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Abstract—In smart home applications, effective fall detection 

is a critical concern to minimize the occurrence of falls leading to 

injuries, especially for the assistance of elderly individuals. 

Various methods have been proposed, including both vision-

based and non-vision-based approaches. Among these, vision-

based approaches have garnered significant attention from 

researchers due to their practicality and applicability. However, 

existing vision-based methods face challenges such as low 

accuracy rates and high computational costs, which still need 

further exploration to enhance fall detection effectiveness. This 

study aims to develop a vision-based fall detection system 

tailored for smart home care applications. The objective of this 

study is to develop an accurate and lightweight fall detection 

method that is applicable in IoT platforms. A You Only Look 

Once (YOLO) based network is trained and tested to identify 

human falls accurately. The experimental results demonstrate 

that the developed YOLO-based technique shows promising 

outcomes for human fall detection and holds potential for 

integration in the Internet of Things (IoT) enabled smart home 

applications. 
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I. INTRODUCTION  

In recent years, the rapid progress in Information and 
Communication Technology (ICT) has brought about 
significant changes in people's lives thanks to groundbreaking 
innovations. This has led to the rise of intelligent 
environments, cities, and societies [1]. By leveraging cutting-
edge technologies like Artificial Intelligence (AI) and the 
Internet of Things (IoT), we have the potential to greatly 
improve our quality of life. These advanced solutions empower 
us to monitor our surroundings and make well-informed 
decisions to achieve desired outcomes. Among these 
advancements, smart homes play a crucial role as the 
cornerstone of smart living. They are poised to be instrumental 
in the development of smart cities and societies since homes 
serve as the fundamental building blocks for both urban areas 
and social structures. 

Presently, several socioeconomic factors are contributing to 
a significant decline in fertility rates and an increase in life 
expectancy [2]. As a result, a growing number of elderly 
individuals are striving to maintain their independence and stay 
in their own homes. To address this, an automated home-based 
solution that reduces the burden on healthcare services and 
provides valuable insights into fall risk becomes an appealing 
alternative [3]. Furthermore, with the global increase in the 
elderly population, healthcare considerations for seniors are 
becoming increasingly critical. For this reason, human motion 

capture technologies are essential for elderly individuals living 
alone, as they can help tackle these challenges. By observing 
their posture, it becomes possible to monitor the health of 
elders, and if high-risk postures such as falling are detected, 
timely warnings can be sent [4], [5]. 

Compared to traditional Machine Learning (ML) 
algorithms, deep learning significantly simplifies the process of 
feature selection by automatically extracting abstract features 
through multiple hidden layers [6]. The effectiveness of deep 
learning in unsupervised learning and reinforcement learning 
has been proven, leading to a surge in the development of deep 
learning-based Human Activity Recognition (HAR) 
frameworks [5]. In particular, Convolutional Neural Networks 
(CNN), inspired by the hierarchical processing in the human 
visual cortex, have achieved remarkable success in image 
categorization in recent times [7]. CNN-based methods can 
automatically learn distinctive features from training data, 
making them highly efficient for feature extraction and 
classification tasks [8], [9]. 

Two general categories can be made for CNN-based 
identification tasks. The first category consists of two-stage 
detection algorithms that divide the phases of target detection 
into finding and identifying them. Conventional approaches, 
such as Region-Convolutional Neural Networks (R-CNN), 
have flaws and fall short of real-time performance 
requirements. Faster R-CNN and Faster R-CNN have been 
introduced, although they are still insufficient for real-time 
applications [10]. The second group uses a single-stage 
detection method that combines the positioning of the target 
with its identification.  

This study addresses the research problem of devising a 
precise and resource-efficient fall detection method suitable for 
IoT platforms. The research questions include the design of 
such a method, the effectiveness of utilizing the YOLO5 
network due to its memory-efficient and speedy detection 
characteristics, and the steps required for dataset curation to 
train and test the YOLO model in recognizing fallen postures 
for improved fall detection. The research objectives encompass 
creating an optimized fall detection solution for IoT 
environments, assessing the YOLO5 network's suitability for 
this purpose, and developing and preparing a dataset for robust 
fall posture recognition within the YOLO framework. 

The main contributions of this study are as follows: 

1) Developing a vision-based approach for fall detection 

with feasibility and applicability considerations.  
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2) A Yolo-based network implementation and model 

generation for human fall posture identification. 

3) Fall dataset generation using image collection from 

various internet resources and annotation and augmentation 

process. 

The rest of this paper is consisted as: Section II reviews the 
related works. Section III discuss about the research 
methodology. Section IV presents the results and discussion. 
Finally, this paper concludes in Section V. 

II. RELATED WORKS 

Ajerla et al.'s [11] developed a fall detection framework 
based on an LSTM network that took advantage of edge 
computing tools like laptops, reducing the requirement to 
upload raw data to the cloud for real-time fall event prediction. 
The system used the open-source Apache Flink streaming 
engine to process the three-axis accelerometer raw data. A part 
of the MobiAct dataset, which is openly accessible, was used 
for training and testing. To get the best results, the system 
advised putting sensors at the waist—the suggested framework 
successfully anticipated fall occurrences using real-time fall 
data with an amazing accuracy of 95.8%. The use of various 
sensors and data streams led to improved performance. 

Queralta et al. [12] proposed a fall detection system for 
health monitoring facilities using low-power wide-area 
network (LPWAN) technologies with Edge computing and Fog 
computing, as well as a compression technique for data 
transfer, lowering system latency. To recognize falls from the 
received data, LSTM and RNN networks were developed on 
the edge computer. These edge gateways were used to transmit 
real-time alerts and notifications while unprocessed data was 
transferred to the cloud for online processing. With this 
strategy, the operation was possible even in places with poor 
network access and increased battery life.  

By suggesting an approach based on video analysis, Wang 
et al. [13] attempted to increase fall detection accuracy and 
speed in complex contexts. The introduction of the YOLOv3 
network model as the detection algorithm was the main 
contribution. In order to train and test the network model on a 
GPU server, they constructed their dataset for human fall 
detection using the Pascal VOC data set format. According to 
experimental data, the method is more reliable and efficient 
than traditional fall detection algorithms, achieving a mAP of 
0.83 and an AP down at 0.97. 

In study [14], an approach to detecting human falls based 
on the Fast Pose Estimation technique was presented. The 
method classified data from picture frames using TD-CNN-
LSTM and 1D-CNN models, demonstrating excellent 
accuracy. The suggested technique proved to be a valuable 
addition to reliable human fall detection, suitable for 
implementation in edge devices due to its minimal 
computational and memory requirements. They enhanced the 
URFD dataset for training by applying rotation, brightness 
adjustments, horizontal flipping, and gamma correction. 

III. RESEARCH METHODOLOGY 

This section presents the research methodology. Firstly, the 
background of the YOLO method is discussed. Secondly, the 
preparation of the dataset is presented. Thirdly, the 
implementation environment using Google Colab is explained, 
and lastly, the training and testing procedure is presented for 
fall detection. 

A. Background of YOLO 

YOLO (You Only Look Once) was a pretrained object 
detector designed to recognize common objects like tables, 
chairs, cars, phones, and more [15]. A newer version of the 
YOLO algorithm, called YOLOv5, has been proposed with 
enhancements over YOLOv3. YOLOv5 achieves greater 
precision and smaller model size, leading to significantly faster 
detection speed compared to its predecessor. Despite its 
potential, the YOLOv5 technique has not yet been widely 
applied in fall detection [16]. Therefore, this paper aims to 
improve the YOLOv5 model for detecting senior fall behavior. 

The YOLOv5 is one of the most prominent models in the 
one-stage detection series, avoiding the recomputation of 
candidate areas utilized in the two-stage series. It boasts 
excellent recognition accuracy and quick inference. The 
YOLOv5 architecture comprises four primary model 
structures: YOLOv5l, YOLOv5x, YOLOv5m, and YOLOv5s, 
each offering progressively fewer complex networks. 
Additionally, a YOLOv5n model was later developed with 
only 1.9 MB parameters, the same depth as YOLOv5s but with 
half the network width, making it suitable for deployment on 
mobile devices. 

As depicted in Fig. 1 [16], the YOLOv5 baseline 
architecture consists of three main components: the backbone, 
neck, and head. Fig. 1(a) to Fig. 1(d) illustrates the composition 
of modules related to the baseline architecture. One of the 
Backbone structures is a Convolutional Neural Network 
(CNN), which combines various fine-grained images to form 
image features. 

The architecture utilizes the conv module for 2D 
convolution, regularization, and activation. The c3 module aids 
in feature extraction, reducing the model size and enhancing 
inference speed. The up-sample and concat modules handle 
feature map sampling and combination. The spatial pyramid 
pooling (SPP) module expands the network's perceptual area. 
The Neck structure improves information flow with feature 
pyramid network (FPN) and path aggregation networks (PAN). 
Adaptive pooling connects features for optimal data utilization. 
Overall, these components optimize the model's accuracy and 
efficiency. 

B. Dataset Preparation 

The dataset for fall detection was compiled from diverse 
sources, including Google Images, to create a custom dataset. 
This dataset consists of images categorized into three labels: 
"Fall Detected," "Walking," and "Sitting ―. The initial dataset 
involves 485 images. To prepare the dataset with mode 
diversity, image augmentation is performed. After 
augmentation, total dataset involves 1455 images. The labels 
directory also has two subdirectories, namely "train", "val." and 
―test‖. Within these directories, text files are provided, 
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containing labels corresponding to specific images. Fig. 2 
displays some examples from our dataset. 

The dataset for fall detection may not be large by industry 
standards, but it's essential to consider its specific context and 

the chosen model's complexity. As our experimental results 
indicated, it is sufficient for a well-designed model. 
Additionally, the dataset is diverse and representative of real-
world scenarios, that it helps the model generalize effectively.

 

Fig. 1. The architecture of the YOLOv5 network.  

 

Fig. 2. Sample images from the dataset. 
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C. Training and Testing 

When training an object detector, one common approach is 
to start with a preexisting model that has already been trained 
on large and diverse datasets. These pretrained models have 
learned to recognize various objects from the data they were 
initially trained on. Although the pretrained weights may not 
include specific objects relevant to the current experiment, they 
still capture valuable general features and patterns that can be 
beneficial for the new task. 

This process of using a pretrained model as a starting point 
and fine-tuning its weights for a specific task is called transfer 
learning. By leveraging transfer learning, we can save time and 
computational resources, as the pretrained model has already 
learned to detect common objects effectively. The model acts 
as a feature extractor that can be fine-tuned to recognize the 
specific objects we need in our experiment. 

In this case, a pretrained model containing weights trained 
on the COCO dataset is used as the starting point for the object 
detection task. COCO is a large and diverse dataset that 
includes a wide range of objects from various categories. Using 
a model pretrained on COCO, our network can benefit from the 
learned features, leading to faster convergence during training. 

With transfer learning, we can achieve good results with 
fewer training data. In this experiment, the total dataset 
consists of 1455 images. To split the dataset for training, 
validation and testing, 70% of the images are used for training 
the model, and the remaining 20% are used for validating, and 
10 % for testing for performance evaluation of the model. 

In summary, transfer learning is a powerful technique that 
allows us to leverage existing knowledge from pretrained 
models to boost the performance of our object detection task. 
Utilizing a pretrained model and carefully selecting the 
appropriate amount of data for training and validation, we can 
efficiently train an accurate and effective object detector for 
our specific needs. 

IV. RESULTS AND ANALYSIS 

In this section, we discuss the experiment's details, then 
show the training results using pretraining weights and 
compare the three models of YOLOv5. 

A. Experimental Results 

At this stage, we show a series of the model's stress 
measurement results and achieved high accuracy. Fig. 3 
illustrates the results of the prediction fall in the dataset.

 

Fig. 3. Prediction results of fall detection. 

B. Model Evaluation 

The first version of our model was trained for the training 
set. The results of it are shown in Fig. 4.  Label 0 is for falling, 

label 1 for walking and label 2 for sitting. As experimental 
results are shown in Fig. 4, this model achieved relatively 
accurate results. 
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Fig. 4. Labels in the training process. 

Various performance metrics are computed to evaluate the 
fall detection model. These metrics typically include precision, 
recall, and F1 score. We calculated the precision rate and recall 
rate. The results of the evaluation metrics of the trained model 
are shown in Fig. 5. Precision measures the accuracy of fall 
predictions, recall measures the model's ability to detect all 
falls, and the F1 score combines precision and recall into a 
single value. An analysis of the model's errors is performed to 

gain insights into its performance. This involves examining 
false positive and false negative predictions [18]. False 
positives are instances where the model incorrectly identifies a 
non-fall instance as a fall, while false negatives are cases where 
the model fails to detect an actual fall. Analyzing these errors 
helps identify areas for improvement in the model and dataset. 
Fig. 5 to Fig. 7 illustrates the performance metrics.

 

Fig. 5. Result of precision metric. 
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As shown in Fig. 5, a precision curve graph for a generated 
YOLOv5 model fall detection system with fall, walking, and 
sitting classes shows the relationship between the confidence 
rate and the precision rate. The X-axis represents the 
confidence rate, which indicates the level of confidence the 
model has in its predictions. In contrast, the Y-axis represents 
the precision rate, which measures the accuracy of the fall 
detection system. To obtain accurate results based on the 
obtained precision confidence from the generated YOLOv5 
model, the following steps are typically followed: 

Prediction and Confidence Threshold: The YOLOv5 model 
is applied to the test dataset, and for each detected object, the 
model assigns a confidence score or probability indicating its 
confidence in the prediction. The confidence score represents 
the model's belief that the object belongs to a particular class, 
such as falling, walking, or sitting. To generate the precision 
curve graph, different confidence thresholds are set to analyze 
the trade-off between precision and recall. 

Precision Calculation: For each confidence threshold, the 
model's predictions are compared against the ground truth 
labels. True positive (TP) refers to the correct detection of a 
fall instance, false positive (FP) represents a non-fall instance 
being incorrectly identified as a fall, and false negative (FN) 
indicates a missed detection of a fall. The precision is then 
calculated using the formula: Precision = TP / (TP + FP) 
[17,18]. By examining the precision curve graph, one can 
identify the confidence threshold that provides the desired 
precision rate for fall detection. It allows for fine-tuning the 
system based on the specific requirements, striking a balance 
between accurate fall detection and minimizing false positives. 

As depicted in Figure 5, the achieved precision rate of 0.93 
for the YOLOv5 model in detecting fall, walking, and sitting 
classes is highly indicative of its effectiveness. A precision rate 
of 0.93 implies that 93% of the predicted positive cases were 
indeed true positives, minimizing false positives. This high 
precision indicates the model's ability to accurately classify 
these activities, reducing the likelihood of misclassification.

 

Fig. 6. Result of recall metric. 

Fig. 6 illustrates the recall curve. A recall curve graph for a 
generated YOLOv5 model fall detection system with fall, 
walking, and sitting classes shows the relationship between the 
confidence rate and the recall rate. The X-axis represents the 
confidence rate, which indicates the level of confidence the 
model has in its predictions, while the Y-axis represents the 
recall rate, which measures the ability of the fall detection 
system to correctly identify all instances of falls. 

For recall calculation, the model's predictions are compared 
against the ground truth labels for each confidence threshold. 
True positive (TP) refers to the correct detection of a fall 
instance, false positive (FP) represents a non-fall instance 
being incorrectly identified as a fall, and false negative (FN) 
indicates a missed detection of a fall. The recall is then 
calculated using the formula: Recall = TP / (TP + FN) [19,20]. 

Moreover, for recall curve plotting, as the confidence 
threshold is varied, the recall rate is calculated at each point. 
These recall values are plotted against the corresponding 

confidence thresholds on the graph. The resulting recall curve 
shows how the recall rate changes as the confidence rate 
increases. A higher recall rate indicates that the fall detection 
system is more effective in correctly identifying all fall 
instances. The recall curve graph allows us to analyze the 
relationship between recall and confidence thresholds. Based 
on the desired trade-off between recall and precision, an 
optimal confidence threshold can be selected. If maximizing 
the number of detected falls is the priority, a lower confidence 
threshold can be chosen, which may result in higher recall but 
potentially more false positive predictions. By examining the 
recall curve graph, one can identify the confidence threshold 
that provides the desired recall rate for fall detection. 

As depicted in Fig. 6, the overall recall rate is 0.93 for the 
YOLOv5 model in detecting fall, walking, and sitting classes. I 
show that the model successfully captured 93% of all actual 
positive cases, demonstrating its ability to detect these classes 
with a high level of sensitivity. 
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Fig. 7. Result of precision-recall curve. 

As shown in Fig. 7, the precision-recall curve graph for a 
generated YOLOv5 model fall detection system with fall, 
walking, and sitting classes shows the relationship between the 
confidence rate and the precision-recall rate. The graph 
provides a visual representation of how precision and recall 
change as the confidence threshold varies. Precision measures 
the accuracy of fall predictions, while recall measures the 
ability to detect all fall instances. By examining the curve, the 
optimal confidence threshold can be determined based on the 
desired balance between precision and recall. 

The precision-recall curve graph helps in evaluating the 
performance of the fall detection system and selecting the 
appropriate confidence threshold. A higher precision indicates 
more accurate fall predictions, while a higher recall indicates a 
greater ability to detect all fall instances. The graph allows for 
the analysis of the trade-off between precision and recall, 
enabling the system to be fine-tuned to meet specific 
requirements. By selecting the optimal confidence threshold 
based on the precision-recall curve, the generated YOLOv5 
model can achieve accurate results in detecting falls while 
minimizing false positives and false negatives. 

Finally, as illustrated in Fig. 7, the overall precision-recall 
rate of 0.93 for the YOLOv5 model in detecting fall, walking, 
and sitting classes. This metric signifies a balanced 
performance in terms of precision (the ability to correctly 
classify positive cases) and recall (the ability to capture all 
actual positive cases). This obtained score demonstrates the 
model strikes a favorable balance between minimizing false 
positives and successfully identifying true positives. 

V. CONCLUSION 

In IoT smart home applications, detecting human fall 
detection is a difficult problem. The high complexity, poor 
accuracy, and time constraints of human fall detection in smart 
home applications is the focus of this work. The aim of this 
study is to develop an accurate and lightweight fall detection 

method that is applicable in IoT platforms. It developed a 
vision-based fall detection system that can recognize human 
fallen posture for use in smart home applications. The 
developed method involves training and testing a YOLO 
network to identify the postures in the prepared dataset. Based 
on the YOLO5 algorithm, which offers a high accuracy rate 
and satisfactory speed in posture identification, this Yolo-based 
technique was developed. One limitation of this study is the 
reliance on a relatively small dataset, which may limit the 
diversity and representation of fall-related scenarios. A larger 
and more diverse dataset could provide a more comprehensive 
understanding of fall detection in various real-world situations, 
potentially enhancing the model's generalizability and 
robustness to different environmental and contextual factors. 
Future work in this area could involve the expansion of the 
dataset to include a wider variety of fall-related scenarios, 
encompassing different environments, age groups, and diverse 
physical conditions. This would help improve the model's 
ability to handle a more extensive range of fall detection 
challenges. Other potential directions for future study include 
improving the accuracy and performance of the system by 
exploring alternative deep learning models or refining the 
existing technique. Another direction is to focus on the real-
time implementation and deployment of the system in real-
world smart home environments, considering factors such as 
scalability, reliability, and integration with IoT technologies. 
These advancements would contribute to the effective 
utilization of the system in IoT-based smart home applications. 
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