state. Lastly, the
output gate determines the specific information to be outputted.

Fig. 4. Typical design of LSTM model.

The LSTM model enhances the original short-term memory
unit, represented by ht, by introducing a memory unit Ct
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to preserve long-term memory or the cell state. In Fig. 4,
we observe that an LSTM unit receives three inputs at each
time step: the current input xt, the previous state Ct−1, and
the previous output ht−1. Notably, both xt and ht−1 are
simultaneously utilized as inputs for three gates. The LSTM
network follows a specific update process, which can be
summarized in Eq. 7:

ft = σ(Wf · [ht−1, xt] + bf ) (7)

it = σ(Wi · [ht−1, xt] + bi) (8)

C̃t = tanh(Wc · [ht−1, xt] + bc) (9)

Ct = ft × Ct−1 + it × C̃t (10)

ot = σ(Wo · [ht−1, xt] + bo) (11)

ht = ot × tanh(Ct) (12)

where, Wf , Wi, Wc, Wo represent the coefficient matrices,
bf , bi, bc, bo are the matrices of bias, σ is a sigmoid activation
function, ft denotes the forget gate, which regulates the
amount of previous memory to be discarded. In contrast, the
input gate denoted as it determines the amount of new memory
C̃t to be stored in long-term memory.

E. Performance Evaluation

In this research, we assessed the performance of our
approach using the test dataset. We employed five metrics to
evaluate the predictive capability: Accuracy, Recall, Precision,
F1 score, and AUC. These metrics quantify the number of true
positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN), and the following are the details of each
metric.

• Accuracy: is a metric that quantifies the ratio of correct
predictions (TP + TN + FP + FN) made by the
predictor or classifier to the total number of data points
(TP + TN) in a dataset. The accuracy metric is
calculated using Eq. 13 as follows:

Accuracy =
TP + TN

TP + FN + TN + FP
(13)

• Recall (also known as sensitivity): measures the ability
of a model to correctly identify positive instances
out of all the actual positive instances. It quantifies
the proportion of true positives that are correctly
predicted. The recall metric is calculated by using Eq.
14 as follows:

Recall =
TP

TP + FN
(14)

• Precision (also known as positive predictive value):
measures the proportion of true positives out of all
the instances that the model predicted as positive. It

focuses on the accuracy of the positive predictions.The
precision metric is calculated by using Eq. 15:

Precision =
TP

TP + FP
(15)

• F1 score: is a metric that combines precision and recall
into a single value. It provides a balanced measure of
a model’s performance by taking into account both
false positives and false negatives. The F1 score is
calculated by using Eq. 16:

F1 = 2 · precision · recall
precision+ recall

(16)

• AUC: stands for Area Under the Curve provides a
single scalar value that summarizes the overall per-
formance of a binary classification model in terms of
its ability to rank and discriminate between positive
and negative instances. Once the Receiver Operating
Characteristic (ROC) curve is created by plotting the
true positive rate (TPR), which is synonymous with
sensitivity or recall, on the y-axis, and the false
positive rate (FPR), calculated as (1 - specificity), on
the x-axis , the AUC is computed as the area under
this curve.

IV. RESULTS AND DISCUSSION

For the experimental work, the code was executed using
Python version 3.8.10. The libraries employed were Keras,
Tensorflow, and Scikit-learn. The experimental setup included
an Intel® CoreTM i5-8250U CPU @ 1.60 GHz, 8 GB of main
memory, and a 64-bit OS running Ubuntu 20.04.1 LTS. In this
study, the performance of WMBPSO algorithm was investi-
gated for dimensionality reduction of big gene expression data
in the context of AD prediction. The reduced dataset was then
used as input for a CNN-LSTM model for prediction.

A. Dimensionality Reduction using WMBPSO

The WMBPSO gene selection technique identified a total
of 4303 genes as being relevant for AD prediction, achieving
an accuracy score of 0.98. These genes were selected based
on their discriminatory power and potential contribution to the
classification task. This dimensionality reduction significantly
improved model performance. The dimensionality reduction
achieved through WMBPSO has profound implications. It not
only improved AD prediction accuracy but also streamlined
the feature set, making it more interpretable.

B. Comparative Analysis of Gene Selection Methods

We conducted a comparative analysis of the WMBPSO-
based approach with three commonly used methods for gene
selection: the lasso-based approach, the ANOVA method, and
a hybrid ANOVA-lasso-PSO method. The performance of
the lasso approach compared to WMBPSO-CNN-LSTM is
depicted in Fig. 5. The lasso approach achieved an accuracy
of 0.920 and an AUC of 0.915. The F1 score, recall, and
precision for the lasso approach were 0.929, 0.961, and 0.90,
respectively. Fig. 6 reports the scores of ANOVA method, it
achieved an accuracy of 0.89 and an AUC of 0.88, which
are lower than those obtained by the WMBPSO approach.
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Fig. 5. Comparison of the proposed WMBPSO with lasso method.

Fig. 6. Comparison of the proposed WMBPSO with anova method.

F1, recall, and precision scores were 0.90, 0.93, and 0.87,
respectively.

Fig. 7 describes the performance of the hybrid ANOVA-
LASSO-PSO method. This method achieved an accuracy of
0.84 and an AUC of 0.84. Also, the method obtained the
value 0.83 for F1 score, recall, and precision. The comparison
between the WMBPSO-based approach and the other gene se-
lection methods highlights the effectiveness of the WMBPSO
approach and showed competitive performance with a strong
AUC score.

C. AD Prediction with WMBPSO-CNN-LSTM

The CNN-LSTM model, trained with the selected genes,
yielded highly promising results. The performance of the
CNN-LSTM model is evaluated using these selected genes,
and the results were highly promising. The results of our
analysis are presented in Fig. 8. To train the CNN-LSTM
model for AD prediction, we utilized a cross-validation ap-
proach with k = 5 folds to further assess the robustness of

Fig. 7. Comparison of the proposed WMBPSO with hybrid
anova-lasso-WMBPSO method.

the model. The model was trained over 10 epochs, with a
batch size of 32. The mean cross-validation (CV) accuracy,
calculated over multiple iterations, was found to be 0.968. This
value indicates a consistently high level of accuracy across
different folds of the dataset, reinforcing the reliability of the
proposed model. Moreover, the area under the curve (AUC)
was used to evaluate the model’s performance in terms of its
ability to discriminate between AD and non-AD cases. The
AUC value obtained was 0.9958, suggesting a high level of
discrimination power. Additional performance metrics were
computed, the recall value was 0.9677; this indicates that the
model effectively identified a high percentage of AD cases.
Similarly, the precision value was also 0.9677. This indicates
that the model made a high percentage of correct positive
predictions. Also, the F1 score was found to be 0.9677. This
value indicates a balanced trade-off between precision and
recall, demonstrating the model’s ability to achieve both high
precision and high recall simultaneously.

Fig. 8. Performance metrics of the proposed WMBPSO-CNN-LSTM
approach.

To evaluate the superiority of the CNN-LSTM model
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in combination with the WMBPSO-based gene selection
method, we conducted a performance comparison between the
WMBPSO-CNN-LSTM model and two other deep learning
models, WMBPSO-RNN and WMBPSO-CNN, which also
utilized the WMBPSO algorithm for gene selection. For the
CNN model, as shown in Fig. 10, the results obtained were
0.94, 0.93, 0.95, 0.93, and 0.94 for mean cross-validation
accuracy, AUC, recall, precision, and F1 score, respectively.
Fig. 9 portrays the performance of WMBPSO-RNN. The
results obtained were 0.84, 0.89, 0.84, 0.85, and 0.85 for
mean cross-validation accuracy, AUC, recall, precision, and F1
score, respectively. The comparison among the three models

Fig. 9. Comparison of the proposed WMBPSO-CNN-LSTM model with
RNN model.

highlights the superior performance of the WMBPSO-CNN-
LSTM model in AD prediction using gene expression data. It
achieved higher accuracy, AUC, F1 score, and recall compared
to both the WMBPSO-CNN and WMBPSO-RNN models. The
precision values were comparable between the WMBPSO-
CNN-LSTM and WMBPSO-CNN models, indicating similar
abilities to identify positive cases accurately. However, the
WMBPSO-RNN model exhibited lower performance across
all metrics, suggesting it may be less effective in capturing
the complex relationships present in the gene expression data
for AD prediction.

Fig. 10. Comparison of the proposed WMBPSO-CNN-LSTM model with
CNN model.

TABLE II. PERFORMANCE EVALUATION VALUES OF DIFFERENT
MACHINE LEARNING MODELS COMPARED TO THE PROPOSED

WMBPSO-CNN-LSTM

Model Recall Precision F1 Score Accuracy
Logistic Regression 0.97 0.91 0.94 0.93

Boosted Random Forest 0.83 0.86 0.84 0.83
Decision Tree 0.82 0.79 0.80 0.78

SVM 0.95 0.93 0.94 0.93
KNN 0.80 0.87 0.83 0.82
MLP 0.66 0.97 0.79 0.80

Guassian NB 0.72 0.80 0.76 0.74
ANN 0.97 0.86 0.91 0.90

WMBPSO-CNN-LSTM 0.97 0.97 0.97 0.97

Further comparisons with various machine learning meth-
ods are presented in Table II.

The remarkable performance of the CNN-LSTM model
highlights its effectiveness in handling the reduced dataset.
This suggests that by effectively managing dimensionality,
we can harness the full potential of deep learning models.
In conclusion, according to the findings of this study, the
WMBPSO-CNN-LSTM model demonstrated superior perfor-
mance compared to the WMBPSO-CNN, WMBPSO-RNN, as
well as other machine learning models and prevalent feature
selection techniques in reducing dimensionality and predicting
Alzheimer’s Disease using big gene expression data. The
WMBPSO-CNN-LSTM model exhibited outstanding AUC,
higher accuracy, F1 score, recall, and precision. These results
underscore its superior ability to capture relevant features and
patterns related to big gene expression data.

D. Implications and Suggestions

Our findings carry significant implications for AD predic-
tion and gene expression analysis:

• The dimensionality reduction techniques employed
in this study have the potential to revolutionize AD
prediction, making it more interpretable and precise.
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• The combination of WMBPSO and CNN-LSTM
demonstrates the power of integrating feature selec-
tion with deep learning for complex biological data
analysis.

• Future research should explore applications of these
techniques in other disease prediction tasks and inves-
tigate novel approaches for feature selection and deep
learning integration.

V. LIMITATIONS AND FUTURE WORK

While our study has yielded promising results, it is essen-
tial to acknowledge its limitations and outline potential avenues
for future research.

A. Limitations

• Data Size: The study utilized a single gene expression
dataset. Future work could explore the integration
of multiple datasets to enhance the robustness and
generalizability of the model.

• Generalization: Although our model exhibited excep-
tional performance on the specific dataset, further vali-
dation on diverse datasets and populations is necessary
to establish its broader applicability.

• Feature Interpretation: While dimensionality reduction
improved model performance, interpreting the biologi-
cal significance of selected genes remains a challenge.
Future research should focus on developing methods
for gene function interpretation.

B. Future Work

Several potential avenues of future research can be summed
up as following: 1) Integrate biological constraints, such as
gene pathway information or known gene-disease associations,
to guide the gene selection process and ensure that the selected
gene groups are biologically meaningful. 2) Group-based Ve-
locity Update of the WMBPSO; modify the velocity update
process to consider interactions between feature groups. The
velocity update not only involves individual features but also
considers the collective behavior of gene groups in the swarm.
3) Expanding the dataset by including additional samples
from diverse populations and incorporating longitudinal data to
enhance the generalizability and robustness of the WMBPSO-
CNN-LSTM model. 4) Integration of Multi-Omics data such as
DNA methylation, microRNA expression, or proteomics data,
in combination with gene expression data, could provide a
chance to validate the behavior of WMBPSO-CNN-LSSTM al-
gorithm on such large-scale combined datasets. 5) Further val-
idation of the WMBPSO-CNN-LSTM model on independent
datasets to assess its performance and generalizability in real-
world scenarios. 6) Advanced Deep Learning Architectures:
Investigating state-of-the-art deep learning architectures and
techniques, such as Transformers and attention mechanisms,
may further enhance AD prediction accuracy.

VI. CONCLUSION

In this study, we aimed to leverage the WMBPSO al-
gorithm for dimensionality reduction in big gene expression

data. The accuracy score achieved by the WMBPSO algorithm
in selecting genes was 0.98, indicating a significantly high
level of accuracy. The objective was to develop an accu-
rate AD prediction model using the WMBPSO algorithm in
conjunction with a CNN-LSTM deep learning architecture.
Through our investigations, we compared the performance of
the WMBPSO-CNN-LSTM model with other deep learning
and machine learning methods. Also, the performance of
WMBPSO was compared with other common feature selection
methods. The results obtained demonstrate the effectiveness
of the WMBPSO algorithm for dimensionality reduction in
big gene expression data. The WMBPSO-CNN-LSTM model
achieved outstanding performance in AD prediction, as in-
dicated by the high mean cross-validation accuracy (0.968),
AUC (0.9958), F1 score (0.9677), recall (0.967), and precision
(0.967). These metrics validate the potential of the WMBPSO
algorithm for effectively selecting informative genes and im-
proving the classification accuracy of the AD prediction model.
Comparative analyses were conducted with other deep learning
models, including WMBPSO-RNN and WMBPSO-CNN, as
well as traditional feature selection methods such as ANOVA,
lasso, and hybrid approach. The results indicated that the
WMBPSO-CNN-LSTM model outperformed these approaches
in terms of accuracy, AUC, F1 score, recall, and precision. In
conclusion, our study has made significant strides in addressing
the challenges of Alzheimer’s Disease (AD) prediction using
gene expression data. We have demonstrated that effective
dimensionality reduction with the WMBPSO algorithm, cou-
pled with the power of CNN-LSTM, can yield highly accurate
predictions. Our research contributes by:

• Introducing an innovative approach to gene selection
using WMBPSO, which outperforms traditional meth-
ods.

• Highlighting the potential of combining feature selec-
tion and deep learning for AD prediction.

• Offering valuable insights into the management of
high-dimensional biological data.

While there are limitations to our study, such as dataset size
and generalization, the future holds promising prospects for
improving AD prediction, advancing gene function interpreta-
tion, and ultimately aiding in early diagnosis and intervention.
Our work underscores the importance of interdisciplinary
research at the intersection of bioinformatics and machine
learning, paving the way for more precise and reliable disease
prediction models in the era of precision medicine.
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