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Abstract—Word embedding models have been widely used by 

many researchers to extract linguistic features for Natural 

Language Processing (NLP) tasks. However, the creation of an 

adequate Word embedding model depends on choosing the right 

language model method and architecture, in addition to fine-

tuning the various parameters of the language model. Each 

parameter combination could result in a different model, and 

each model can behave differently according to the targeted NLP 

task. In this paper, we present an approach that combines a 

range of Word embedding models, multiple clustering and 

classification methods, and Irace for automatic algorithm 

configuration. The goal is to facilitate the construction of the 

most accurate Arabic Named Entity Recognition (NER) model 

for our dataset. Our approach involves the creation of different 

Word embedding models, the implementation of these models in 

different classification and clustering methods, and fine-tuning 

these implementations with different parameter combinations to 

create an Arabic NER System with the highest accuracy rate. 

Keywords—Algorithm automatic configuration; natural 

language processing; named entity recognition; word embeddings; 

finetuning; irace 

I. INTRODUCTION 

For NLP applications like machine translation, information 
retrieval and sentiment analysis, it is crucial to have high-
quality systems for lower tasks that return necessary features 
for machine learning systems [1] [2]. NER is an essential 
component for such tasks, its most important aspect is 
information extraction, and it can be carried out in two steps; 
the detection of the Named Entities, and the classification of 
these entities into a predefined set of categories (e.g., 
organizations, places, people, …). The term “Named Entity” 
was introduced during the sixth Message understanding 
conference [3]. The NER task was limited to the recognition of 
the people's names, organizations, places, temporal expressions 
and certain types of numerical expression [4]. These 
classification tags were divided afterwards into these 
categories: ENAMEX for people names, organizations and 
places, TIMEX for temporal expressions, NUMEX for 
numerical expression, and MISC for proper names that are not 
in the ENAMEX category. 

NER systems utilize several linguistic features, in fact 
detecting these features is considered more important than the 

used model itself, especially when handling languages with a 
complex morphology like Arabic [5]. Lately, there has been a 
hype on using unlabeled data to learn word representation or 
Word Embeddings that can capture morphological, semantic 
and syntactic features of words, which consequently can be 
helpful in many learning algorithms of NLP including NER. 
However, there are various methods for learning Word 
Embeddings (e.g. Word2Vec [6], GloVe [7], FastText [8], 
BERT [9], ELMO [10]), and each method has many 
parameters that can be adjusted to create different models. 
Further, the machine learning algorithm that will use these 
Word embedding models can also have a major effect on the 
performance of the resulting NER system. In addition, for each 
model and machine learning algorithm, several training 
parameters can be tuned and adjusted to get more accurate 
results. 

In this work, we adopt Irace [11] as a finetuning tool to find 
the most accurate NER system for our dataset. Our dataset 
includes two Arabic varieties: Modern Standard Arabic (MSA) 
and Arabic Dialects (AD) [12]. The Objective is to choose 
automatically one Word Embedding model from several 
models created using four methods (i.e., Skip-Gram, CBOW, 
GloVe, FastText) and one machine learning algorithm with its 
suitable hyperparameter combination. We use Irace to fine-
tune between different created Arabic Word Embeddings, and 
different classification algorithms (i.e., LSTM [13], GRU [14]) 
and clustering algorithms (i.e., K-Mean [15], Mean-shift [16], 
DBSCAN [17], and Agglomerative [18]) to get the most 
accurate system possible for the NER task. 

The rest of this paper follows this structure: Section II 
provides an overview of the key concepts and introduces the 
Irace package, a crucial component of the proposed 
methodology. Section III outlines the step-by-step process 
employed to develop the NER system. Section IV presents and 
analyzes the results obtained from the experiments. Finally, 
Section 5 concludes the work described in this paper. 

II. THE PROPOSED METHOD 

In prior work [19], we have created word Embedding 
models with four methods (i.e. Skip-Gram, CBOW, Glove, 
FastText). These models were trained on three different 
datasets (i.e., Wikipedia, Facebook, Twitter) containing two 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 10, 2023 

107 | P a g e  

www.ijacsa.thesai.org 

different Arabic varieties (i.e., MSA and Arabic Dialects). 
Then, we investigated the quality of the trained models using 
12 hyperparameter combinations. We used different intrinsic 
evaluations (i.e., Word Analogy Task, Concept categorization) 
and different extrinsic evaluations (i.e., POS tagging, NER, 
Text Classification, Sentiment Analysis). In conclusion, our 
study raised three outcomes; The different stylistic properties 
of the datasets and the tuned hyper-parameters had an impact 
on the semantic and syntactic properties of the generated word 
representations and, subsequently, an impact on the NLP tasks. 
Further, even though the hyperparameters have a major impact 
on the accuracy of different NLP tasks, these changes are 
inconsistent and random [19]. 

As a consequence, we propose the solution of fine-tuning 
between the different hyperparameters to get the most accurate 
system for a specific application. Nevertheless, fine-tuning 
between 12 combinations to create the Word Embeddings 
model, and the different classification or clustering methods 
will be computationally expensive and time-consuming. Thus, 
we needed an approach that would automatically fine-tune 
between these hyperparameters and deduce the most accurate 
hyperparameter combination for a specific NLP task. 

In this section, we present a detailed description of the tools 
that we used, afterwards in Section 3, we explain in depth the 
algorithms of our approach. 

A. The Irace Package 

In NLP, creating an efficient system is relevant to the 
selection and fine-tuning of the training algorithms’ 
parameters. In Machine Learning, this is known as the 
automatic algorithm’s configuration. The goal is to find 
beneficial parameter settings to solve unseen problem instances 
by trying automatic learning on a set of training problem 
instances [11]. We opted to use the Irace package to facilitate 
the combined use of Word Embeddings’ models and machine 
learning methods. Irace executes an automatic tuning of a set 
of parameter combinations, consequently, we avoid the manual 
adjusting of these parameters. 

The Irace package is an R software tool that implements 
iterated racing procedures. It was created for the automatic 
configuration of optimization and decision algorithms, thus, its 
goal is to find the most accurate settings of an algorithm where 
a set of probabilities’ instances is given [20],[21]. This package 
is suitable for our application since it can automatically 
configure the training algorithm where their performances 
depend greatly on parameter settings. 

Irace deduces the most accurate algorithm configuration by 
implementing an elite principle on the iterated racing algorithm 
[20]; In the first iteration, initial algorithm configurations are 
randomly generated, and the best configuration is determined 
by a race [11]. Each configuration is evaluated on the training 
problem instances to set the “elite” configurations from the 
prior configuration iterations. Afterwards, a statistical test is 

used to determine the eliminated configurations once they 
perform worse than the other configurations. The remaining 
configurations will be known as the surviving configurations 
that will run on the next instance. 

B. The Word Embeddings Models 

We opted for several Word Embeddings models using 
different architectures and different hyper-parameters, Table I 
shows the Dataset’s sources and the hyperparameters used to 
train the models for every architecture. In prior work [19], we 
used a Python implementation of Word2Vec to create Skip-
Gram and CBOW Word Embeddings models using 
Word2Vec’s both architectures (i.e., Hierarchical SoftMax -
HS) and Negative Sampling (NS) [22])

1
. The models were 

trained on four different training Arabic Datasets containing 
both MSA and Arabic Dialects content. We used the Glove-
Python implementation to create Glove Word Embeddings 
models. We opted to use pre-trained word vectors created by 
the Facebook Artificial Intelligence Research team using Fast 
Text’s CBOW and Skip-Gram architectures [23]. 

The used datasets were collected and pre-processed in prior 
work from different sources [24]. The first source is the online 
encyclopedia; Wikipedia. This corpus presents the two 
varieties Classical and Modern Standard Arabic. The second 
source is social media; Twitter and Facebook. This corpus 
presents the various Arabic Dialects content. The datasets were 
pre-processed afterwards; non-Arabic characters and diacritical 
marks were removed, several characters were normalized to 
unify the shape of some Arabic letters, and several Arabic stop 
words were disregarded as well [24]. 

C. Machine Learning Methods 

Different works have shown that the combined use of both 
the supervised and the unsupervised methods has a positive 
impact on the performance of several NLP applications [25], 
[26],[27]. These methods are called semi-supervised methods, 
where labelled and unlabeled data are used to perform certain 
learning tasks [28]. In our case, we harnessed large amounts of 
unlabeled Arabic text data and created word representations 
that have the potential of carrying semantic and syntactic word 
properties as explained in the previous section, we used 
relatively smaller sets of labelled data to perform the NER task 
as it will be explained in the next section. There is a wide range 
of classification and clustering algorithms that can be used as 
the supervised part of our application, and since we can 
automatically configure and fine-tune between different 
decision algorithms using Irace, we can utilize several 
algorithms. For the clustering algorithms, we chose K-mean 
[29], Mean-shift [16], DBSCAN [30], and Agglomerative [31]. 
For the classification algorithms, we chose LSTM [32] and 
GRU [33]. Each method had its parameters and learning 
activation and optimization layers that can be fine-tuned using 
Irace. We chose these specific machine learning algorithms 
since they prove to be useful for many machine learning fields 
other than the NLP applications like the works cited in [34], 
[35] and [36]. 

                                                                                                     
1 These implementations are available at:  https://github.com/AzChaimae/ 

NLP-applications-with-Word-Embeddings-models-Extrinsic-Evaluation.git  
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TABLE I.  MODEL’S HYPERPARAMETER CONFIGURATIONS 

 CBOW (HS) CBOW (NS) Skip-Gram (HS) Skip-Gram (NS) Glove FastText 

Dataset 

source 

Wikipedia, Facebook, 
Twitter 

Wikipedia, Facebook, 
Twitter 

Wikipedia, Facebook, 
Twitter 

Wikipedia, Facebook, 
Twitter 

Wikipedia, 

Facebook, 
Twitter 

Wikipedia 

Contextual 

window 
3,5,7,9 3,5,7,9 3,5,7,9 3,5,7,9 3,5,7,9 10 

Vectors’ 

dimension 
200,300, 400 200,300, 400 200,300, 400 200,300, 400 200,300, 400 300 

III. METHODOLOGY 

A. NER Template 

To create an NER System using Word Embeddings, we 
opted to use annotated existing corpora along with 
classification and clustering algorithms. Our NER application 
is performed on an annotated corpus provided by the AQMAR 
project [37]. This dataset was preprocessed following the steps 
described in Section II (B). The AQMAR dataset version that 
we used contains 28 articles hand-annotated to nine named 
entities, using the BIO system tags i.e., O (outside), B-PER 
(Beginning of person’s entity), B-MIS (Beginning of 
miscellaneous’ entity), B-ORG (Beginning of an organization’s 
entity), B-LOC (Beginning of location’s entity), I-PER (Inside 
of person’s entity), I-MIS (Inside of miscellaneous’ entity), I-
ORG (Inside of an organization’s entity), I-LOC (Inside of 
location’s entity). Table II illustrates the statistics of the NER 
annotated dataset and an example of the annotated tokens. 

Our NER approach is illustrated in Fig. 1. The Auto NER 
configuration class fine-tunes between Word Embeddings 
models and different machine learning algorithms. The Word 
Embeddings models were created using Word2Vec, Glove and 
FastText models. The machine learning algorithms include 
classification and clustering methods (i.e., LSTM, GRU, K-
Means, Mean-Shift, DBSCAN, and Agglomerative). 

The Autoconfiguration class calls either an implementation 
of LSTM networks or GRU networks as classification 
algorithms or an implementation of K-Means, Agglomerative, 
DBSCAN or Mean-Shift as clustering algorithms. These 
algorithms were used to compute for each word representation 
a score of the considered classes using the BIO system adopted 
in the annotated corpus. Furthermore, the dataset was split into 
training, validation and testing sets. The word representations 
of the training and validation sets were fed to the chosen 
classification or clustering layer, followed by a sigmoid 
activation layer if it was set, and complied by Adam, a 
stochastic Optimization layer again if they were chosen by the 
Auto NER configuration class of Irace. The optimization of 
each classification and clustering hyper-parameters is achieved 
by creating several hyperparameter combinations using 
different Word Embeddings models, then ranking the results of 
each NER classifier or cluster with Irace. 

To start building an NER system using one of several 
classifications and clustering algorithms in addition to one of 
the Word embedding models, we created an Auto NER 
Configuration class. Fig. 2 illustrates the created methods for 
our NER Auto parametrization executable Python script

2
. This 

script is the input of Irace Target Runner. 

The Auto parameterization class contains two major 
methods: 1) The first method is the prediction method. It gets 
the clusters’ prediction using the inputs set by Irace. These 
inputs are the Word Embedding models and the training 
algorithm. The NER models are created by preparing the 
tokens, splitting the training document from the AQMAR 
dataset into validation and testing sets, and then creating the 
weight matrix for the words in the sets after loading the chosen 
Word Embedding model. After defining the training algorithm, 
the method calls the chosen classification, clustering or 
activation layer into the compiler in addition to the stochastic 
optimizers’ epochs and batch sizes. 2) The second method 
calculates the accuracies of the created NER model, by 
predicting the probabilities of the model, reducing the 
probability array to speed up the compilation time, and then 
returning the accuracy value that will be ranked using Irace. 

The main objective of Irace is to minimize the cost value 
returned by the target algorithm, to find the best solution. In 
our case, the returned cost value of the target algorithm runner 
is the NER model accuracies multiplied by -1 before returning 
it to Irace. To calculate the accuracy of each NER model which 
is the cost value used to find the best solution, we opted for the 
F1 score if it’s a classification method as it was used in [38], 
and the purity score if it’s a clustering method. 

Due to the accuracy paradox, which asserts that the 
accuracy score is unclear when evaluating classification 
models, the F1 score was utilized to evaluate classification 
models rather than accuracy. To measure a model's 
performance, the F1 score uses Precision P and Recall R as 
shown in Eq. (1). 

   
 

          
   

   
 (1) 

  
                       

                                                   
 (2) 

                                                                                                     
2  Our Auto parametrization python implementation is available at: 

https://github.com/AzChaimae/Auto-parametrization-for-NLP-application-.git  
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TABLE II.  STATISTICS OF THE NER ANNOTATED CORPUS 

Number of tokens Examples of the annotated tokens 

57858 
 … . الفائقة الأوتار بنظرية انتهاء و ، الكبري التىحيد بنظريات مرورا …

… O B-MIS I-MIS I-MIS O O O B-MIS I-MIS I-MIS O … 
 

 

Fig. 1. NER approach using word embeddings. 

 

Fig. 2. Auto NER configuration. 

  
                       

                                                   
 (3) 

The purity score             is calculated by assigning 
for each cluster the most frequent class in this cluster, then the 
accuracy of the assigned class is measured by counting the 
number of the correct assigned classes and dividing it by   the 

number of clusters in Eq. (4).   presents the set of clusters, and 
  is the set of classes. 

            
 

 
∑     |     | 

  {       }      {       }
 (4) 

B. Autoconfiguring NER 

1) Parameter’s file. To configure an algorithm, Irace 

requires a text file that contains all parameters to be tuned, 

including their type (categorical, ordinal, real, and integer) and 

sets of their possible values. The algorithm must be prepared 

to be configured externally with any valid parameter 

combination from the parameters’ file. This was taken into 

account while creating the Auto NER Configuration class. Our 

parameters file contains all the parameters that can be taken by 

the NER auto parametrization class: Embedding file, Method, 

Flatten Layer, Global Average Pooling Layer, LSTM Layer, 

LSTM Dropout Layer, GRU Layer, GRU Dropout, GRU 

recurrent Dropout, Dense activation, Compile optimizer, The 

Number of batch size, The Number of epochs, K-Means, 

Mean-shift, DBSCAN or Agglomerative. 

2) Forbidden parameter combinations. In addition to the 

parameters file, Irace provides the option of declaring sets of 

forbidden parameter combinations. For the Automatic NER 

parametrization class, several parameter combinations will 

result in a compilation error or will not be logical to compile. 
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There is a total of 15 forbidden parameter combinations. If the 

clustering method was chosen by Irace, the parameters related 

to the classification methods would not be finetuned, and vice 

versa for a classification method. Furthermore, one 

classification or clustering method has to be chosen to train 

the training weight matrix, the different dense activation and 

compile optimizer layers can be overlayered and fine-tuned. 

The rest of the forbidden parameter combinations were set to 

avoid error compilations. 

The total number of possible parameter combinations is 
around        combinations, while the mean compilation time 
is 1.5 to 2 hours depending on the Embedding file the training 
method and the machine performance. To minimize the 
compilation time, we had to use the parallelization option 
offered by Python and Irace to use 23 parallel multiprocessing 
sessions. 

IV. RESULTS AND DISCUSSION 

The objective of this experimentation is to rank the 
performance of the different Word embedding models, 
classification layers and clustering methods in an NER system. 
The different parameter combinations produced some 
impressive accuracies, while the higher accuracy being 0,9536 
was achieved by training a CBOW model using an LSTM 
neural network, a SoftMax dense activation, and an Adam 
compile optimizer. Irace tuned between 1024 parameter 
combinations to get the best result. 

To properly rank all the accuracies, we divided them into 
four quartiles. The first one contains the best 25% of the 
accuracies, the second one contains the next 25% best 
accuracies and so forth. Table III shows the intervals of the 
quartiles. 

Fig. 3 illustrates the different training algorithms that 
achieved accuracies in the four quartiles. The first observation 

we can conduct from these results is that the classification 
algorithms outperformed the clustering ones since the best 25% 
of the accuracies were obtained by GRU and LSTM neural 
networks. In the second and third quartiles, the majority of the 
accuracies refer to the clustering algorithms. While the fourth 
quartile represents the lowest accuracies obtained by 
classification algorithms. From Fig. 3 (b), it's obvious that the 
accuracy performances of the algorithms that belong to the 
same category (classification or clustering) are relatively 
similar. So, besides the machine learning approach, the training 
hyperparameters could highly affect the accuracy of an 
algorithm. 

In the previous graphs, we noticed that even though the best 
results ranked by Irace were obtained by the classification 
methods, several mediocre accuracies were also obtained by 
these classification methods, this can be explained by the fact 
that we used several layers to create the classification models. 
Fig. 4 and Fig. 5 illustrate the performance of LSTM and GRU 
layers in the four accuracy quartiles. LSTM and GRU layers 
performed relatively differently for both algorithms. The 
maximum batch size had better results for LSTM, and a 
minimum batch size gave better results for GRU. However, a 
minimum number of epochs performed better for LSTM and 
GRU. Furthermore, SoftMax and Sigmoid dense activations 
outperformed the ReLU dense activation, and the Adam 
optimizer architecture resulted in the majority of accuracies in 
the first quartile for both LSTM and GRU algorithms. 

TABLE III.  THE QUARTILES OF ACCURACIES 

 
Quartile 1 Quartile 2 Quartile 3 Quartile 4 

Max 0,9536773 0,90623109 0,86445103 0,4216347 

Min 0,90640394 0,86495761 0,42272924 0,3184785 

 

Fig. 3. (a) Classification vs. clustering performances. (b) The performance of all the different classification and clustering methods. 
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Each training algorithm resulted in both good and mediocre 
accuracies. Fig 6 illustrates the scale accuracies of the different 
training algorithms. This illustration enables us to study the 
distributional characteristics of the accuracy level of each 
algorithm. Consistently, the median of each box plot of each 
training algorithm is relatively the same; around 0.86 for 
clustering algorithms, and 0.89 for classification algorithms. 
The upper quartile of the clustering algorithms is around 0.93, 
but the lower quartile of the classification algorithms is around 
0.41. The clustering algorithms, however, had an upper quartile 
of 0.87 but a lower quartile of just around 0.83. For GRU and 
LSTM, the box plots are comparatively long which means that 
there is a range of results that behaved differently as a result of 
different factors. On the contrary, for Agglomerative, K-
Means, mean-shift, and DBSCAN, the box plots were 
significantly shorter with few outliers, which means that even 
though they were different factors including the Word 
Embeddings’ models, the accuracies for clustering methods 
had a high level of agreement. 

All of the parameters and factors that were used affect the 
accuracy of a model and its performance in an NLP 
application, thus, Irace and the use of Word Embeddings was 
the ideal solution to find the parameters combination that will 
result in the most accurate model for a NER system or any 
other NLP applications. 

 
Fig. 4. The performance of the LSTM parameters. 

 

Fig. 5. The performance of the GRU parameters. 

 

Fig. 6. The distributional scale scores of the training algorithms. 
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V. CONCLUSION 

In this paper, we have proposed a NER approach that fine-
tunes between different Word Embedding models and different 
hyperparameters of a different machine learning algorithm to 
obtain the most accurate NER system. The Word Embedding 
models were trained on different Arabic datasets that we 
collected from different sources to obtain all the Arabic 
varieties. The NER models were obtained by training the word 
Embedding representations of annotated Named Entities 
datasets, the training algorithms included several classification 
and clustering methods. The Irace package served as an 
automatic parameter configuration and optimization solution 
for an Arabic NER system. We have developed a program that 
was fed to the Irace package, it trains the Word Embeddings 
representation of the annotated Named Entities according to 
the selected parameters combination and returns the model 
accuracy that was ranked by Irace. The most accurate NER 
model achieved an accuracy of 0.9536. 

Several promising directions remain to be explored using 
Irace and Word Embeddings models; other uprisings Word 
Embeddings models like Elmo, Bert and XLNET could result 
in more accurate systems for NER and other NLP applications. 
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