
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

172 | P a g e

www.ijacsa.thesai.org

Construction of an Intelligent Robot Path Recognition

System Supported by Deep Learning Network

Algorithms

Jiong Chen*

Department of Artificial Intelligence, Shanxi Polytechnic College, Taiyuan, 030006, China

Abstract—In recent years, intelligent robots have been widely

used in fields such as express transportation, industrial

automation, and healthcare, bringing great convenience to

people's lives. As one of the core technologies of intelligent

robots, path planning technology has become a research

highlight in the field of robotics. To achieve path planning in

unknown environments, a path planning algorithm based on an

improved dual depth Q-network is proposed. In both simple and

complex grid environments, the planned path inflection points

for the improved dual depth Q-network is 4 and 9, respectively,

with path lengths of 27.21m and 28.63m, respectively. Both are

less than double depth Q network and adaptive Ant colony

optimization algorithms. The average reward values of the

improved dual depth Q network in simple and complex

environments are 1.12 and 1.02, respectively, which are higher

than those of the dual depth Q network. In a random

environment, the lowest probability of the improved dual depth

Q network successfully reaching the destination without colliding

with obstacles is 95.1%, which is higher than the other two

algorithms. In the Gazebo environment, when the number of

iterations reaches 2000, the average cumulative reward value is

positive. The average cumulative reward value in the range of

iterations from 3500 to 4000 and iterations from 4000 to 4500

exceeds 500. The average cumulative reward value of the dual

depth Q network is only positive within the two intervals of

iterations 2500-3000 and 3000-3500. The average cumulative

reward value does not exceed 100. According to the findings, the

path planning ability of the improved dual depth Q network is

better than that of the dual depth Q network and the adaptive

Ant colony optimization algorithms.

Keywords—Deep learning; reinforcement learning; intelligent

robots; path planning

I. INTRODUCTION

With the progress of computer technology, intelligent
robots have gradually entered people's lives. They play an
important role in their respective fields. At the same time, due
to the technological reform of intelligent robots, humans have
gradually raised their requirements for the mobility of
intelligent robots. Intelligent robots are expected to quickly
plan a route to the destination in unfamiliar environments. The
path planning of robots consists of global path planning and
local path planning based on their mastery of environmental
information. In local path planning, the motion trajectory of the
robot has uncertainty. It needs to constantly obtain information
from the environment to determine the next step. At the same
time, it is necessary to obtain data information on obstacles to

avoid unknown obstacles [1]. Reinforcement learning (RL) is a
good solution to how to avoid unknown obstacles. However, in
a complex environment, RL will have an exponential growth
problem of state-action collection, resulting in a "Curse of
dimensionality" [2]. The deep reinforcement learning (DRL)
obtained from deep learning (DL) combined with
Reinforcement learning can effectively improve the above
problems. The deep learning in Deep reinforcement learning
can extract the data information characteristics of the
environment through neural network, realizing the fitting
between the state-action value function (SAVF) and the
environment [3]. At present, DRL has become a popular
algorithm in the research of robot path planning (RPP) for
unknown environments. However, due to the overestimation of
DL, the output state-action values in DRL applications are
higher than the true values. Therefore, to realize the path
planning of the robot in an unknown environment, the
influence of overestimation on the robot action selection is
reduced. A RPP based on Improved Double Deep Q-Network
(IDDQN) is proposed in the research. This algorithm
effectively avoids the "dimension disaster" problem, ensures
the action speed and accuracy of the robot, enriches the
application scenarios of the robot, and provides strong support
for the future intelligence of the robot.

The article consists of four sections. Section I is the
introduction. Section II deals with related works. Section III
deals with RPP algorithm based on DRL. Section IV is the
simulation experiments and result analysis and Section V
concluded the whole study.

II. RELATED WORKS

In the current research on various technologies of
intelligent robots, path planning is a hot research direction. The
way and quality of path planning determine whether a robot
can safely and quickly reach the destination. Rath A K and his
team proposed a navigation control algorithm based on genetic
algorithm (GA) and neural network for robot navigation
problems in complex environments. The GA controller is used
to generate the initial turning angle of the robot. Then, the GA
controller and neural network controller are mixed to generate
the final steering angle. After testing, the navigation parameter
error of this algorithm is relatively small [4]. Nie B et al.
proposed a path planning method based on value iteration for
intelligent agents with complex kinematics. The state-action
transition probability is used to encode the ability of the agent.
According to the findings, it has higher precision, faster

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

173 | P a g e

www.ijacsa.thesai.org

convergence rate and lower random seed sensitivity [5]. Wang
G and other scholars proposed a dynamic path planning
method based on fuzzy neural networks for intelligent robots.
Compared with the traditional Particle swarm optimization
(PSO), it can significantly improve the control accuracy and
robustness of the model [6]. Oultiligh A and his team proposed
a trajectory planning method based on PSO and gray wolf
optimization for mobile robot trajectory optimization. This
algorithm can effectively balance global and local search
capabilities. After testing, the optimal trajectory search ability
of PSO-GWO has significantly improved [7]. Raheem F A et
al. proposed a RPP method based on probabilistic landmarks
and artificial potential fields. The PSO is applied to obtain the
optimization weight required by each control point
participating in the formation of the spline curve. After testing,
this method can ensure the feasibility and rationality of the path
[8].

As an artificial intelligence method close to human thinking
mode, DRL is an effective way to solve complex perception
problems. Therefore, it is widely used in automatic driving,
robotics, game control, machine translation and other fields.
Guang zheng W et al. proposed a DRL based collision
detection and avoidance method for distributed multiple
unmanned aerial vehicles. Human experience is also integrated
into training. Compared to traditional DRL methods, DRL that
integrates human experience has significant improvements in
multi drone collision detection and avoidance. In addition, the
flight safety brought by the hybrid control method has also
been verified [9]. Cao D and his team proposed an analysis
method based on MDP and PPO to analyze the optimal power
flow problem of distribution networks containing renewable
energy and energy storage devices. This method obtains
knowledge from historical data through neural networks and
provides online decision-making based on the real-time status
of the power grid. The experimental results show that the real-
time control strategy proposed by this method is more flexible,
which has better performance [10]. Zhao J et al. proposed a
dynamic multi micro grid formation method based on CNN
and DDQN to develop a multi micro grid formation plan. In
this method, the dynamic micro grid formation problem is
transformed into a Markov decision process. The topology
changeable micro grid is designed through the DRL
framework. According to the findings, this method has strong
elasticity, which can respond to changing system conditions in
a timely manner [11]. Zhang D et al. proposed a two-stage
deep Q-learning algorithm based on pre-exploration for
intelligent train control. After testing, this algorithm smoothes
the acceleration curve. It can effectively complete train control
tasks in multi train tracking scenarios [12]. Shihab S A M and
Wei P proposed a strategy formulation method based on DRL
for developing optimal seat inventory control strategies. In this
method, DNN is used to calculate the expected optimal return
for all possible state action combinations. Various factors such
as random demand, passenger arrival, and booking cancellation
have been fully considered. According to the findings,
interacting with the market can learn the optimal airline
revenue management strategy [13].

In summary, with the development of intelligent robot
technology, RPP methods for mobile robots have become a hot

research topic. There have been significant achievements in
current research on RPP. In local path planning, DRL is a
popular algorithm. However, due to the inherent
overestimation problem of RL, the path chosen by the robot is
not necessarily the optimal path. To address the above issues, a
RPP method based on IDDQN is proposed, aiming to achieve
local path planning in unfamiliar environments.

III. RPP ALGORITHM BASED ON DRL

With the progress of science and technology, robot
technology is receiving increasing attention from people. As
one of the core technologies of intelligent mobile robots, path
planning has become a research highlight in the robotics. To
achieve safe movement of robots in unknown environments, a
RPP method based on improved DDQN is proposed-IDDQN.
The IDDQN algorithm effectively avoids the DDQN over
estimation through more moderate Q update method and
improves the utilization efficiency through the sequencing of
priority playback mechanism. It effectively reduces the
disadvantage of slow DDQN training speed.

A. RPP based on DDQN

The core of DRL is Reinforcement learning. Reinforcement
learning guides behavior through rewards gained from
interaction with the environment. However, the reinforcement
learning model is more complex. Therefore, MDP is
introduced into the reinforcement learning model to simplify it.
In RPP, the probability of state transition and the immediate
reward return function are generally unknown. Therefore,
robots need to constantly interact with the environment. The
state transition probability reflecting actions is displayed in Eq.
(1).

1 ,a

ss t t tP P S s S s A a 
       (1)

In Eq. (1), a

ssP  represents the execution of action a in state

s . s represents the probability that the robot can reach the

state. P represents the probability of state transition.
tS

represents the set of state spaces at time t .
tA stands for the

set of action spaces at time t . The calculation method for

cumulative reward value (CRV) is shown in Eq. (2).

1 2 1

0

k

t t t t k

k

G R γR γ R


   



   L

 (2)

In Eq. (2), R represents the immediate reward function. γ

represents the discount factor.
tG represents the CRV. The

state VF is shown in Eq. (3)

  1

0

k

π π t k t

k

v s E γ R S s


 



 
  

 


 (3)

In Eq. (3),  πv s represents the state value function (SVF).

π stands for strategy.
πE represents the expected cumulative

reward return in strategy π . The SAVF is shown in Eq. (4).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

174 | P a g e

www.ijacsa.thesai.org

  1

0

, ,k

π π t k t t

k

q s a E γ R S s A a


 



 
   

 


 (4)

In Eq. (4),  ,πq s a represents the action SVF. The

calculation of the SVF is to construct the data in the algorithm
to obtain the optimal strategy. The Bellman optimal equations
for the SVF and the SAVF are shown in Eq. (5).

   

   

max

, max ,

a a

s ss
a

s S

a a

s ss
a

s S

v s R γ P v s

q s a R γ P q s a

 












  



  





 (5)

In Eq. (5),  v s
 and  ,q s a

 represent the optimal SVF

and the optimal SAVF, respectively. If the optimal SVAF is
already specified, the optimal strategy is determined by
maximizing the optimal SVAF. At this point, the optimal
strategy expression is shown in Eq. (6).

 1 arg max ,

0

a A

a q s a
π

otherwise






 
 
 (6)

Eq. (6) indicates that the SVAF is the maximum. At this
point, under strategy π and state s , the probability of the robot

executing action a is 1. The execution probability of other

actions is 0. The value function of the DQN algorithm utilizes
DNN for approximation. The network structure of DQN is
illustrated in Fig. 1.

In Fig. 1, the parameters corresponding to the DQN value
function represent the weight size of each layer in DNN. At

this point, updating the value function means updating the
network parameters. If the network structure is determined, the
network parameters are the value function [14-15]. When using
DNN to approximate a value function, the strong correlation
between data sample tuples can easily lead to instability and
non-convergence issues. Therefore, experience playback
technology is used to address this issue. The experience of each
time step is stored in the data pool. When updating network
parameters, random samples are taken from the data pool for
training. The method for updating network parameters is
shown in Eq. (7).

 

 
 1

max , ,
, ,

, ,

a
t t

r γ Q s a θ
θ θ α Q s a θ

Q s a θ


  
   
   (7)

In Eq. (7), θ represents the network parameters.  , ,Q s a θ

represents the value function of Q-Learning. α represents a

parameter. r represents timely return. However, when
calculating the SAVF, the parameters used are the same as
those approximated by the value function, which can easily
lead to unstable training. Calculating the time difference
optimization objective through target network parameters can
effectively solve this problem. At this point, the parameter
update formula is shown in Eq. (8).

 

 
 1

max , ,
, ,

, ,

a
t t

r γ Q s a θ
θ θ α Q s a θ

Q s a θ






  
   
   (8)

In Eq. (8), θ 
 stands for the parameters of the target

network. The training process of DQN is shown in Fig. 2.

States Environment

Agent DNN

P
o
li

cy
 π
θ

(s
,a

)

Parameter θ

Observe states s

Take action a

Reward r

Fig. 1. Network structure of DQN.

Memory playback unit

Current value network Target value network

Error function of DQN

Environment

(s,a) s´

(s,a,r,s´)

argmaxQ

Current state

Error function

gradient Q(s,a,θ)

Copying

functions

Fig. 2. Training process of DQN.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

175 | P a g e

www.ijacsa.thesai.org

In Fig. 2, for each step reached, the parameters of the
current value network are assigned to the target value network.
In the playback memory unit, several samples are selected and
their states are fed into the current value network. In the
network output results, the Q value corresponding to the
sample action is extracted and the target value is calculated.
The loss function of Q value and target value is calculated. The
current value network is updated by back-propagation.
Although the DQN algorithm uses DNN instead of Q-table to
approximate the SAVF, it still has overestimation issues [16-
18]. The selection and evaluation of actions in network
parameter updates are separated. Different value function
networks are used to express action selection and evaluation.
This can alleviate the problem, which is known as the DDQN
algorithm. At this point, the calculation of the time difference
optimization objective is shown in Eq. (9).

  , arg max , , ,DDQN

tY r γQ s Q s a θ θ    
 (9)

In Eq. (9), DDQN

tY represents the optimization objective. θ

and θ 
 represent estimated network parameters and target

network parameters, respectively.

B. RPP based on Improved DDQN

In DDQN, the overestimation problem has a negative
impact on the selection of the optimal action for robots, making
it difficult to find the optimal action strategy and path. At the
same time, as the interaction between robots and the
environment deepens, the playback proportion of important
samples decreases when playing back experience samples,
resulting in the decline of robot learning effect. To address the
above issues, an improved DDQN for RPP is proposed. The
RPP training model is illustrated in Fig. 3.

From Fig. 3, the sample data is fed into the memory cache
unit based on the current environment, the next state, and the
obtained instant returns. Then, samples are selected from
memory buffer units to train the parameters of the IDDQN.
Then, based on the network output and improved exploration
strategy, the optimal action is selected. The robot is sent to the
next state [19-20]. In DDQN, there is a situation where the
absolute error values of the value functions of the optimal and
suboptimal actions are equal, resulting in the robot selecting a
suboptimal action. To avoid the above issues, the range of error
values can be reduced. To minimize the error, the ε-Greedy

strategy is introduced into DDQN. The improved optimization
objective is shown in Eq. (10).

  

 

, arg max , , , Probability=1-

, , Probability

IDDQN

tY

r γQ s Q s a θ θ ε

r γQ s a θ ε







    


    (10)

In Eq. (10), ε represents a parameter, which is a fixed

value, with a value range of  0,1 . a represents a random

action. To better select actions, a ε-Greedy action selection
strategy based on prior knowledge is proposed. The probability
of action selection for strategy ε-Greedy is shown in Eq. (11).

 
 

 

 
 

1 arg max ,

arg max ,

a

a

ε
ε a Q s a

A s
π a s

ε
a Q s a

A s


  


 
 

 (11)

In Eq. (11),  A s represents the set of actions in state s . ε

represents the exploration factor. When the robot selects
actions, a random number is generated. If the random number
is less than the exploration factor, the robot randomly selects
actions. Otherwise, the average Q value of previous
generations will be calculated. Based on improved ε- Greedy
strategy, corresponding actions are selected and executed. The
average Q value is calculated as Eq. (12).

   
1

1
, , ,

KA

t kk
Q s a Q s a θ

K


 
 (12)

In Eq. (12), K represents the algebraic difference between

the current parameter and the previous parameter.  ,AQ s a

represents the average Q value of the previous K -generations.
In model training, the playback frequency of experience
fragments with low time difference error values is low due to
the influence of environmental noise. The lack of diversity in
training samples leads to over fitting issues. Combining greedy
finite and uniform sampling can ensure the playback
probability of experience fragments with low time difference
error values. The calculation formula for playback probability
is shown in Eq. (13).

IDDQN network
Current

environmental status
Memory cache unit

Loss function of

IDDQN

Improved

exploration strategy

Fig. 3. Training model for robot path planning.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

176 | P a g e

www.ijacsa.thesai.org

α

i

i α

kk

p
P

p



 (13)

In Eq. (13),  P i represents the playback probability of the

i -th segment.
ip represents the priority of the i -th segment.

α represents the degree of control priority. The priority

calculation formula is shown in Eq. (14).

1i ip rank
 (14)

In Eq. (14),
irank represents the sequence number sorted

by the absolute value of time difference error. To prevent over
fitting and ensure the diversity of experience fragments, weight
is introduced for adjustment. The weight calculation formula is
shown in Eq. (15).

min

1

β

i
i

p
w

p

 
  

  (15)

In Eq. (15),
minp represents the minimum probability of the

experience segment. β represents the correction degree. At

this time, the expression of loss function is shown in Eq. (16).

    
2

, ,IDDQN

tL w t Y Q s a θ 
 (16)

In Eq. (16),  , ,Q s a θ stands for the output Q of the

estimated network. The IDDQN algorithm process is shown in
Fig. 4.

From Fig. 4, the IDDQN algorithm first initializes the
estimated network parameters, target network parameters, and
experience playback pool. The event is cycled. Then the state
of each cycle is initialized and cycled throughout the time
cycle. Actions are randomly selected based on probability. If a
small probability event does not occur, the action with the
highest current value function is selected and executed. Next,
based on the reward feedback of the environment and the
transferred state, the time difference error value is calculated.
The calculation results are arranged in order of size. According
to the sequence number, priority is calculated. Based on
priority, the sampling probability is obtained. Then the
correction weight is calculated by sampling probability, and the
experience fragments are put into the experience playback pool
according to the probability. Next, samples are selected based
on probability from the experience replay pool and
optimization objectives are calculated. Then, the estimated
parameters are updated according to the calculation results of
the loss function. The target parameters are replaced by these
parameters. The application process of IDDQN algorithm in
robot path planning is shown in Fig. 5.

Start

Initialize estimated network

parameters, target network parameters,

and experience replay pool

Initialize the state of each cycle and

cycle through the time cycle

Randomly select actions

Select and execute the action with the

maximum current value function

Calculate the time difference error value

and arrange it in order of magnitude

Calculate priority and sampling

probability

Calculate correction weights and place

experience fragments into the

experience replay pool

Select samples from the experience

replay pool and calculate optimization

objectives

Calculate loss values and update

estimated network parameters

Replacing target network parameters

with estimated network parameters

End event loop

End cycle cycle

Fig. 4. Flow of IDDQN algorithm.

Start

Initialize robot status

Random number>ε

Initialize robot status Initialize robot status

Obtain the next state of the environment

and calculate the reward value

Place spatial features into the experience

pool and move to the next state

Reaching termination state

End

YesNo

Yes

No

Fig. 5. Application process of IDDQN in RPP.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

177 | P a g e

www.ijacsa.thesai.org

In Fig. 5, this algorithm first initializes the state of the
robot. The current coordinates of the robot are determined.
Then the generated random numbers are compared. If it is
greater than the exploration factor, the average output value of
the improved optimization objective network is calculated and
an action is selected. Otherwise, the action is randomly
selected. Then the next state of the environment is obtained and
its reward value is calculated. Then the spatial features are
placed in the experience pool and moved to the next state.
Finally, the current state is judged. If the termination state is
reached, the process ends. Otherwise, the operation is returned
to the second step.

IV. SIMULATION EXPERIMENTS AND RESULT ANALYSIS

BASED ON GRID ENVIRONMENT AND GAZEBO ENVIRONMENT

To verify the path planning ability of the IDDQN, testing
experiments are carried out in both grid and Gazebo
environments. The proposed method is compared with DDQN
algorithm and adaptive Ant colony optimization algorithms.
The grid environment is divided into simple environment,
complex environment, and random environment. The processor
used in this simulation experiment is Xeon (R), the CPU is
NVIDIA GeForce GTX 1080Ti, the running memory is 32 GB,
and the software environment is Python and TensorFlow. The
exploration factor for grid and Gazebo environments has an
initial value of 1 and an end value of 0.1. The convergence of

DDQN, adaptive ant colony algorithm, and IDDQN algorithm
is shown in Fig. 6.

From Fig. 6, the DDQN value converges after
approximately 270 iterations, with a loss value of
approximately 0.24. The adaptive Ant colony optimization
algorithm starts to converge after about 220 iterations, and the
loss value is about 0.21. IDDQN begins to converge after
approximately 180 iterations, with a loss value of
approximately 0.19. The convergence rate of IDDQN is faster.
The RPP results of the three methods in a simple environment
are shown in Fig. 7.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 100 200 300 400 500 600 700 800 900 1000

Iterations

L
o
ss

DDQN
Adaptive Ant Colony
IDDQN

Fig. 6. Convergence of DDQN, adaptive ant colony, and IDDQN.

(a)DDQN Planning Path

(b)Adaptive Ant Colony Planning Path

(c)IDDQN Planning Path

Fig. 7. RPP results of three methods in a simple environment.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

178 | P a g e

www.ijacsa.thesai.org

1.15
1.20

1.05
1.10

1.00
0.95
0.90
0.85
0.80

0.75
0.70

5 10 15 20 25 30 35 40 45 500
Iterations

A
v
er

ag
e

re
w

ar
d
 v

al
u
e

DDQN

IDDQN

(a)Average reward value of DDQN and IDDQN

26

26.5

27

27.5

28

28.5

29

29.5

30

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

IDDQN DDQN Adaptive ant colony

L
en

g
th

N
u
m

b
er

 o
f

co
ll

is
io

n
s

Number of collisions Length

(b)Path length and collision frequency

Fig. 8. The average reward values of IDDQN and DDQN, as well as the path length and collision frequency of the three algorithms.

From Fig. 7 (a), the path inflection points planned for
DDQN are 8. In Fig. 7(b), the path inflection points planned by
the adaptive Ant colony optimization algorithms are 5. In Fig.
7(c), the inflection points in the planned path of IDDQN are 4.
IDDQN has fewer inflection points in the planned path, which
can effectively reduce the movement time from the starting to
the target position. The average reward values of IDDQN and
DDQN, as well as the path lengths and collision times of the
three algorithms, are shown in Fig. 8.

In Fig. 8(a), the average reward value of DDQN is
approximately 1.03. IDDQN has an average reward value of
approximately 1.12, which is higher than the DDQN algorithm.
In Fig. 8(b), the path length planned by the DDQN is
approximately 29.46m, and the number of obstacle collisions is
19806. The optimal path length of the adaptive Ant colony
optimization algorithms is about 28.63m, and the collisions
with obstacles are 16275. The optimal path length for IDDQN
planning is approximately 27.21m, and the number of
collisions with obstacles during training is 15613. The IDDQN
algorithm not only has the shortest planned path length, but
also reduces the probability of robot collision with obstacles.
The RPP results of the three methods in complex environments
are illustrated in Fig. 9.

In Fig. 9(a), the inflection points planned by the DDQN
algorithm are 10, the inflection points of the path planned by

the adaptive Ant colony optimization algorithms are 13. The
path inflection points planned by IDDQN are 9. From Fig.
9(b), in complex environment 2, the path inflection points of
both the ant colony algorithm and DDQN are redundant with
IDDQN. The length is also longer than the IDDQN algorithm.
From this, in complex environments, the IDDQN algorithm
can still move to the endpoint with as few inflection points as
possible. In a complex environment, the path lengths and
collision times of the three algorithms, as well as the reward
values of IDDQN and DDQN, are shown in Fig. 10.

From Fig. 10(a), the optimal path length for DDQN
planning is approximately 29.22 m, and the number of
collisions during training is 26671. The optimal path length for
the adaptive Ant colony optimization algorithms is about 29.80
m, and the number of collisions is 19374. The optimal path
length for IDDQN is approximately 28.63m and the number of
collisions is 17389. In Fig. 10(b), the average reward values for
DDQN and IDDQN are approximately 0.92 and 1.02,
respectively. The average reward value of IDDQN is higher.
IDDQN can still maintain a small collision probability in
complex environments. The success rates and path length
differences of the three algorithms in a random environment
are shown in Fig. 11.

(a) Complex Environment 1

Adaptive Ant

DDQN

IDDQN

(b) Complex Environment 2

Adaptive Ant

DDQN

IDDQN

Fig. 9. RPP results in complex environments.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

179 | P a g e

www.ijacsa.thesai.org

28
28.2
28.4
28.6
28.8
29
29.2
29.4
29.6
29.8
30

0

5000

10000

15000

20000

25000

30000

IDDQN DDQN Adaptive ant colony

L
en

g
th

N
u

m
b

er
 o

f
co

ll
is

io
n

s

Number of collisions Length

(a)Path length and collision frequency

1.15
1.20

1.05
1.10

1.00
0.95
0.90
0.85
0.80

0.75
0.70

5 10 15 20 25 30 35 40 45 500
Iterations

A
v

er
ag

e
re

w
ar

d
 v

al
u

e

DDQN

IDDQN

(b)Average reward value of DDQN and IDDQN

Fig. 10. The path length, collision frequency, and reward values for IDDQN and DDQN of the three algorithms are shown in the figure.

88%
89%
90%
91%
92%
93%
94%
95%
96%
97%
98%

15×15 20×20 25×25 30×30

S
u

cc
es

s
ra

te

Grid environment

DDQN Adaptive ant colony IDDQN

(a) Success rate

0

0.5

1

1.5

2

2.5

L
en

g
th

 d
if

fe
re

n
ce

/m

Grid environment

DDQN Adaptive ant colony IDDQN

15×15 20×20 25×25 30×30

(b) Path length difference

Fig. 11. Success rates and path length differences of three algorithms in a random environment.

IDDQN
DDQN

3000

2500

2000

1500

1000

500

0

A
cc

u
m

u
la

te
d
 r

ew
ar

d
 v

al
u
e

0 1000 2000 3000 4000 5000
Iterations

Fig. 12. Accumulated reward values of DDQN and IDDQN.

In Fig. 11 (a), in a random environment, the probability of
DDQN successfully reaching the destination without colliding
with obstacles is approximately 95.2%, 93.1%, 91.8%, and
91.2%, respectively. The success rate of adaptive Ant colony
optimization algorithms in random environment is about
96.7%, 94.8%, 93.5% and 92.6% respectively. The success
rates of IDDQN in random environments are approximately
97.4%, 96.5%, 95.9%, and 95.1%, respectively. IDDQN has
the highest success rate in a random environment. In Fig.
11(b), the path length difference of DDQN in different
environments is about 1.04 m, 1.17 m, 1.25 m, and 2.06 m,
respectively. The path length difference of the adaptive Ant

colony optimization algorithms is about 0.86 m, 0.98 m, 1.07
m and 1.52 m respectively. The difference in path length for
IDDQN is approximately 0.59 m, 0.83m, 0.91m, and 1.33m,
respectively. The path length difference of IDDQN is the
smallest, indicating that IDDQN has a stronger ability to plan
the optimal path. The CRVs of DDQN and IDDQN in the
Gazebo environment are shown in Fig. 12.

In Fig. 12, the CRV of IDDQN is significantly higher than
that of DDQN. The average CRV of DDQN is the highest in
the range of 2500 to 3000 iterations. At this point, the average
CRV is approximately 76.12. Secondly, there is an interval of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

180 | P a g e

www.ijacsa.thesai.org

3000 to 3500 iterations, with an average CRV of
approximately 29.83. The above two intervals are also the only
ones with a positive average CRV. The average CRV of
IDDQN is highest in the range of 3500 to 4000 iterations. The
average CRV is around 748.62. Next is the interval of 4000 to
4500 iterations, with an average CRV of approximately 584.46.
When the number of iterations reaches 2000, the average CRV
is all positive. The average CRV between the iterations of
2000-2500 and 3000-3500 exceeds 100.

V. CONCLUSION

A RPP algorithm based on the improved DDQN - IDDQN
algorithm is proposed for the mobile RPP problem of
intelligent robots in unknown environments. Simulation
experiments are conducted in both grid and Gazebo
environments. According to the results, IDDQN begins to
converge after approximately 180 iterations. The loss value is
approximately 0.19. The convergence rate is faster than DDQN
algorithm and adaptive Ant colony optimization algorithms. In
a simple grid environment, the optimal path length, inflection
points, and collisions during training for IDDQN are 27.21m,
4, and 15613, respectively. In a complex grid environment, the
optimal path length, number of inflection points, and number
of collisions during training planned by the IDDQN algorithm
are 28.63m, 9, and 17389, respectively. In a random
environment, the path length differences of IDDQN are 0.59m,
0.83m, 0.91m, and 1.33m, respectively. It is less than the path
planned by DDQN and adaptive Ant colony optimization
algorithms. The success rates of the IDDQN algorithm in
random environments are approximately 97.4%, 96.5%,
95.9%, and 95.1%, respectively, which are higher than other
algorithms. In the Gazebo environment, the interval with the
highest average cumulative reward value for DDQN is between
2500 and 3000 iterations. At this point, the average cumulative
reward value is about 76.12, and there are only two intervals
where the average cumulative reward value is positive. The
average cumulative reward value of DDQN is the highest in
the range of 3500 to 4000 iterations. The average cumulative
reward value is around 748.62. When the number of iterations
reaches 2000, the average CRV is all positive. The average
CRV of two intervals exceeds 100. The above results indicate
that the intelligent RPP based on IDDQN can achieve optimal
RPP in unfamiliar environments. Research has achieved static
path planning for robots by improving DDQN. However, the
proposed method does not take into account the dynamic
variable environment. At the same time, when several robots
cooperate to complete a certain work, the proposed algorithm
cannot provide reasonable task assignment and collaboration
instructions for the robot. Therefore, future work will focus on
path planning, multi-robot collaborative task assignment, and
path planning in dynamically variable environments.

ACKNOWLEDGMENT

The research is supported by: 2022 China University
Industry Education Research Innovation Fund: "Research and
Practice on the Cultivation Model of Composite Talents in
Artificial Intelligence Technology Application from the
Perspective of Industry Education Integration (No.
2021BCE02013)".

REFERENCES

[1] J. Zan. "Research on robot path perception and optimization technology
based on whale optimization algorithm," J. Comput. Cognitive Eng., vol.
1, no. 4 pp. 201-208, Aug. 2022.

[2] G. Campos, N. H. El-Farra, and A. Palazoglu, "Soft actor-critic deep
reinforcement learning with hybrid mixed-integer actions for demand
responsive scheduling of energy systems," Ind. Eng. Chem. Res., vol.
61, no. 24, pp. 8443-8461, Apr. 2022.

[3] Y. Yang and. X. Song, "Research on face intelligent perception
technology integrating deep learning under different illumination
intensities," J. Comput. Cognitive Eng., vol. 1, no. 1, pp. 32-36, Aug.
2022.

[4] A. K. Rath, D. R. Parhi, H. C. Das, P. B. Kumar, and M. K. Mahto,
"Design of a hybrid controller using genetic algorithm and neural
network for path planning of a humanoid robot," Int. J. Intell. Unmanned
Syst.,vol. 9, no. 3, pp. 169-177, May. 2021.

[5] B. Nie, Y. Gao, Y. Mei, and F. Gao, "Capability iteration network for
robot path planning," Int. J. Robotics Automation, vol. 37, no. 3, pp.
266-272, Apr. 2022.

[6] G. Wang and J. Zhou, "Dynamic robot path planning system using
neural network," J. Intell. Fuzzy Syst., vol. 40, no. 2, pp. 3055-3063, Feb.
2021.

[7] A. Oultiligh, H. Ayad, A. E. Kari, M. Mjahed, and N. E. L. Gmili, "A
hybrid PSO-GWO algorithm for robot path planning in uncertain
environments," Int. Rev. Automat. Contr., vol. 14, no, 6, pp. 360-372,
Aug. 2021.

[8] F. A. Raheem and M. I. Abdulkareem, "Development of A* algorithm
for robot path planning based on modified probabilistic roadmap and
artificial potential field," J. Eng. Sci. Technol., vol. 15, no. 5, pp. 3034-
3054, Oct. 2020.

[9] W. Guanzheng, X. Yinbo, L. Zhihong, X. Xin, W. Xiangke, and Y.
Jiarun, "Integrating human experience in deep reinforcement learning for
multi-UAV collision detection and avoidance," Ind. Robot, vol. 49, no.
2, pp. 256-270, Sept. 2022.

[10] D. Cao, W. Hu, X. Xu, Q. Wu, Q. Huang, Chen Z., and F. Blaabjerg,
"Deep reinforcement learning based approach for optimal power flow of
distribution networks embedded with renewable energy and storage
devices," J. Mod. Pow. Syst. Clean Energy, vol. 9, no. 5, pp. 1101-1110,
Jun. 2021.

[11] J. Zhao, F. Li, S. Mukherjee, and D. Sticht, "Deep reinforcement
learning based model-free on-line dynamic multi-microgrid formation to
enhance resilience," IEEE Trans. Smart Grid, vol. 13, no. 4, pp. 2557-
2567, Jul. 2022.

[12] D. Zhang, J. Zhao, Y. Zhang, and Q. Zhang, "Intelligent train control for
cooperative train formation: A deep reinforcement learning approach,"
Proc. Inst. Mech. Eng., Part I: J. Syst. Contr. Eng., vol. 236, no. 5, pp.
975-988, Dec. 2022.

[13] S. A. M. Shihab and P. Wei, "A deep reinforcement learning approach to
seat inventory control for airline revenue management," J. Revenue
Pricing Manage., vol. 21, no. 2, pp. 183-199, Mar. 2022.

[14] Y. Zheng, J. Tao, Q. Sun, H. Sun, M. Sun, and Z. Chen, "An intelligent
course keeping active disturbance rejection controller based on double
deep Q-network for towing system of unpowered cylindrical drilling
platform," Int. J. Robust and Nonlinear Contr., vol. 31, no. 17, pp. 8463-
8480, Aug. 2021.

[15] Y. Dai, K. D. Lee, and S. G. Lee, "A real-time HIL control system on
rotary inverted pendulum hardware platform based on double deep Q-
network," Measure. Contr., vol. 54, no. 3-4, pp. 417-428, Mar. 2021.

[16] X. Tao and A. S. Hafid, "Deep sensing: a novel mobile crowd sensing
framework with double deep Q-network and prioritized experience
replay," IEEE Internet Things J., vol. 7, no. 12, pp. 11547-11558, Sept.
2020.

[17] Q. Fang, X. Xu, and D. Tang, "Loss-based active learning via double-
branch deep network," Int. J. Advan. Robotic Syst., vol. 18, no. 5, pp.
538-550, Sept. 2021.

[18] J. Zhao, T. Qu, and F. Xu, "A deep reinforcement learning approach for
autonomous highway driving," IFAC-PapersOnLine, vol. 53, no. 5, pp.
542-546, May. 2020.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

181 | P a g e

www.ijacsa.thesai.org

[19] L. Xu, M. Cao, and B. Song, "A new approach to smooth path planning
of mobile robot based on quartic Bezier transition curve and improved
PSO algorithm," Neurocomputing, vol. 473, no. 7, pp. 98-106, Feb.
2022.

[20] Y. Yang, Z. Lin, M. Yue, G. Chen, and J. Sun, "Path planning of mobile
robot with PSO-based APF and fuzzy-based DWA subject to moving
obstacles," Trans. Inst. Measure. Contr., vol. 44, no. 1, pp. 121-132, Jul.
2022.

