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Abstract—As the growth of immersive 3D animation, its 

application in ink element animation is constantly updating and 

advancing. However, the current immersive 3D ink element 

animation production also has the problem of lack of innovation 

and repeated development, so the research innovatively designs 

and develops the image stitching method for immersive 3D ink 

element animation production. The method is designed through 

stereo matching algorithm and scale-invariant feature transform 

algorithm, and the stereo matching algorithm is optimized with 

the weighted median filtering method based on the guide map. In 

addition, the study also designs the specific implementation of 

this method from different functional modules. The experimental 

results show that on four different datasets, the error percentages 

of the optimized stereo matching algorithm in non-occluded 

areas are 0.3885%, 0.4743%, 1.6848%, and 1.34%, respectively. 

The error percentages of all areas are 0.8316%, 0.8253%, 

4.3235%, and 4.1760%, respectively. The research and design of 

image stitching methods can be applied in other fields and has 

good practical significance. 

Keywords—Immersive; 3D; ink element animation; image 

stitching; stereo matching algorithm 

I. INTRODUCTION 

As the advancement of immersive 3D animation, it has 
gradually become a popular form of artistic expression in 
animation [1]. Immersive 3D animation technology is 
developed on the basis of computer vision technology and 
image technology, and can complete its own construction 
through fixed steps [2]. Stereoscopic 3D animation can 
generate highly realistic 3D animation images by simulating 
the human visual system. With the development of 3D 
technology, the design and application of ink element 
animation (IEA) in 3D animation are also constantly 
deepening [3-4]. However, at present, the quality of immersive 
3D ink element animation production enterprises is uneven, 
and the content produced by most enterprises is also very 
superficial. And this also leads to a lack of deeper thinking and 
spirit in the current immersive 3D ink element animation, a 
lack of innovation, and the problem of repeated development 
[5]. The current solution to the problem of missing content is 
to transform the existing classic 3D ink element animation 
into immersive 3D ink element animation, which requires the 
use of image stitching algorithms [6]. At present, research on 
image stitching algorithms mainly focuses on the stitching of 
monocular images, with less involvement in the stitching of 

binocular images. Due to the visual differences between left 
and right eye images, it is not appropriate to directly use 
monocular image stitching to process binocular images, which 
can affect consumers' viewing experience [7]. Based on these 
issues, the study innovatively designed and developed an 
image stitching method for immersive 3D ink element 
animation production, starting from the horizontal parallax 
dependence of stereoscopic perception. The method was 
designed using stereo matching algorithms and scale invariant 
feature conversion algorithms, and the specific 
implementation of the method was designed from different 
functional modules. The research aims to design image 
stitching methods for immersive 3D ink element animation 
production through stereo matching algorithms and scale 
invariant feature transformation algorithms, solve the problem 
of disparity, maintain the three-dimensional sense of 
animation, and improve the viewing experience of consumers. 
There are two innovative points in the research, one is the 
combination of stereo matching algorithm and scale invariant 
feature transformation algorithm, and the other is the use of 
weighted median filtering method to improve the stereo 
matching algorithm. The research is divided into four parts. 
The first part is a literature review, mainly involving the 
literature review of image stitching methods for immersive 3D 
ink element animation production. The second part is the 
specific design of image stitching methods, including image 
stitching algorithm design, image stitching architecture design, 
and functional model implementation design. The third part is 
the analysis of the results of the image stitching method, 
mainly including the performance verification of the algorithm 
designed by the research institute and the overall effect 
analysis of the image stitching method. The fourth part is the 
conclusion of the study, mainly summarizing and elaborating 
on the results of the image stitching method designed by the 
research institute. 

II. RELATED WORKS 

With the growth of immersive 3D animation technology, 
its own application fields are constantly expanding, and 
research on IS methods for immersive 3D IEA production is 
gradually enriching. To explore the animation of virtual 
medical systems, researchers such as Li designed a virtual 
medical system based on reality technology and 3D animation 
modeling. The experimental findings denoted that the 
calculated results under the implicit method did not increase 
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with the increase of the difference, and had good stability 
when obtaining larger values [8]. Sandoub and other experts 
proposed a low light level image enhancement algorithm 
based on fusion to avoid halo artifacts and color distortion 
issues when enhancing images. This algorithm estimated the 
illumination of low light images through the maximum color 
channel, and used thinning methods to improve the sharpness 
of the initial enhanced image. The research outcomes 
indicated that the proposed method was significantly superior 
to existing methods and reduced the issues of halo artifacts 
and color distortion [9]. Hosseinzadeh and other scholars 
proposed a new method for image centralization and pose 
estimation to study the creation of stitched images inside 
pipelines. This method would inspect and concentrate the 
captured video, and then generated a stitching image of the 
interior of the pipeline. The research findings expressed that 
this method had good results in IS inside pipelines [10]. 
Damghani and other researchers proposed an adaptive method 
to reduce the distortion caused by embedding information in 
the transformation space. This method was based on the 
interaction between the changes made when embedding the 
algorithm. The research results indicated that this method was 
more efficient than the most advanced methods in the field 
[11]. Ro and other experts put forward an in situ analysis 
method of mineralogy based on handheld microscope to 
conduct in situ analysis of mineralogy. This method solved the 
small observation range of microscopes through IS. The 
experimental outcomes denoted that this method was very 
effective in real-time mineralogy analysis [12]. 

Chen and other scholars proposed a method to convert 3D 
motion graphics to stereoscopic display to realize the use of 
stereoscopic video on mobile platforms. This method was 
mainly developed on the basis of animation software and 
output synthetic images that match the stereoscopic display. 
The research findings expressed that compared to traditional 
methods, this method had better results and faster speed in 
image generation [13]. Nie and other researchers proposed an 
IS learning framework to avoid the issue of unavailability of 
traditional IS methods. The framework estimated the 
homography through the multi-scale depth homography model, 
and learned the deformation rules of IS through the edge 
preserving deformation module. The experimental outcomes 
expressed that the framework had good generalization ability 
and was significantly superior to existing methods [14]. Dai 
and other experts proposed an end-to-end deep learning 
framework to solve the problem of artifacts when creating 
Panorama. This framework considered the synthesis stage in 
IS as a problem of image mixing and used perceptual edges to 
guide the network. The experimental results indicated that the 
framework could generate useful results in less time and had 
good performance [15]. Zhao and other scholars proposed an 
IS method based on depth homography estimation to solve the 
low IS accuracy. This method involved resolution and feature 
maps and a loss function for stitching. The experimental 
findings expressed that this method had good performance in 
quantitative evaluation and visual stitching effects [16]. Luo 
and other researchers proposed an IS method with constraint 
on the position relationship between feature points and lines to 
eliminate parallax. This method reduced the computation of 
feature matching by quickly detecting overlapping areas, and 

guided mesh deformation through local mesh models [17]. 

In summary, there is currently a wealth of research on IS 
methods for immersive 3D IEA production both domestically 
and internationally, and the methods used are also diverse. 
However, these studies also have certain problems, such as the 
lack of innovation in immersive 3D animation content, and 
repeated development in one direction. Therefore, the research 
innovatively proposes an IS method for immersive 3D IEA, 
constructs the method through SM algorithm and SIFT 
algorithm, and designs the specific implementation of the 
method. 

III. CONSTRUCTION OF IMAGE SPLICING METHOD AND 

DESIGN OF FUNCTIONAL MODEL IMPLEMENTATION METHOD 

FOR 2D IEA PRODUCTION 

To construct an IS method for immersive 3D IEA, SM 
algorithm and SIFT algorithm are applied in the design of its 
functional modules. In addition, to better utilize the role of SM 
algorithms, a weighted median filtering method based on 
directional maps is used to optimize it. To design the specific 
implementation of the IS method functional module, the 
development language, library functions, and specific 
implementation steps of the module are studied and explained. 

A. Design of IS Methods for Immersive 3D IEA Production 

3D animation is a form of animation that includes 
computer graphics technology and is not limited by time and 
space conditions. 3D IEA is mainly produced through 
computer 3D software, which involves model building and 
light and shadow settings [18-19]. The production of 3D IEA 
should be based on its own spatial construction characteristics 
to achieve spatial transformation. The spatial construction 
characteristics of 3D IEA are shown in Fig. 1. 

Characteristic

Spatiotemporal senseDepth Sportiness Ductility
 

Fig. 1. The spatial construction characteristics of 3D IEA. 

As shown in Fig. 1, the spatial construction characteristics 
of 3D IEA mainly include four points, namely stereo sense, 
spatiotemporal sense, motion sense, and extensibility. The 
stitching of immersive 3D IEA is mainly divided into seven 
steps. The first step is to input the image, the second step is to 
preprocess the data, and the third step is to register the image. 
The fourth step is to establish the transformation model, the 
fifth step is to carry out unified coordinate transformation, the 
sixth step is to fuse the images, and the seventh step is to 
obtain panoramic images. Among them, image registration 
and fusion are the core steps. SM algorithms can be divided 
into global and local SM algorithms, while the Semi Global 
Matching (SGM) algorithm belongs to the global algorithm 
[20]. The pixel level cost and smoothing constraints of the 
SGM algorithm are shown in Eq. (1). 
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In Eq. (1), D  denotes the disparity variable; q  and p  

express pixels; 1P  means the penalty factor; 2P  indicates 

the constant penalty factor with larger values; C  represents 

the matching cost of pixels; Np  refers to adjacent pixels of 

pixel p ; T  denotes the judgment value. The calculation of 

2P  is shown in Eq. (2). 

2
2

bp bq

P
P

I I



                   (2) 

In Eq. (2), bI  indicates the reference map. When 

performing cost aggregation, the SGM global energy function 
is shown in Eq. (3). 

    1 2, 1 1p p q p q

p q Np q Np

E D C p D PT D D P T D D

 

         
        

  (3) 

The sum of matching costs for pixels in disparity D  is 

achieved through term  , pC p D . The SGM algorithm 

can avoid the approximate solution of equation conversion and 
solve one-dimensional problems in eight directions, as shown 
in Eq. (4). 
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In Eq. (4), r  stands for a direction pointing towards the 

current pixel p ; d  expresses the value of parallax; i  and 

k  represent the pixel grayscale value. 

B. IS Architecture Design for Immersive 3D IEA Production 

There are three common ways to make 3D animated films, 
of which the first involves computer graphics technology. The 
second type will use parallel cameras for production, and the 
third type will use relevant algorithms and software [21]. To 
make the immersive 3D IEA better, the research uses a method 
that combines computer graphics technology and live shooting 
technology. The overall architecture of the IS system for 
immersive 3D IEA production is shown in Fig. 2. 

As shown in Fig. 2, the IS system for immersive 3D IEA 
production is mainly divided into three modules, namely the 
3D image source on-demand acquisition module, the ensuring 
parallax comfortable stitching module, and the display module. 
The on-demand acquisition module for stereoscopic image 
sources involves calculating the viewing comfort range, 
determining the optimal shooting position, and promoting the 
development of animation plots. The module for ensuring 
comfortable disparity stitching mainly involves depth IS, 
image SM, weighted median filtering, and stitching. The 
display module mainly includes parallax optimized line chart 
and panoramic effect display. When obtaining stereoscopic 
image sources on demand, the positioning of virtual 
stereoscopic cameras is mainly achieved based on the input 
needs of the viewer. In addition, the manipulation of scene 
nodes can be completed through Maya software. After the 
generation of stereo images, stereo perception correspondence 
is required, and the corresponding of stereo perception is 
shown in Fig. 3. 

 

Viewing devices Animation scene

Stereo 

image pair 

acquisition

Viewing distance

Calculate viewing comfort range

Comfort parallax range

Median 

filtering

Panoramic view

Scene depth 

information

Joint Image stereo matching

Weighted median 

filtering

Parallax optimized Line chart

Deep image 

stitching

Ensure 

parallax 

comfortable 

splicing 

module

Display module

Stereo 

source on-

demand 

acquisition 

module

Animation plot 

development

Best shooting 

location

Viewing comfort 

range

 

Fig. 2. The overall architecture of IS system. 
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Fig. 3. The corresponding process of stereoscopic perception. 
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As shown in Fig. 3, the corresponding process of stereo 
perception is divided into three main parts: virtual space, 
binocular stereo display, and real space. Virtual space includes 
animated scenes and cameras, binocular stereo display 
involves stereo image pairs and viewing screens, and real 
space mainly includes human eye perception of stereo effects. 
Immersive 3D IS uses the SIFT (SIFT) algorithm, which can 
observe and analyze local features in images and videos. The 
SIFT algorithm is mainly divided into four steps. The first step 
is to detect the extreme values in the scale space, the second 
step is to locate the key points, the third step is to determine 
the method, and the fourth step is to describe the key points. 
To provide better IS functionality, the study used random 
sample consistency (RANSAC) algorithm and fast library for 
approximate nearest neighbors (FLANN) algorithm based on 
tree structure to optimize the SIFT algorithm. The 
optimization of disparity post-processing in SM algorithms is 
mainly achieved through the weighted median filtering (WMF) 
method based on directional maps [22]. This method is mainly 
divided into three steps. The first step is left and right 
consistency detection, the second step is filling in the disparity 
value of singular points, and the third step is smoothing the 
disparity value of singular points. When the matching 
information is insufficient, the expression of left and right 
consistency detection is shown in Eq. (5). 

    , , ,L R LD x y D x D x y y 
      (5) 

In Eq. (5), LD  denotes the left disparity map of the left 

eye image pair; RD  means the right disparity map of the 

right eye image pair;  ,x y  expresses the coordinates of the 

interest points based on the left eye image. When the disparity 
value of the point in the left eye image exceeds the boundary 
in the right eye image, the expression of left and right 
consistency detection is shown in Eq. (6). 

 , 0Lx D x y 
               (6) 

To preserve the high-frequency edges of the image, the 
WMF method is optimized. The weight calculation involved 
in optimization is shown in Eq. (7). 
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In Eq. (7),   and j  denote the coordinates of two 

points in the guidance map; c  and s  indicate constants; 

K  is used to control the weight size; bf  means the balance 

calculation value when the feature is f . The stereo display 

Comfort zone is min max,D D   , and its calculation is shown in 

Eq. (8). 
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In Eq. (8), dp  means the distance between the binocular 

pupils; dv  denotes the distance from the viewer to the screen; 

  expresses the difference between the convergence angle 

and the adjustment angle. The calculation of parallax at a 
certain point in the scene is shown in Eq. (9). 
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In Eq. (9), sI  expresses the distance between the axes of 

the cameras; f  means the focal length of the stereoscopic 

camera; pZ  refers to the distance from the zero parallax 

plane to the camera plane. The mapping relationship between 
the depth of the scene and the disparity at a certain point in the 
scene is shown in Eq. (10). 
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By substituting Eq. (8) into Eq. (10), the mapping 
relationship between parallax and viewing distance can be 
established, as shown in Eq. (11). 
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If PP  is the parallax of a point in virtual space, its 

expression derived from the off axis model is shown in Eq. 
(12). 
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In Eq. (12), zp  means zero parallax; S  stands for the 

distance between the left and right eye cameras; Z  refers to 
the distance between the points in the scene and the stereo 
camera. If the perspective of the central camera is  , the 

width of the projection plane is shown in Eq. (13). 
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In Eq. (13), pW  is the virtual unit of length. The 

expression of parallax in real space is shown in equation (14). 

r
r p

P

W
P P

W


                  (14) 

At this point, if the pixel spacing is pP , the final disparity 

is shown in Eq. (15). 

rP P b 
                   (15) 

C. Design of Functional Model Implementation Methods for 

Immersive 3D IEA Production 

To implement the functional modules of the IS method in 
detail, the study presents 3D IEA scenes on the basis of Maya 
software. During the preparation phase, the development 
language and library functions are set up. The Maya MEL 
language, which is the built-in scripting language of Maya 
software, is selected for development language research. The 
image library research selects OpenCV image library, which is 
powerful and has a modular structure. The functions of 
OpenCV can be divided into various types based on different 
purposes, such as video processing and graphical user 
interface functions. The implementation of IS method for 
immersive 3D IEA production is shown in Fig. 4. 

In Fig. 4, the first step of the implementation of the IS 
method is to generate 3D image pairs, and the second step is 
to stitching Panorama. The third step is to generate the trget 
and reference Panoramas on the basis of Panorama staitching, 
and the fourth step is to calculate the panorama parallax. The 
fifth step is to optimize the seam of the current Panorama by 
combining the calculated panorama parallax map and the 
comfortable parallax range. The realization of the system 
function can be divided into five functional modules, namely, 
stereo image pair on-demand acquisition module, immersive 
3D IS module, comfort zone calculation module, SM module 
and seam disparity optimization module. The implementation 
of different modules is shown in Fig. 5. 

As shown in Fig. 5, the implementation of the on-demand 
acquisition module for stereo images mainly involves 
determining the position of virtual stereo cameras, which 
involves two methods. One is to customize the camera 
position by professionals, and the other is to use MEL 
scripting language. In addition, the rendering part is also 
implemented using MEL scripts. The immersive 3D IS 
module can achieve the acquisition of data such as the 
coordinates of the seam and the panoramic images of the left 
and right eyes through Panorama stitching of depth image 
pairs. In addition, the RANSAC algorithm is introduced into 
the findHomegraph function and used to solve the 
homography matrix of the image matrix. The comfort zone 
calculation module is mainly realized by calculating the user's 
viewing distance, pupil distance and other data, and the final 
output of the module is the range value of the comfort zone. 
The SM module calculates the disparity map of panoramic 
stereo images through the optimized SGM algorithm. The 
flowchart of disparity optimization at the seam is shown in Fig. 
6. 

In Fig. 6, the first step in optimizing the disparity at the 
seam is to input data into the panoramic disparity map, which 
mainly includes the comfortable disparity range, seam 
coordinate positioning, and viewing distance. The second step 
is to input the left Panorama into the panorama parallax map, 
and the panorama parallax map will return to the right 
Panorama based on the input data. The third step is to output 
the panoramic disparity map data and optimize the disparity at 
the seam. 
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Fig. 4. Implementation of IS method. 
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Fig. 5. Implementation of different modules. 
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Fig. 6. Flowchart for optimizing disparity at seams. 

IV. RESULT ANALYSIS OF IS METHODS FOR IMMERSIVE 3D 

IEA PRODUCTION 

To analyze the results of the IS method for immersive 3D 
IEA production, the functional module performance and 
overall performance of the IS method were studied. Among 
them, the performance analysis of functional modules was 
mainly achieved by comparing F1 values and image 
generation error rates under different datasets. The overall 
performance of IS methods was mainly analyzed through 
runtime and rendering effects. 

A. Functional Module Performance Analysis of IS Methods 

for 3D IEA Production 

The performance testing and analysis of SM models were 
mainly achieved through algorithm comparison, and the 
selected comparison algorithms include the sum of squared 
differences (SSD) algorithm and the sum of absolute 
differences (SAD) algorithm. Four standards Middlebury 
stereo image datasets were selected, namely the Tsukuba, 
Venus, Teddy and Cones6 datasets. The comparison indicators 
included F1 value and error rate of image generation. The 
comparison of F1 values between different algorithms is 
shown in Fig. 7. 

From Fig. 7 (a), on the Tsukuba dataset, the max, mini and 
average F1 value of the SGM algorithm were 0.996, 0.982 and 
0.9904, respectively. The max, mini and average F1 value of 
the SSD algorithm were 0.885, 0.871 and 0.8794, respectively. 
The max, mini and average F1 value of the SAD algorithm 
were 0.874, 0.86 and 0.8684, respectively. From Fig. 7 (b), on 

the Venus dataset, the max, mini and average F1 value of the 
SGM algorithm were 0.996, 0.981 and 0.9902, respectively. 
The max, mini and average F1 value of the SSD algorithm 
were 0.895, 0.88 and 0.8892. The max, mini and average F1 
value of the SAD algorithm were 0.891, 0.876 and 0.8852. 
The performance of SGM algorithm was significantly better 
than the other two algorithms. To analyze the performance of 
the optimized SGM algorithm, the study selected SGM 
algorithms optimized using other filtering methods for 
comparison, including box filtering (Box), guided filtering 
(Guided), and bilateral filtering (BF). The comparison of 
matching error percentages for different SGM algorithms 
under the Tsukuba and Venus datasets is shown in Fig. 8. 

From Fig. 8 (a), on the Tsukuba dataset, the error 
percentage of the SGM, SGM+Box, SGM+Box, SGM+BF 
and SGM+WMF algorithms in non-occluded areas were 
3.3862%, 3.2254%, 3.0173%, 2.1268% and 0.3885%, 
respectively. On the Venus dataset, the error percentage of 
non-occluded areas in the five algorithms were 0.7217%, 
0.7356%, 0.2329%, 0.5478% and 0.4743%, respectively. As 
shown in Fig. 8 (b), the error percentage of all regions of the 
five algorithms on the Tsukuba dataset were 5.9688%, 
4.2336%, 3.7276%, 3.2244% and 0.8316%, respectively. On 
the Venus dataset, the error percentages for all regions of the 
five algorithms were 0.9946%, 0.8234%, 0.4562%, 0.6602%, 
and 0.8253%, respectively. The comparison of matching error 
percentages for different SGM algorithms under the Teddy and 
Cones6 datasets is shown in Fig. 9. 

From Fig. 9 (a), on the Teddy dataset, the error percentage 
of non-occluded areas in the SGM, SGM+Box, SGM+Guided, 
SGM+BF and SGM+WMF algorithms were 2.1155%, 
1.9232%, 3.2346%, 1.8020% and 1.6848%, respectively. On 
the Cones6 dataset, the error percentages for all regions of the 
five algorithms were 1.9993%, 1.6732%, 2.3449%, 1.3467%, 
and 1.34%, respectively. From Fig. 9 (b), on the Teddy dataset, 
the error percentage of all regions of the five algorithms were 
5.0838%, 5.1033%, 4.8143%, 4.9133% and 4.3235%, 
respectively. On the Cones6 dataset, the error percentages for 
all regions of the five algorithms were 5.9187%, 5.8999%, 
5.2333%, 4.6776%, and 4.1760%, respectively. 
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Fig. 7. Comparison of F1 values between different algorithms. 
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Fig. 8. Comparison of matching error percentages between different SGM algorithms on the Tsukuba and Venus datasets. 
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Fig. 9. Comparison of matching error percentages between different SGM algorithms on the Teddy and Cones6 datasets. 

B. Overall Effect Analysis of IS Methods for 3D IEA 

Production 

To analyze the overall effect of IS methods for 3D IEA 
production; the running time of different SGM algorithms was 
compared. The image rendering results of the 3D IEA 
production IS method was mainly evaluated by observer 
scoring. In addition, the overall performance of the IS method 
was analyzed through the smoothness and restoration of the 
image. The comparison of the runtime of different SGM 
algorithms on different datasets is shown in Fig. 10. 

From Fig. 10 (a), on the Tsukuba and Venus datasets, the 

running time of the SGM, SGM+Box, SGM+Guided and 
SGM+WMF algorithms were 3.7446s and 3.5657s, 4.3434s 
and 5.3434s, 4.5467s and 5.6884s, 5.1354s and 5.6767s, 
respectively. From Fig. 10 (b), on the Teddy and Cones6 
datasets, the running time of the SGM, SGM+Box, 
SGM+Guided and SGM+WMF algorithms were 3.6586s and 
3.0243s, 5.2323s and 4.9794s, 5.4245s and 5.4576s, 6.3889s 
and 6.7664s, respectively. In summary, although the 
SGM+WMF algorithm had no significant advantage in 
runtime, it had no impact on the overall performance of the 
method. The image rendering results of the 3D IEA production 
IS methods are shown in Fig. 11. 
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Fig. 10. Comparison of runtime of different SGM algorithms on different datasets. 
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Fig. 11. Image rendering results for different animations. 
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From Fig. 11 (a), in the first ink painting animation, the 
max and mini rendering score of the first frame image were 
98.5 and 81.3, respectively. The max and mini rendering 
scores for the second frame were 98.9 and 88.7, respectively. 
The max and mini rendering scores for the third frame were 
99.5 and 97.3, respectively. The max and mini score for the 
fourth frame image rendering were 99.3 and 97.3, respectively. 
The max and mini score for the fifth frame image rendering 
were 99.2 and 96.5, respectively. From Fig. 11 (b), in the 
second IEA, the max and mini rendering score of the first 
frame image were 99.1 and 81.7, respectively. The max and 
mini rendering scores for the second frame were 99.6 and 90.1, 
respectively. The max and mini rendering scores for the third 
frame were 98.7 and 87.5, respectively. The max and mini 
score for the fourth frame image rendering were 99.1 and 98.1, 
respectively. The max and mini score for the fifth frame image 
rendering were 99.4 and 95.5, respectively. The image 
smoothness and restoration results of the 3D IEA production 
IS method are shown in Fig. 12. 

From Fig. 12 (a), the max and mini smoothness scores of 
the first frame image were 96.3 and 91.2 respectively. The 
max and mini smoothness scores of the second frame image 
were 97.1 and 89.5 respectively. The max and mini 
smoothness scores of the third frame image were 97.2 and 
92.1 respectively, while the max and mini smoothness scores 
of the fourth frame image were 98.4 and 94.3 respectively. 
The max and mini smoothness score of the fifth frame image 
were 97.3, and 94.5 respectively. As shown in Fig. 12 (b), the 
max and mini smoothness scores of the first frame image were 
97.4 and 93.2 respectively. The max and mini smoothness 
scores of the second frame image were 97.7 and 93.5 
respectively. The max and mini smoothness scores of the third 

frame image were 98.1 and 94.5 respectively, while the max 
and mini smoothness scores of the fourth frame image were 
98.3 and 95.4 respectively. The max and mini smoothness 
score of the fifth frame image were 97.4 and 87.4 respectively. 

V. DISCUSSION 

In response to the lack of content in current immersive 3D 
ink element animations, it is necessary to use image stitching 
algorithms to transform existing classic 3D ink element 
animations into immersive 3D ink element animations. At 
present, image stitching algorithms mainly focus on the 
stitching of monocular images, which is difficult to directly 
apply to the stitching of binocular images. Therefore, starting 
from the horizontal parallax dependence of stereoscopic 
perception, the research innovatively designed and developed 
an image stitching method for immersive 3D ink element 
animation production. The method was designed using stereo 
matching algorithms and scale invariant feature transformation 
algorithms, and optimized using a weighted median filtering 
method based on directional maps. In addition, the study also 
designed the specific implementation of this method from 
different functional modules. The analysis of the research 
results mainly focuses on two aspects: one is the performance 
verification of the algorithm used in the study, and the other is 
the overall effect analysis of the image stitching method. On 
the Tsukuba dataset, the average F1 value of the SGM 
algorithm is 0.9904, while the average F1 values of the SSD 
and SAD algorithms compared are 0.8794 and 0.8684, 
respectively. On the Venus dataset, the average F1 values of 
the three algorithms are 0.9902, 0.8892, and 0.8852, 
respectively. It can be seen that on different datasets, the 
average comprehensive evaluation value F1 of the SGM 
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algorithm is better than the other two comparative algorithms, 
indicating that the performance of the SGM algorithm is better. 
In the overall effect analysis of the image stitching method, 
the maximum rendering scores of the first ink wash animation 
for five consecutive frames were 98.5, 98.9, 99.5, 99.3, and 
99.2, respectively. The maximum rendering scores of the 
second ink wash animation for five consecutive frames are 
99.1, 99.6, 98.7, 99.1, and 99.4, respectively. It can be seen 
that the image stitching method designed by the research 
institute has good image rendering effects. 

VI. CONCLUSION 

To avoid the lack of innovation and repeated development 
problems existing in the current immersive 3D IEA production, 
an IS method was innovatively designed and developed. The 
method was constructed through SM algorithm and SIFT 
algorithm. The experimental findings showed that on four 
different datasets, the error percentages of the optimized SM 
algorithm in non-occluded areas were 0.3885%, 0.4743%, 
1.6848%, and 1.34%, respectively. The error percentages of all 
areas were 0.8316%, 0.8253%, 4.3235%, and 4.1760%, 
respectively. The optimized SM algorithm had a smaller 
matching error rate. On four different datasets, the running 
time of the SGM+WMF algorithm was 5.1354s, 5.6767s, 
6.3889s, and 6.7664s, respectively. The average values of 
image rendering scores were 90.88, 94.22, 98.6, 98.38, and 
98.1, respectively. The average image smoothness values were 
94.4, 93.2, 94.52, 96.62, and 95.7, respectively, while the 
average restoration values were 95.18, 95.36, 96.64, 96.56, 
and 93.36, respectively. Although research and development 
have been conducted on IS a method for immersive 3D IEA 
production, there are still certain shortcomings, such as the 
further improvement of SM algorithms, which can be 
improved in future research. 
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