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Abstract—In recent years, intelligent robots have been widely 

used in fields such as express transportation, industrial 

automation, and healthcare, bringing great convenience to 

people's lives. As one of the core technologies of intelligent 

robots, path planning technology has become a research 

highlight in the field of robotics. To achieve path planning in 

unknown environments, a path planning algorithm based on an 

improved dual depth Q-network is proposed. In both simple and 

complex grid environments, the planned path inflection points 

for the improved dual depth Q-network is 4 and 9, respectively, 

with path lengths of 27.21m and 28.63m, respectively. Both are 

less than double depth Q network and adaptive Ant colony 

optimization algorithms. The average reward values of the 

improved dual depth Q network in simple and complex 

environments are 1.12 and 1.02, respectively, which are higher 

than those of the dual depth Q network. In a random 

environment, the lowest probability of the improved dual depth 

Q network successfully reaching the destination without colliding 

with obstacles is 95.1%, which is higher than the other two 

algorithms. In the Gazebo environment, when the number of 

iterations reaches 2000, the average cumulative reward value is 

positive. The average cumulative reward value in the range of 

iterations from 3500 to 4000 and iterations from 4000 to 4500 

exceeds 500. The average cumulative reward value of the dual 

depth Q network is only positive within the two intervals of 

iterations 2500-3000 and 3000-3500. The average cumulative 

reward value does not exceed 100. According to the findings, the 

path planning ability of the improved dual depth Q network is 

better than that of the dual depth Q network and the adaptive 

Ant colony optimization algorithms. 
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I. INTRODUCTION 

With the progress of computer technology, intelligent 
robots have gradually entered people's lives. They play an 
important role in their respective fields. At the same time, due 
to the technological reform of intelligent robots, humans have 
gradually raised their requirements for the mobility of 
intelligent robots. Intelligent robots are expected to quickly 
plan a route to the destination in unfamiliar environments. The 
path planning of robots consists of global path planning and 
local path planning based on their mastery of environmental 
information. In local path planning, the motion trajectory of the 
robot has uncertainty. It needs to constantly obtain information 
from the environment to determine the next step. At the same 
time, it is necessary to obtain data information on obstacles to 

avoid unknown obstacles [1]. Reinforcement learning (RL) is a 
good solution to how to avoid unknown obstacles. However, in 
a complex environment, RL will have an exponential growth 
problem of state-action collection, resulting in a "Curse of 
dimensionality" [2]. The deep reinforcement learning (DRL) 
obtained from deep learning (DL) combined with 
Reinforcement learning can effectively improve the above 
problems. The deep learning in Deep reinforcement learning 
can extract the data information characteristics of the 
environment through neural network, realizing the fitting 
between the state-action value function (SAVF) and the 
environment [3]. At present, DRL has become a popular 
algorithm in the research of robot path planning (RPP) for 
unknown environments. However, due to the overestimation of 
DL, the output state-action values in DRL applications are 
higher than the true values. Therefore, to realize the path 
planning of the robot in an unknown environment, the 
influence of overestimation on the robot action selection is 
reduced. A RPP based on Improved Double Deep Q-Network 
(IDDQN) is proposed in the research. This algorithm 
effectively avoids the "dimension disaster" problem, ensures 
the action speed and accuracy of the robot, enriches the 
application scenarios of the robot, and provides strong support 
for the future intelligence of the robot. 

The article consists of four sections. Section I is the 
introduction. Section II deals with related works. Section III 
deals with RPP algorithm based on DRL. Section IV is the 
simulation experiments and result analysis and Section V 
concluded the whole study. 

II. RELATED WORKS 

In the current research on various technologies of 
intelligent robots, path planning is a hot research direction. The 
way and quality of path planning determine whether a robot 
can safely and quickly reach the destination. Rath A K and his 
team proposed a navigation control algorithm based on genetic 
algorithm (GA) and neural network for robot navigation 
problems in complex environments. The GA controller is used 
to generate the initial turning angle of the robot. Then, the GA 
controller and neural network controller are mixed to generate 
the final steering angle. After testing, the navigation parameter 
error of this algorithm is relatively small [4]. Nie B et al. 
proposed a path planning method based on value iteration for 
intelligent agents with complex kinematics. The state-action 
transition probability is used to encode the ability of the agent. 
According to the findings, it has higher precision, faster 
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convergence rate and lower random seed sensitivity [5]. Wang 
G and other scholars proposed a dynamic path planning 
method based on fuzzy neural networks for intelligent robots. 
Compared with the traditional Particle swarm optimization 
(PSO), it can significantly improve the control accuracy and 
robustness of the model [6]. Oultiligh A and his team proposed 
a trajectory planning method based on PSO and gray wolf 
optimization for mobile robot trajectory optimization. This 
algorithm can effectively balance global and local search 
capabilities. After testing, the optimal trajectory search ability 
of PSO-GWO has significantly improved [7]. Raheem F A et 
al. proposed a RPP method based on probabilistic landmarks 
and artificial potential fields. The PSO is applied to obtain the 
optimization weight required by each control point 
participating in the formation of the spline curve. After testing, 
this method can ensure the feasibility and rationality of the path 
[8].  

As an artificial intelligence method close to human thinking 
mode, DRL is an effective way to solve complex perception 
problems. Therefore, it is widely used in automatic driving, 
robotics, game control, machine translation and other fields. 
Guang zheng W et al. proposed a DRL based collision 
detection and avoidance method for distributed multiple 
unmanned aerial vehicles. Human experience is also integrated 
into training. Compared to traditional DRL methods, DRL that 
integrates human experience has significant improvements in 
multi drone collision detection and avoidance. In addition, the 
flight safety brought by the hybrid control method has also 
been verified [9]. Cao D and his team proposed an analysis 
method based on MDP and PPO to analyze the optimal power 
flow problem of distribution networks containing renewable 
energy and energy storage devices. This method obtains 
knowledge from historical data through neural networks and 
provides online decision-making based on the real-time status 
of the power grid. The experimental results show that the real-
time control strategy proposed by this method is more flexible, 
which has better performance [10]. Zhao J et al. proposed a 
dynamic multi micro grid formation method based on CNN 
and DDQN to develop a multi micro grid formation plan. In 
this method, the dynamic micro grid formation problem is 
transformed into a Markov decision process. The topology 
changeable micro grid is designed through the DRL 
framework. According to the findings, this method has strong 
elasticity, which can respond to changing system conditions in 
a timely manner [11]. Zhang D et al. proposed a two-stage 
deep Q-learning algorithm based on pre-exploration for 
intelligent train control. After testing, this algorithm smoothes 
the acceleration curve. It can effectively complete train control 
tasks in multi train tracking scenarios [12]. Shihab S A M and 
Wei P proposed a strategy formulation method based on DRL 
for developing optimal seat inventory control strategies. In this 
method, DNN is used to calculate the expected optimal return 
for all possible state action combinations. Various factors such 
as random demand, passenger arrival, and booking cancellation 
have been fully considered. According to the findings, 
interacting with the market can learn the optimal airline 
revenue management strategy [13]. 

In summary, with the development of intelligent robot 
technology, RPP methods for mobile robots have become a hot 

research topic. There have been significant achievements in 
current research on RPP. In local path planning, DRL is a 
popular algorithm. However, due to the inherent 
overestimation problem of RL, the path chosen by the robot is 
not necessarily the optimal path. To address the above issues, a 
RPP method based on IDDQN is proposed, aiming to achieve 
local path planning in unfamiliar environments. 

III. RPP ALGORITHM BASED ON DRL 

With the progress of science and technology, robot 
technology is receiving increasing attention from people. As 
one of the core technologies of intelligent mobile robots, path 
planning has become a research highlight in the robotics. To 
achieve safe movement of robots in unknown environments, a 
RPP method based on improved DDQN is proposed-IDDQN. 
The IDDQN algorithm effectively avoids the DDQN over 
estimation through more moderate Q update method and 
improves the utilization efficiency through the sequencing of 
priority playback mechanism. It effectively reduces the 
disadvantage of slow DDQN training speed. 

A. RPP based on DDQN 

The core of DRL is Reinforcement learning. Reinforcement 
learning guides behavior through rewards gained from 
interaction with the environment. However, the reinforcement 
learning model is more complex. Therefore, MDP is 
introduced into the reinforcement learning model to simplify it. 
In RPP, the probability of state transition and the immediate 
reward return function are generally unknown. Therefore, 
robots need to constantly interact with the environment. The 
state transition probability reflecting actions is displayed in Eq. 
(1). 

1 ,a

ss t t tP P S s S s A a 
        (1) 

In Eq. (1), a

ssP   represents the execution of action a  in state 

s . s  represents the probability that the robot can reach the 

state. P  represents the probability of state transition. 
tS

represents the set of state spaces at time t . 
tA  stands for the 

set of action spaces at time t . The calculation method for 

cumulative reward value (CRV) is shown in Eq. (2). 
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In Eq. (2), R  represents the immediate reward function. γ  

represents the discount factor. 
tG  represents the CRV. The 

state VF is shown in Eq. (3) 
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In Eq. (3),  πv s  represents the state value function (SVF). 

π  stands for strategy. 
πE  represents the expected cumulative 

reward return in strategy π . The SAVF is shown in Eq. (4). 
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In Eq. (4),  ,πq s a  represents the action SVF. The 

calculation of the SVF is to construct the data in the algorithm 
to obtain the optimal strategy. The Bellman optimal equations 
for the SVF and the SAVF are shown in Eq. (5). 
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In Eq. (5),  v s
 and  ,q s a

 represent the optimal SVF 

and the optimal SAVF, respectively. If the optimal SVAF is 
already specified, the optimal strategy is determined by 
maximizing the optimal SVAF. At this point, the optimal 
strategy expression is shown in Eq. (6). 
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Eq. (6) indicates that the SVAF is the maximum. At this 
point, under strategy π  and state s , the probability of the robot 

executing action a  is 1. The execution probability of other 

actions is 0. The value function of the DQN algorithm utilizes 
DNN for approximation. The network structure of DQN is 
illustrated in Fig. 1. 

In Fig. 1, the parameters corresponding to the DQN value 
function represent the weight size of each layer in DNN. At 

this point, updating the value function means updating the 
network parameters. If the network structure is determined, the 
network parameters are the value function [14-15]. When using 
DNN to approximate a value function, the strong correlation 
between data sample tuples can easily lead to instability and 
non-convergence issues. Therefore, experience playback 
technology is used to address this issue. The experience of each 
time step is stored in the data pool. When updating network 
parameters, random samples are taken from the data pool for 
training. The method for updating network parameters is 
shown in Eq. (7). 
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In Eq. (7), θ  represents the network parameters.  , ,Q s a θ  

represents the value function of Q-Learning. α  represents a 

parameter. r  represents timely return. However, when 
calculating the SAVF, the parameters used are the same as 
those approximated by the value function, which can easily 
lead to unstable training. Calculating the time difference 
optimization objective through target network parameters can 
effectively solve this problem. At this point, the parameter 
update formula is shown in Eq. (8). 
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In Eq. (8), θ 
 stands for the parameters of the target 

network. The training process of DQN is shown in Fig. 2. 
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Fig. 1. Network structure of DQN. 
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Fig. 2. Training process of DQN. 
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In Fig. 2, for each step reached, the parameters of the 
current value network are assigned to the target value network. 
In the playback memory unit, several samples are selected and 
their states are fed into the current value network. In the 
network output results, the Q value corresponding to the 
sample action is extracted and the target value is calculated. 
The loss function of Q value and target value is calculated. The 
current value network is updated by back-propagation. 
Although the DQN algorithm uses DNN instead of Q-table to 
approximate the SAVF, it still has overestimation issues [16-
18]. The selection and evaluation of actions in network 
parameter updates are separated. Different value function 
networks are used to express action selection and evaluation. 
This can alleviate the problem, which is known as the DDQN 
algorithm. At this point, the calculation of the time difference 
optimization objective is shown in Eq. (9). 

  , arg max , , ,DDQN

tY r γQ s Q s a θ θ    
 (9) 

In Eq. (9), DDQN

tY  represents the optimization objective. θ  

and θ 
 represent estimated network parameters and target 

network parameters, respectively. 

B. RPP based on Improved DDQN 

In DDQN, the overestimation problem has a negative 
impact on the selection of the optimal action for robots, making 
it difficult to find the optimal action strategy and path. At the 
same time, as the interaction between robots and the 
environment deepens, the playback proportion of important 
samples decreases when playing back experience samples, 
resulting in the decline of robot learning effect. To address the 
above issues, an improved DDQN for RPP is proposed. The 
RPP training model is illustrated in Fig. 3. 

From Fig. 3, the sample data is fed into the memory cache 
unit based on the current environment, the next state, and the 
obtained instant returns. Then, samples are selected from 
memory buffer units to train the parameters of the IDDQN. 
Then, based on the network output and improved exploration 
strategy, the optimal action is selected. The robot is sent to the 
next state [19-20]. In DDQN, there is a situation where the 
absolute error values of the value functions of the optimal and 
suboptimal actions are equal, resulting in the robot selecting a 
suboptimal action. To avoid the above issues, the range of error 
values can be reduced. To minimize the error, the ε-Greedy 

strategy is introduced into DDQN. The improved optimization 
objective is shown in Eq. (10). 
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In Eq. (10), ε  represents a parameter, which is a fixed 

value, with a value range of  0,1 . a  represents a random 

action. To better select actions, a ε-Greedy action selection 
strategy based on prior knowledge is proposed. The probability 
of action selection for strategy ε-Greedy is shown in Eq. (11). 
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In Eq. (11),  A s  represents the set of actions in state s . ε  

represents the exploration factor. When the robot selects 
actions, a random number is generated. If the random number 
is less than the exploration factor, the robot randomly selects 
actions. Otherwise, the average Q value of previous 
generations will be calculated. Based on improved ε- Greedy 
strategy, corresponding actions are selected and executed. The 
average Q value is calculated as Eq. (12). 
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In Eq. (12), K  represents the algebraic difference between 

the current parameter and the previous parameter.  ,AQ s a  

represents the average Q value of the previous K -generations. 
In model training, the playback frequency of experience 
fragments with low time difference error values is low due to 
the influence of environmental noise. The lack of diversity in 
training samples leads to over fitting issues. Combining greedy 
finite and uniform sampling can ensure the playback 
probability of experience fragments with low time difference 
error values. The calculation formula for playback probability 
is shown in Eq. (13). 

IDDQN network
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Loss function of 

IDDQN
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Fig. 3. Training model for robot path planning. 
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In Eq. (13),  P i  represents the playback probability of the 

i -th segment. 
ip  represents the priority of the i -th segment. 

α  represents the degree of control priority. The priority 

calculation formula is shown in Eq. (14). 

1i ip rank
 (14) 

In Eq. (14), 
irank  represents the sequence number sorted 

by the absolute value of time difference error. To prevent over 
fitting and ensure the diversity of experience fragments, weight 
is introduced for adjustment. The weight calculation formula is 
shown in Eq. (15). 
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In Eq. (15), 
minp  represents the minimum probability of the 

experience segment. β  represents the correction degree. At 

this time, the expression of loss function is shown in Eq. (16). 

    
2

, ,IDDQN

tL w t Y Q s a θ 
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In Eq. (16),  , ,Q s a θ  stands for the output Q of the 

estimated network. The IDDQN algorithm process is shown in 
Fig. 4. 

From Fig. 4, the IDDQN algorithm first initializes the 
estimated network parameters, target network parameters, and 
experience playback pool. The event is cycled. Then the state 
of each cycle is initialized and cycled throughout the time 
cycle. Actions are randomly selected based on probability. If a 
small probability event does not occur, the action with the 
highest current value function is selected and executed. Next, 
based on the reward feedback of the environment and the 
transferred state, the time difference error value is calculated. 
The calculation results are arranged in order of size. According 
to the sequence number, priority is calculated. Based on 
priority, the sampling probability is obtained. Then the 
correction weight is calculated by sampling probability, and the 
experience fragments are put into the experience playback pool 
according to the probability. Next, samples are selected based 
on probability from the experience replay pool and 
optimization objectives are calculated. Then, the estimated 
parameters are updated according to the calculation results of 
the loss function. The target parameters are replaced by these 
parameters. The application process of IDDQN algorithm in 
robot path planning is shown in Fig. 5. 
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parameters, target network parameters, 
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Initialize the state of each cycle and 

cycle through the time cycle

Randomly select actions

Select and execute the action with the 
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experience fragments into the 
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Select samples from the experience 
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objectives

Calculate loss values and update 
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Replacing target network parameters 
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Fig. 4. Flow of IDDQN algorithm. 
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Fig. 5. Application process of IDDQN in RPP. 
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In Fig. 5, this algorithm first initializes the state of the 
robot. The current coordinates of the robot are determined. 
Then the generated random numbers are compared. If it is 
greater than the exploration factor, the average output value of 
the improved optimization objective network is calculated and 
an action is selected. Otherwise, the action is randomly 
selected. Then the next state of the environment is obtained and 
its reward value is calculated. Then the spatial features are 
placed in the experience pool and moved to the next state. 
Finally, the current state is judged. If the termination state is 
reached, the process ends. Otherwise, the operation is returned 
to the second step. 

IV. SIMULATION EXPERIMENTS AND RESULT ANALYSIS 

BASED ON GRID ENVIRONMENT AND GAZEBO ENVIRONMENT 

To verify the path planning ability of the IDDQN, testing 
experiments are carried out in both grid and Gazebo 
environments. The proposed method is compared with DDQN 
algorithm and adaptive Ant colony optimization algorithms. 
The grid environment is divided into simple environment, 
complex environment, and random environment. The processor 
used in this simulation experiment is Xeon (R), the CPU is 
NVIDIA GeForce GTX 1080Ti, the running memory is 32 GB, 
and the software environment is Python and TensorFlow. The 
exploration factor for grid and Gazebo environments has an 
initial value of 1 and an end value of 0.1. The convergence of 

DDQN, adaptive ant colony algorithm, and IDDQN algorithm 
is shown in Fig. 6. 

From Fig. 6, the DDQN value converges after 
approximately 270 iterations, with a loss value of 
approximately 0.24. The adaptive Ant colony optimization 
algorithm starts to converge after about 220 iterations, and the 
loss value is about 0.21. IDDQN begins to converge after 
approximately 180 iterations, with a loss value of 
approximately 0.19. The convergence rate of IDDQN is faster. 
The RPP results of the three methods in a simple environment 
are shown in Fig. 7. 
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Fig. 6. Convergence of DDQN, adaptive ant colony, and IDDQN. 

(a)DDQN Planning Path
  

(b)Adaptive Ant Colony Planning Path
 

(c)IDDQN Planning Path
 

Fig. 7. RPP results of three methods in a simple environment. 
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Fig. 8. The average reward values of IDDQN and DDQN, as well as the path length and collision frequency of the three algorithms. 

From Fig. 7 (a), the path inflection points planned for 
DDQN are 8. In Fig. 7(b), the path inflection points planned by 
the adaptive Ant colony optimization algorithms are 5. In Fig. 
7(c), the inflection points in the planned path of IDDQN are 4. 
IDDQN has fewer inflection points in the planned path, which 
can effectively reduce the movement time from the starting to 
the target position. The average reward values of IDDQN and 
DDQN, as well as the path lengths and collision times of the 
three algorithms, are shown in Fig. 8. 

In Fig. 8(a), the average reward value of DDQN is 
approximately 1.03. IDDQN has an average reward value of 
approximately 1.12, which is higher than the DDQN algorithm. 
In Fig. 8(b), the path length planned by the DDQN is 
approximately 29.46m, and the number of obstacle collisions is 
19806. The optimal path length of the adaptive Ant colony 
optimization algorithms is about 28.63m, and the collisions 
with obstacles are 16275. The optimal path length for IDDQN 
planning is approximately 27.21m, and the number of 
collisions with obstacles during training is 15613. The IDDQN 
algorithm not only has the shortest planned path length, but 
also reduces the probability of robot collision with obstacles. 
The RPP results of the three methods in complex environments 
are illustrated in Fig. 9. 

In Fig. 9(a), the inflection points planned by the DDQN 
algorithm are 10, the inflection points of the path planned by 

the adaptive Ant colony optimization algorithms are 13. The 
path inflection points planned by IDDQN are 9. From Fig. 
9(b), in complex environment 2, the path inflection points of 
both the ant colony algorithm and DDQN are redundant with 
IDDQN. The length is also longer than the IDDQN algorithm. 
From this, in complex environments, the IDDQN algorithm 
can still move to the endpoint with as few inflection points as 
possible. In a complex environment, the path lengths and 
collision times of the three algorithms, as well as the reward 
values of IDDQN and DDQN, are shown in Fig. 10. 

From Fig. 10(a), the optimal path length for DDQN 
planning is approximately 29.22 m, and the number of 
collisions during training is 26671. The optimal path length for 
the adaptive Ant colony optimization algorithms is about 29.80 
m, and the number of collisions is 19374. The optimal path 
length for IDDQN is approximately 28.63m and the number of 
collisions is 17389. In Fig. 10(b), the average reward values for 
DDQN and IDDQN are approximately 0.92 and 1.02, 
respectively. The average reward value of IDDQN is higher. 
IDDQN can still maintain a small collision probability in 
complex environments. The success rates and path length 
differences of the three algorithms in a random environment 
are shown in Fig. 11. 

(a) Complex Environment 1

Adaptive Ant

DDQN

IDDQN

 
(b) Complex Environment 2

Adaptive Ant

DDQN

IDDQN

 

Fig. 9. RPP results in complex environments. 
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Fig. 10. The path length, collision frequency, and reward values for IDDQN and DDQN of the three algorithms are shown in the figure. 
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Fig. 11. Success rates and path length differences of three algorithms in a random environment. 
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Fig. 12. Accumulated reward values of DDQN and IDDQN.

In Fig. 11 (a), in a random environment, the probability of 
DDQN successfully reaching the destination without colliding 
with obstacles is approximately 95.2%, 93.1%, 91.8%, and 
91.2%, respectively. The success rate of adaptive Ant colony 
optimization algorithms in random environment is about 
96.7%, 94.8%, 93.5% and 92.6% respectively. The success 
rates of IDDQN in random environments are approximately 
97.4%, 96.5%, 95.9%, and 95.1%, respectively. IDDQN has 
the highest success rate in a random environment. In Fig. 
11(b), the path length difference of DDQN in different 
environments is about 1.04 m, 1.17 m, 1.25 m, and 2.06 m, 
respectively. The path length difference of the adaptive Ant 

colony optimization algorithms is about 0.86 m, 0.98 m, 1.07 
m and 1.52 m respectively. The difference in path length for 
IDDQN is approximately 0.59 m, 0.83m, 0.91m, and 1.33m, 
respectively. The path length difference of IDDQN is the 
smallest, indicating that IDDQN has a stronger ability to plan 
the optimal path. The CRVs of DDQN and IDDQN in the 
Gazebo environment are shown in Fig. 12. 

In Fig. 12, the CRV of IDDQN is significantly higher than 
that of DDQN. The average CRV of DDQN is the highest in 
the range of 2500 to 3000 iterations. At this point, the average 
CRV is approximately 76.12. Secondly, there is an interval of 
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3000 to 3500 iterations, with an average CRV of 
approximately 29.83. The above two intervals are also the only 
ones with a positive average CRV. The average CRV of 
IDDQN is highest in the range of 3500 to 4000 iterations. The 
average CRV is around 748.62. Next is the interval of 4000 to 
4500 iterations, with an average CRV of approximately 584.46. 
When the number of iterations reaches 2000, the average CRV 
is all positive. The average CRV between the iterations of 
2000-2500 and 3000-3500 exceeds 100. 

V. CONCLUSION 

A RPP algorithm based on the improved DDQN - IDDQN 
algorithm is proposed for the mobile RPP problem of 
intelligent robots in unknown environments. Simulation 
experiments are conducted in both grid and Gazebo 
environments. According to the results, IDDQN begins to 
converge after approximately 180 iterations. The loss value is 
approximately 0.19. The convergence rate is faster than DDQN 
algorithm and adaptive Ant colony optimization algorithms. In 
a simple grid environment, the optimal path length, inflection 
points, and collisions during training for IDDQN are 27.21m, 
4, and 15613, respectively. In a complex grid environment, the 
optimal path length, number of inflection points, and number 
of collisions during training planned by the IDDQN algorithm 
are 28.63m, 9, and 17389, respectively. In a random 
environment, the path length differences of IDDQN are 0.59m, 
0.83m, 0.91m, and 1.33m, respectively. It is less than the path 
planned by DDQN and adaptive Ant colony optimization 
algorithms. The success rates of the IDDQN algorithm in 
random environments are approximately 97.4%, 96.5%, 
95.9%, and 95.1%, respectively, which are higher than other 
algorithms. In the Gazebo environment, the interval with the 
highest average cumulative reward value for DDQN is between 
2500 and 3000 iterations. At this point, the average cumulative 
reward value is about 76.12, and there are only two intervals 
where the average cumulative reward value is positive. The 
average cumulative reward value of DDQN is the highest in 
the range of 3500 to 4000 iterations. The average cumulative 
reward value is around 748.62. When the number of iterations 
reaches 2000, the average CRV is all positive. The average 
CRV of two intervals exceeds 100. The above results indicate 
that the intelligent RPP based on IDDQN can achieve optimal 
RPP in unfamiliar environments. Research has achieved static 
path planning for robots by improving DDQN. However, the 
proposed method does not take into account the dynamic 
variable environment. At the same time, when several robots 
cooperate to complete a certain work, the proposed algorithm 
cannot provide reasonable task assignment and collaboration 
instructions for the robot. Therefore, future work will focus on 
path planning, multi-robot collaborative task assignment, and 
path planning in dynamically variable environments. 
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