
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

106 | P a g e

www.ijacsa.thesai.org

Automatic Configuration of Deep Learning

Algorithms for an Arabic Named Entity Recognition

System

AZROUMAHLI Chaimae
1
, MOUHIB Ibtihal

2
, El YOUNOUSSI Yacine

3
, BADIR Hassan

4

Laboratory of Intelligent Systems and Applications (LSIA),

Moroccan School of Engineering Sciences (EMSI), Tangier, Morrocco
1, 2

SIGL Laboratory, ENSA Tetuan, Abdel Malek Essaadi University, Tetuan, Morrocco
3

IDS-Team, ENSA Tangier, Abdel Malek Essaadi University, Tangier, Morrocco
4

Abstract—Word embedding models have been widely used by

many researchers to extract linguistic features for Natural

Language Processing (NLP) tasks. However, the creation of an

adequate Word embedding model depends on choosing the right

language model method and architecture, in addition to fine-

tuning the various parameters of the language model. Each

parameter combination could result in a different model, and

each model can behave differently according to the targeted NLP

task. In this paper, we present an approach that combines a

range of Word embedding models, multiple clustering and

classification methods, and Irace for automatic algorithm

configuration. The goal is to facilitate the construction of the

most accurate Arabic Named Entity Recognition (NER) model

for our dataset. Our approach involves the creation of different

Word embedding models, the implementation of these models in

different classification and clustering methods, and fine-tuning

these implementations with different parameter combinations to

create an Arabic NER System with the highest accuracy rate.

Keywords—Algorithm automatic configuration; natural

language processing; named entity recognition; word embeddings;

finetuning; irace

I. INTRODUCTION

For NLP applications like machine translation, information
retrieval and sentiment analysis, it is crucial to have high-
quality systems for lower tasks that return necessary features
for machine learning systems [1] [2]. NER is an essential
component for such tasks, its most important aspect is
information extraction, and it can be carried out in two steps;
the detection of the Named Entities, and the classification of
these entities into a predefined set of categories (e.g.,
organizations, places, people, …). The term “Named Entity”
was introduced during the sixth Message understanding
conference [3]. The NER task was limited to the recognition of
the people's names, organizations, places, temporal expressions
and certain types of numerical expression [4]. These
classification tags were divided afterwards into these
categories: ENAMEX for people names, organizations and
places, TIMEX for temporal expressions, NUMEX for
numerical expression, and MISC for proper names that are not
in the ENAMEX category.

NER systems utilize several linguistic features, in fact
detecting these features is considered more important than the

used model itself, especially when handling languages with a
complex morphology like Arabic [5]. Lately, there has been a
hype on using unlabeled data to learn word representation or
Word Embeddings that can capture morphological, semantic
and syntactic features of words, which consequently can be
helpful in many learning algorithms of NLP including NER.
However, there are various methods for learning Word
Embeddings (e.g. Word2Vec [6], GloVe [7], FastText [8],
BERT [9], ELMO [10]), and each method has many
parameters that can be adjusted to create different models.
Further, the machine learning algorithm that will use these
Word embedding models can also have a major effect on the
performance of the resulting NER system. In addition, for each
model and machine learning algorithm, several training
parameters can be tuned and adjusted to get more accurate
results.

In this work, we adopt Irace [11] as a finetuning tool to find
the most accurate NER system for our dataset. Our dataset
includes two Arabic varieties: Modern Standard Arabic (MSA)
and Arabic Dialects (AD) [12]. The Objective is to choose
automatically one Word Embedding model from several
models created using four methods (i.e., Skip-Gram, CBOW,
GloVe, FastText) and one machine learning algorithm with its
suitable hyperparameter combination. We use Irace to fine-
tune between different created Arabic Word Embeddings, and
different classification algorithms (i.e., LSTM [13], GRU [14])
and clustering algorithms (i.e., K-Mean [15], Mean-shift [16],
DBSCAN [17], and Agglomerative [18]) to get the most
accurate system possible for the NER task.

The rest of this paper follows this structure: Section II
provides an overview of the key concepts and introduces the
Irace package, a crucial component of the proposed
methodology. Section III outlines the step-by-step process
employed to develop the NER system. Section IV presents and
analyzes the results obtained from the experiments. Finally,
Section 5 concludes the work described in this paper.

II. THE PROPOSED METHOD

In prior work [19], we have created word Embedding
models with four methods (i.e. Skip-Gram, CBOW, Glove,
FastText). These models were trained on three different
datasets (i.e., Wikipedia, Facebook, Twitter) containing two

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

107 | P a g e

www.ijacsa.thesai.org

different Arabic varieties (i.e., MSA and Arabic Dialects).
Then, we investigated the quality of the trained models using
12 hyperparameter combinations. We used different intrinsic
evaluations (i.e., Word Analogy Task, Concept categorization)
and different extrinsic evaluations (i.e., POS tagging, NER,
Text Classification, Sentiment Analysis). In conclusion, our
study raised three outcomes; The different stylistic properties
of the datasets and the tuned hyper-parameters had an impact
on the semantic and syntactic properties of the generated word
representations and, subsequently, an impact on the NLP tasks.
Further, even though the hyperparameters have a major impact
on the accuracy of different NLP tasks, these changes are
inconsistent and random [19].

As a consequence, we propose the solution of fine-tuning
between the different hyperparameters to get the most accurate
system for a specific application. Nevertheless, fine-tuning
between 12 combinations to create the Word Embeddings
model, and the different classification or clustering methods
will be computationally expensive and time-consuming. Thus,
we needed an approach that would automatically fine-tune
between these hyperparameters and deduce the most accurate
hyperparameter combination for a specific NLP task.

In this section, we present a detailed description of the tools
that we used, afterwards in Section 3, we explain in depth the
algorithms of our approach.

A. The Irace Package

In NLP, creating an efficient system is relevant to the
selection and fine-tuning of the training algorithms’
parameters. In Machine Learning, this is known as the
automatic algorithm’s configuration. The goal is to find
beneficial parameter settings to solve unseen problem instances
by trying automatic learning on a set of training problem
instances [11]. We opted to use the Irace package to facilitate
the combined use of Word Embeddings’ models and machine
learning methods. Irace executes an automatic tuning of a set
of parameter combinations, consequently, we avoid the manual
adjusting of these parameters.

The Irace package is an R software tool that implements
iterated racing procedures. It was created for the automatic
configuration of optimization and decision algorithms, thus, its
goal is to find the most accurate settings of an algorithm where
a set of probabilities’ instances is given [20],[21]. This package
is suitable for our application since it can automatically
configure the training algorithm where their performances
depend greatly on parameter settings.

Irace deduces the most accurate algorithm configuration by
implementing an elite principle on the iterated racing algorithm
[20]; In the first iteration, initial algorithm configurations are
randomly generated, and the best configuration is determined
by a race [11]. Each configuration is evaluated on the training
problem instances to set the “elite” configurations from the
prior configuration iterations. Afterwards, a statistical test is

used to determine the eliminated configurations once they
perform worse than the other configurations. The remaining
configurations will be known as the surviving configurations
that will run on the next instance.

B. The Word Embeddings Models

We opted for several Word Embeddings models using
different architectures and different hyper-parameters, Table I
shows the Dataset’s sources and the hyperparameters used to
train the models for every architecture. In prior work [19], we
used a Python implementation of Word2Vec to create Skip-
Gram and CBOW Word Embeddings models using
Word2Vec’s both architectures (i.e., Hierarchical SoftMax -
HS) and Negative Sampling (NS) [22])

1
. The models were

trained on four different training Arabic Datasets containing
both MSA and Arabic Dialects content. We used the Glove-
Python implementation to create Glove Word Embeddings
models. We opted to use pre-trained word vectors created by
the Facebook Artificial Intelligence Research team using Fast
Text’s CBOW and Skip-Gram architectures [23].

The used datasets were collected and pre-processed in prior
work from different sources [24]. The first source is the online
encyclopedia; Wikipedia. This corpus presents the two
varieties Classical and Modern Standard Arabic. The second
source is social media; Twitter and Facebook. This corpus
presents the various Arabic Dialects content. The datasets were
pre-processed afterwards; non-Arabic characters and diacritical
marks were removed, several characters were normalized to
unify the shape of some Arabic letters, and several Arabic stop
words were disregarded as well [24].

C. Machine Learning Methods

Different works have shown that the combined use of both
the supervised and the unsupervised methods has a positive
impact on the performance of several NLP applications [25],
[26],[27]. These methods are called semi-supervised methods,
where labelled and unlabeled data are used to perform certain
learning tasks [28]. In our case, we harnessed large amounts of
unlabeled Arabic text data and created word representations
that have the potential of carrying semantic and syntactic word
properties as explained in the previous section, we used
relatively smaller sets of labelled data to perform the NER task
as it will be explained in the next section. There is a wide range
of classification and clustering algorithms that can be used as
the supervised part of our application, and since we can
automatically configure and fine-tune between different
decision algorithms using Irace, we can utilize several
algorithms. For the clustering algorithms, we chose K-mean
[29], Mean-shift [16], DBSCAN [30], and Agglomerative [31].
For the classification algorithms, we chose LSTM [32] and
GRU [33]. Each method had its parameters and learning
activation and optimization layers that can be fine-tuned using
Irace. We chose these specific machine learning algorithms
since they prove to be useful for many machine learning fields
other than the NLP applications like the works cited in [34],
[35] and [36].

1 These implementations are available at: https://github.com/AzChaimae/

NLP-applications-with-Word-Embeddings-models-Extrinsic-Evaluation.git

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

108 | P a g e

www.ijacsa.thesai.org

TABLE I. MODEL’S HYPERPARAMETER CONFIGURATIONS

 CBOW (HS) CBOW (NS) Skip-Gram (HS) Skip-Gram (NS) Glove FastText

Dataset

source

Wikipedia, Facebook,
Twitter

Wikipedia, Facebook,
Twitter

Wikipedia, Facebook,
Twitter

Wikipedia, Facebook,
Twitter

Wikipedia,

Facebook,
Twitter

Wikipedia

Contextual

window
3,5,7,9 3,5,7,9 3,5,7,9 3,5,7,9 3,5,7,9 10

Vectors’

dimension
200,300, 400 200,300, 400 200,300, 400 200,300, 400 200,300, 400 300

III. METHODOLOGY

A. NER Template

To create an NER System using Word Embeddings, we
opted to use annotated existing corpora along with
classification and clustering algorithms. Our NER application
is performed on an annotated corpus provided by the AQMAR
project [37]. This dataset was preprocessed following the steps
described in Section II (B). The AQMAR dataset version that
we used contains 28 articles hand-annotated to nine named
entities, using the BIO system tags i.e., O (outside), B-PER
(Beginning of person’s entity), B-MIS (Beginning of
miscellaneous’ entity), B-ORG (Beginning of an organization’s
entity), B-LOC (Beginning of location’s entity), I-PER (Inside
of person’s entity), I-MIS (Inside of miscellaneous’ entity), I-
ORG (Inside of an organization’s entity), I-LOC (Inside of
location’s entity). Table II illustrates the statistics of the NER
annotated dataset and an example of the annotated tokens.

Our NER approach is illustrated in Fig. 1. The Auto NER
configuration class fine-tunes between Word Embeddings
models and different machine learning algorithms. The Word
Embeddings models were created using Word2Vec, Glove and
FastText models. The machine learning algorithms include
classification and clustering methods (i.e., LSTM, GRU, K-
Means, Mean-Shift, DBSCAN, and Agglomerative).

The Autoconfiguration class calls either an implementation
of LSTM networks or GRU networks as classification
algorithms or an implementation of K-Means, Agglomerative,
DBSCAN or Mean-Shift as clustering algorithms. These
algorithms were used to compute for each word representation
a score of the considered classes using the BIO system adopted
in the annotated corpus. Furthermore, the dataset was split into
training, validation and testing sets. The word representations
of the training and validation sets were fed to the chosen
classification or clustering layer, followed by a sigmoid
activation layer if it was set, and complied by Adam, a
stochastic Optimization layer again if they were chosen by the
Auto NER configuration class of Irace. The optimization of
each classification and clustering hyper-parameters is achieved
by creating several hyperparameter combinations using
different Word Embeddings models, then ranking the results of
each NER classifier or cluster with Irace.

To start building an NER system using one of several
classifications and clustering algorithms in addition to one of
the Word embedding models, we created an Auto NER
Configuration class. Fig. 2 illustrates the created methods for
our NER Auto parametrization executable Python script

2
. This

script is the input of Irace Target Runner.

The Auto parameterization class contains two major
methods: 1) The first method is the prediction method. It gets
the clusters’ prediction using the inputs set by Irace. These
inputs are the Word Embedding models and the training
algorithm. The NER models are created by preparing the
tokens, splitting the training document from the AQMAR
dataset into validation and testing sets, and then creating the
weight matrix for the words in the sets after loading the chosen
Word Embedding model. After defining the training algorithm,
the method calls the chosen classification, clustering or
activation layer into the compiler in addition to the stochastic
optimizers’ epochs and batch sizes. 2) The second method
calculates the accuracies of the created NER model, by
predicting the probabilities of the model, reducing the
probability array to speed up the compilation time, and then
returning the accuracy value that will be ranked using Irace.

The main objective of Irace is to minimize the cost value
returned by the target algorithm, to find the best solution. In
our case, the returned cost value of the target algorithm runner
is the NER model accuracies multiplied by -1 before returning
it to Irace. To calculate the accuracy of each NER model which
is the cost value used to find the best solution, we opted for the
F1 score if it’s a classification method as it was used in [38],
and the purity score if it’s a clustering method.

Due to the accuracy paradox, which asserts that the
accuracy score is unclear when evaluating classification
models, the F1 score was utilized to evaluate classification
models rather than accuracy. To measure a model's
performance, the F1 score uses Precision P and Recall R as
shown in Eq. (1).

 (1)

 (2)

2 Our Auto parametrization python implementation is available at:

https://github.com/AzChaimae/Auto-parametrization-for-NLP-application-.git

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

109 | P a g e

www.ijacsa.thesai.org

TABLE II. STATISTICS OF THE NER ANNOTATED CORPUS

Number of tokens Examples of the annotated tokens

57858
 … . الفائقة الأوتار بنظرية انتهاء و ، الكبري التىحيد بنظريات مرورا …

… O B-MIS I-MIS I-MIS O O O B-MIS I-MIS I-MIS O …

Fig. 1. NER approach using word embeddings.

Fig. 2. Auto NER configuration.

 (3)

The purity score is calculated by assigning
for each cluster the most frequent class in this cluster, then the
accuracy of the assigned class is measured by counting the
number of the correct assigned classes and dividing it by the

number of clusters in Eq. (4). presents the set of clusters, and
 is the set of classes.

∑ | |

 { } { }
 (4)

B. Autoconfiguring NER

1) Parameter’s file. To configure an algorithm, Irace

requires a text file that contains all parameters to be tuned,

including their type (categorical, ordinal, real, and integer) and

sets of their possible values. The algorithm must be prepared

to be configured externally with any valid parameter

combination from the parameters’ file. This was taken into

account while creating the Auto NER Configuration class. Our

parameters file contains all the parameters that can be taken by

the NER auto parametrization class: Embedding file, Method,

Flatten Layer, Global Average Pooling Layer, LSTM Layer,

LSTM Dropout Layer, GRU Layer, GRU Dropout, GRU

recurrent Dropout, Dense activation, Compile optimizer, The

Number of batch size, The Number of epochs, K-Means,

Mean-shift, DBSCAN or Agglomerative.

2) Forbidden parameter combinations. In addition to the

parameters file, Irace provides the option of declaring sets of

forbidden parameter combinations. For the Automatic NER

parametrization class, several parameter combinations will

result in a compilation error or will not be logical to compile.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

110 | P a g e

www.ijacsa.thesai.org

There is a total of 15 forbidden parameter combinations. If the

clustering method was chosen by Irace, the parameters related

to the classification methods would not be finetuned, and vice

versa for a classification method. Furthermore, one

classification or clustering method has to be chosen to train

the training weight matrix, the different dense activation and

compile optimizer layers can be overlayered and fine-tuned.

The rest of the forbidden parameter combinations were set to

avoid error compilations.

The total number of possible parameter combinations is
around combinations, while the mean compilation time
is 1.5 to 2 hours depending on the Embedding file the training
method and the machine performance. To minimize the
compilation time, we had to use the parallelization option
offered by Python and Irace to use 23 parallel multiprocessing
sessions.

IV. RESULTS AND DISCUSSION

The objective of this experimentation is to rank the
performance of the different Word embedding models,
classification layers and clustering methods in an NER system.
The different parameter combinations produced some
impressive accuracies, while the higher accuracy being 0,9536
was achieved by training a CBOW model using an LSTM
neural network, a SoftMax dense activation, and an Adam
compile optimizer. Irace tuned between 1024 parameter
combinations to get the best result.

To properly rank all the accuracies, we divided them into
four quartiles. The first one contains the best 25% of the
accuracies, the second one contains the next 25% best
accuracies and so forth. Table III shows the intervals of the
quartiles.

Fig. 3 illustrates the different training algorithms that
achieved accuracies in the four quartiles. The first observation

we can conduct from these results is that the classification
algorithms outperformed the clustering ones since the best 25%
of the accuracies were obtained by GRU and LSTM neural
networks. In the second and third quartiles, the majority of the
accuracies refer to the clustering algorithms. While the fourth
quartile represents the lowest accuracies obtained by
classification algorithms. From Fig. 3 (b), it's obvious that the
accuracy performances of the algorithms that belong to the
same category (classification or clustering) are relatively
similar. So, besides the machine learning approach, the training
hyperparameters could highly affect the accuracy of an
algorithm.

In the previous graphs, we noticed that even though the best
results ranked by Irace were obtained by the classification
methods, several mediocre accuracies were also obtained by
these classification methods, this can be explained by the fact
that we used several layers to create the classification models.
Fig. 4 and Fig. 5 illustrate the performance of LSTM and GRU
layers in the four accuracy quartiles. LSTM and GRU layers
performed relatively differently for both algorithms. The
maximum batch size had better results for LSTM, and a
minimum batch size gave better results for GRU. However, a
minimum number of epochs performed better for LSTM and
GRU. Furthermore, SoftMax and Sigmoid dense activations
outperformed the ReLU dense activation, and the Adam
optimizer architecture resulted in the majority of accuracies in
the first quartile for both LSTM and GRU algorithms.

TABLE III. THE QUARTILES OF ACCURACIES

Quartile 1 Quartile 2 Quartile 3 Quartile 4

Max 0,9536773 0,90623109 0,86445103 0,4216347

Min 0,90640394 0,86495761 0,42272924 0,3184785

Fig. 3. (a) Classification vs. clustering performances. (b) The performance of all the different classification and clustering methods.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

111 | P a g e

www.ijacsa.thesai.org

Each training algorithm resulted in both good and mediocre
accuracies. Fig 6 illustrates the scale accuracies of the different
training algorithms. This illustration enables us to study the
distributional characteristics of the accuracy level of each
algorithm. Consistently, the median of each box plot of each
training algorithm is relatively the same; around 0.86 for
clustering algorithms, and 0.89 for classification algorithms.
The upper quartile of the clustering algorithms is around 0.93,
but the lower quartile of the classification algorithms is around
0.41. The clustering algorithms, however, had an upper quartile
of 0.87 but a lower quartile of just around 0.83. For GRU and
LSTM, the box plots are comparatively long which means that
there is a range of results that behaved differently as a result of
different factors. On the contrary, for Agglomerative, K-
Means, mean-shift, and DBSCAN, the box plots were
significantly shorter with few outliers, which means that even
though they were different factors including the Word
Embeddings’ models, the accuracies for clustering methods
had a high level of agreement.

All of the parameters and factors that were used affect the
accuracy of a model and its performance in an NLP
application, thus, Irace and the use of Word Embeddings was
the ideal solution to find the parameters combination that will
result in the most accurate model for a NER system or any
other NLP applications.

Fig. 4. The performance of the LSTM parameters.

Fig. 5. The performance of the GRU parameters.

Fig. 6. The distributional scale scores of the training algorithms.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

112 | P a g e

www.ijacsa.thesai.org

V. CONCLUSION

In this paper, we have proposed a NER approach that fine-
tunes between different Word Embedding models and different
hyperparameters of a different machine learning algorithm to
obtain the most accurate NER system. The Word Embedding
models were trained on different Arabic datasets that we
collected from different sources to obtain all the Arabic
varieties. The NER models were obtained by training the word
Embedding representations of annotated Named Entities
datasets, the training algorithms included several classification
and clustering methods. The Irace package served as an
automatic parameter configuration and optimization solution
for an Arabic NER system. We have developed a program that
was fed to the Irace package, it trains the Word Embeddings
representation of the annotated Named Entities according to
the selected parameters combination and returns the model
accuracy that was ranked by Irace. The most accurate NER
model achieved an accuracy of 0.9536.

Several promising directions remain to be explored using
Irace and Word Embeddings models; other uprisings Word
Embeddings models like Elmo, Bert and XLNET could result
in more accurate systems for NER and other NLP applications.

REFERENCES

[1] D. Khurana, A. Koli, K. Khatter, and S. Singh, “Natural language
processing: state of the art, current trends and challenges,” Multimed.
Tools Appl., vol. 82, no. 3, pp. 3713–3744, 2023, doi: 10.1007/s11042-
022-13428-4.

[2] A. Shoufan and S. Al-Ameri, “Natural Language Processing for
Dialectical Arabic: A Survey,” pp. 36–48, 2015, [Online]. Available:
http://www.aclweb.org/anthology/W15-3205

[3] Y. Benajiba and P. Rosso, “ANERsys 2 . 0 : Conquering the NER Task
for the Arabic Language by Combining the Maximum Entropy with
POS-tag Information,” 3rd Indian Int. Conf. Artif. Intell., pp. 1814–
1823, 2007.

[4] Y. Benajiba, P. Rosso, and J. M. Bened Ruiz, “ANERsys : An Arabic
Named Entity Recognition System Based on Maximum Entropy,”
CICLing 2007, pp. 143–153, 2007.

[5] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer,
“Neural architectures for named entity recognition,” in 2016 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL HLT 2016 -
Proceedings of the Conference, 2016, pp. 260–270. doi:
10.18653/v1/n16-1030.

[6] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of
Word Representations in Vector Space,” CrossRef List. Deleted DOIs,
vol. 1, pp. 4069–4076, Jan. 2013, doi:
https://doi.org/10.48550/arXiv.1301.3781.

[7] J. Pennington, R. Socher, and C. Manning, “Glove: Global Vectors for
Word Representation,” in Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2014,
pp. 1532–1543. doi: 10.3115/v1/D14-1162.

[8] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching Word
Vectors with Subword Information,” Anal. Methods, vol. 5, no. 3, pp.
729–734, Jul. 2016, doi: https://doi.org/10.48550/arXiv.1607.04606.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of Deep Bidirectional Transformers for Language
Understanding,” arXiv Prepr. arXiv1810.04805, 2018, doi:
arXiv:1811.03600v2.

[10] M. E. Peters et al., “Deep contextualized word representations,” in
Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, 2018, pp. 2227–2237. doi: 10.18653/v1/N18-1202.

[11] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, M. Birattari, and
T. Stützle, “The irace package: Iterated racing for automatic algorithm
configuration,” Oper. Res. Perspect., vol. 3, pp. 43–58, 2016, doi:
10.1016/j.orp.2016.09.002.

[12] B. Mouaz, B. H. Abderrahim, and E. Abdelmajid, “Speech recognition
of Moroccan dialect using hidden Markov models,” IAES Int. J. Artif.
Intell., vol. 8, no. 1, pp. 7–13, 2019, doi: 10.11591/ijai.v8.i1.pp7-13.

[13] R. Siddalingappa and K. Sekar, “Bi-directional long short term memory
using recurrent neural network for biological entity recognition,” IAES
Int. J. Artif. Intell., vol. 11, no. 1, p. 89, 2022, doi:
10.11591/ijai.v11.i1.pp89-101.

[14] H. Elzayady, M. S. Mohamed, K. M. Badran, and G. I. Salama,
“Detecting Arabic textual threats in social media using artificial
intelligence: An overview,” Indones. J. Electr. Eng. Comput. Sci., vol.
25, no. 3, p. 1712, 2022, doi 10.11591/ijeecs.v25.i3.pp1712-1722.

[15] W. Yang, H. Long, L. Ma, and H. Sun, “Research on clustering method
based on weighted distance density and k-means,” Procedia Comput.
Sci., vol. 166, pp. 507–511, 2020, doi: 10.1016/j.procs.2020.02.056.

[16] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24,
no. 5, pp. 603–619, 2002, doi: 10.1109/34.1000236.

[17] R. Zhang, J. Qiu, M. Guo, H. Cui, and X. Chen, “An Adjusting Strategy
after DBSCAN,” IFAC-PapersOnLine, vol. 55, no. 3, pp. 219–222,
2022, doi: 10.1016/j.ifacol.2022.05.038.

[18] T. Li, A. Rezaeipanah, and E. S. M. Tag El Din, “An ensemble
agglomerative hierarchical clustering algorithm based on clusters
clustering technique and the novel similarity measurement,” J. King
Saud Univ. - Comput. Inf. Sci., vol. 34, no. 6, pp. 3828–3842, 2022, doi:
10.1016/j.jksuci.2022.04.010.

[19] A. Chaimae, M. Rybinski, E. Y. Yacine, and J. F. A. Montes,
“Comparative study of Arabic Word Embeddings : Evaluation and
Application,” Int. J. Comput. Inf. Syst. Ind. Manag. Appl. ISSN 2150-
7988, vol. 12, pp. 349–362, 2020, [Online]. Available:
http://www.mirlabs.org/ijcisim/volume_12.html

[20] A. J. Nebro, C. Barba-González, M. López-Ibáñez, and J. García-Nieto,
“Automatic configuration of NSGA-II with jMetal and irace,” GECCO
2019 Companion - Proc. 2019 Genet. Evol. Comput. Conf. Companion,
pp. 1374–1381, 2019, doi: 10.1145/3319619.3326832.

[21] M. López-ibáñez, L. P. Cáceres, J. Dubois-lacoste, T. Stützle, and M.
Birattari, The irace Package : User Guide. 2018. doi:
10.1080/19463138.2012.694818.

[22] R. Adipradana, B. P. Nayoga, R. Suryadi, and D. Suhartono, “Hoax
analyzer for Indonesian news using rnns with fasttext and glove
embeddings,” Bull. Electr. Eng. Informatics, vol. 10, no. 4, pp. 2130–
2136, 2021, doi: 10.11591/eei.v10i4.2956.

[23] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of Tricks for
Efficient Text Classification,” in Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics,
2017, pp. 427–431. doi: 1511.09249v1.

[24] A. Chaimae, Y. El Younoussi, O. Moussaoui, and Y. Zahidi, “An Arabic
Dialects Dictionary Using Word Embeddings,” Int. J. Rough Sets Data
Anal., vol. 6, no. 3, pp. 18–31, Jul. 2019, doi:
10.4018/IJRSDA.2019070102.

[25] M. A. S. Md Afendi and M. Yusoff, “A sound event detection based on
hybrid convolution neural network and random forest,” IAES Int. J.
Artif. Intell., vol. 11, no. 1, p. 121, 2022, doi:
10.11591/ijai.v11.i1.pp121-128.

[26] M. Hadni, S. A. Ouatik, and A. Lachkar, “Effective Arabic Stemmer
Based Hybrid Approach for Arabic Text Categorization,” Int. J. Data
Min. Knowl. Manag. Process, vol. 3, no. 4, pp. 1–14, 2013, doi:
10.5121/ijdkp.2013.3401.

[27] R. Boujelbane, M. E. Khemakhem, S. Ben Ayed, and L. H. Belguith,
“Building bilingual lexicon to create Dialect Tunisian corpora and adapt
language model,” Proc. Second Work. Hybrid Approaches to Transl.
pages 88–93, Sofia, Bulg. August 8, 2013. c 2013 Assoc. Comput.
Linguist., pp. 88–93, 2013.

[28] J. E. van Engelen and H. H. Hoos, “A survey on semi-supervised
learning,” Mach. Learn. 109, pp. 373–440, 2019, doi: 10.1007/s10994-
019-05855-6.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

113 | P a g e

www.ijacsa.thesai.org

[29] J. Yadav and M. Sharma, “A Review of K-mean Algorithm,” Int. J. Eng.
Trends Technol., vol. 4, no. 7, pp. 2972–2976, 2013.

[30] B. Ma, C. Yang, A. Li, Y. Chi, and L. Chen, “A Faster DBSCAN
Algorithm Based on Self-Adaptive Determination of Parameters,”
Procedia Comput. Sci., vol. 221, pp. 113–120, Jan. 2023, doi:
10.1016/j.procs.2023.07.017.

[31] B. Walter, K. Bala, M. Kulkarni, and K. Pingali, “Fast agglomerative
clustering for rendering,” in RT’08 - IEEE/EG Symposium on
Interactive Ray Tracing 2008, Proceedings, 2008, pp. 81–86. doi:
10.1109/RT.2008.4634626.

[32] M. Sundermeyer, R. Schlüter, and H. Ney, “LSTM neural networks for
language modelling,” in 13th Annual International Speech
Communication Association, 2012, pp. 194–197.

[33] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration
of Recurrent Network architectures,” in 32nd International Conference
on Machine Learning, ICML 2015, 2015, pp. 2342–2350.

[34] [34] S. Patankar, M. Phadke, and S. Devane, “Wiki sense bag creation
using multilingual word sense disambiguation,” IAES Int. J. Artif.
Intell., vol. 11, no. 1, p. 319, 2022, doi: 10.11591/ijai.v11.i1.pp319-326.

[35] C. Huang and G. Qin, “Low-rank matrix optimization for video
segmentation research,” Indones. J. Electr. Eng. Comput. Sci., vol. 6, no.
1, pp. 36–41, 2017, doi: 10.11591/ijeecs.v6.i1.pp36-41.

[36] A. S. Abdalkafor and S. A. Aliesawi, “Applying of (SOM, HAC, and
RBF) algorithms for data aggregation in wireless sensors networks,”
Bull. Electr. Eng. Informatics, vol. 11, no. 1, pp. 354–363, 2022, doi:
10.11591/eei.v11i1.3462.

[37] B. Mohit, N. Schneider, R. Bhowmick, K. Oflazer, and N. A. Smith,
“Recall-oriented learning of named entities in Arabicwikipedia,” EACL
2012 - 13th Conf. Eur. Chapter Assoc. Comput. Linguist. Proc., pp.
162–173, 2012.

[38] A. S. M. Afendi and M. Yusoff, “Review of anomalous sound event
detection approaches,” IAES Int. J. Artif. Intell., vol. 8, no. 3, pp. 264–
269, 2019, doi: 10.11591/ijai.v8.i3.pp264-269.

