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Abstract—Human Activity Recognition (HAR) holds 

significant implications across diverse domains, including 

healthcare, sports analytics, and human-computer interaction. 

Deep learning models demonstrate great potential in HAR, but 

performance is often hindered by imbalanced datasets. This 

study investigates the impact of class imbalance on deep learning 

models in HAR and conducts a comprehensive comparative 

analysis of various sampling techniques to mitigate this issue. The 

experimentation involves the PAMAP2 dataset, encompassing 

data collected from wearable sensors. The research includes four 

primary experiments. Initially, a performance baseline is 

established by training four deep-learning models on the 

imbalanced dataset. Subsequently, Synthetic Minority Over-

sampling Technique (SMOTE), random under-sampling, and a 

hybrid sampling approach are employed to rebalance the 

dataset. In each experiment, Bayesian optimization is employed 

for hyperparameter tuning, optimizing model performance. The 

findings underscore the paramount importance of dataset 

balance, resulting in substantial improvements across critical 

performance metrics such as accuracy, F1 score, precision, and 

recall. Notably, the hybrid sampling technique, combining 

SMOTE and Random Undersampling, emerges as the most 

effective method, surpassing other approaches. This research 

contributes significantly to advancing the field of HAR, 

highlighting the necessity of addressing class imbalance in deep 

learning models. Furthermore, the results offer practical insights 

for the development of HAR systems, enhancing accuracy and 

reliability in real-world applications. Future works will explore 

alternative public datasets, more complex deep learning models, 

and diverse sampling techniques to further elevate the 

capabilities of HAR systems. 
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I. INTRODUCTION 

Human Activity Recognition (HAR) is a multidisciplinary 
field focused on the automated identification and 
categorization of human activities, primarily relying on data 
collected from diverse sensors. Its applications extend into 
critical domains, particularly Sports or healthcare [1]. The 
automatic detection and classification of human activities can 
significantly improve the quality of life for elderly individuals 
and dependents, enhancing their safety, well-being, and 
independence [2].HAR systems play a vital role in smart home 
environments by providing context-aware services to 

residents, monitoring their activities, and alerting caregivers in 
case of any abnormal situations[3]. 

Deep learning models have revolutionized HAR due to 
their capacity to process and analyze sensor data effectively. 
Long Short-Term Memory (LSTM) networks and 
Convolutional Neural Networks (CNN) are two prominent 
deep learning architectures that excel at learning complex 
patterns and temporal dependencies from sensor data. These 
models have demonstrated remarkable performance in HAR, 
making them the focal point of this study [4] [5]. While deep 
learning models have shown promise in HAR, one significant 
challenge is posed by imbalanced datasets [6]. In many real-
world scenarios, certain activities or classes are more frequent 
than others in the data, creating an imbalance. This imbalance 
can adversely affect the performance and accuracy of HAR 
models, as they may become biased towards the majority 
class, leading to poor recognition of minority activities [7]. 

In summary, Human Activity Recognition (HAR) holds 
vital implications for various domains. Deep learning models, 
such as LSTM and CNN, enhance HAR by effectively 
processing sensor data. The use of sampling techniques to 
address class imbalance significantly boosts model 
performance. This research underscores the importance of 
balanced datasets in HAR and provides practical insights for 
real-world applications. 

The primary contributions of this study are as follows: 

 The profound impact of class imbalance on the 
performance of deep learning models in HAR is 
investigated, and a range of sampling techniques 
designed to alleviate this issue is introduced and 
rigorously evaluated, offering valuable insights into 
enhancing model performance within imbalanced 
datasets. 

 Three distinct sampling techniques are evaluated: 
SMOTE Random Undersampling, and a hybrid 
approach combining both methods. 

 A detailed comparative analysis of the efficacy of these 
sampling methods in enhancing learning from 
imbalanced human activity data through deep machine 
learning algorithms is provided. Specifically, a test is 
conducted on Vanilla LSTM, 2 Stacked LSTM, 3 
Stacked LSTM, and the Hybrid CNN-LSTM model. 
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The findings consistently demonstrate that the hybrid 
sampling techniques consistently outperform state-of-the-art 
models across critical performance metrics, including 
accuracy, precision, recall, and F1 score. 

The paper is organized into distinct sections to effectively 
present the research findings. Section II presents the Related 
Works, reviewing prior research in the field related to the 
problem. Section III elaborates on the Materials and Methods 
employed in the experimental approach. Section IV presents 
the outcomes of the experiments and engages in a thorough 
discussion of the findings. Finally, in Section V, the 
Conclusion presents the key findings, and future directions of 
sensor -based HAR using deep learning models. 

II. RELATED WORK 

In the field of Human Activity Recognition (HAR), 
addressing imbalanced data presents a significant challenge, a 
common issue observed in various public datasets, including 
Opportunity [8], WISDM V1.1[9], SPHERE [10] and 
PAMAP2 [11]. Imbalanced data can profoundly affect the 
performance of deep learning models utilized in HAR tasks. 
To tackle this challenge, several studies have explored the 
integration of deep learning models with sampling methods 
specifically designed for Human Activity Recognition based 
on sensor data. 

Jeong et al. (2022) conducted a comprehensive study 
focusing on the influence of undersampling and oversampling 
techniques for classifying physical activities using an 
imbalanced accelerometer dataset. Their findings proposed 
that ensemble learning, coupled with well-defined feature sets 
and undersampling, exhibits robustness in the classification of 
physical activities within imbalanced datasets. This approach 
proves particularly effective in real-world scenarios, where 
imbalanced class distributions are commonplace. Furthermore, 
the study underscored the superiority of ensemble learning 
over other machine learning and deep learning models in 
handling small datasets with subject variability [12]. 

Hamad et al. (2020) evaluated the efficacy of imbalanced 
data handling methods in the context of deep learning applied 
to smart home environments. Leveraging a CNN LSTM 
model and a dataset comprising daily living activities 
collected from two real intelligent homes, their research 
demonstrated a significant performance improvement by 
applying the SMOTE oversampling method. This 
enhancement resulted in a notable increase in accuracy (from 
0.60-0.62 to 0.71-0.73) when compared to training on the 
original imbalanced data [13]. 

Alani et al. (2020) delved into the classification of 
imbalanced multi-modal sensor data for HAR within smart 
home environments, using deep learning techniques in 
conjunction with oversampling (specifically, SMOTE) and 
undersampling methods. The results unequivocally favored 
the SMOTE method over undersampling in effectively 
addressing imbalanced data challenges within HAR tasks 
using the SPHERE dataset [14]. 

Alharbi et al. (2022) made significant contributions by 
investigating the effectiveness of oversampling methods, such 
as SMOTE and its hybrid variations, in improving the 

classification of minority classes in diverse datasets. For 
instance, on the PAMAP2 dataset, the MLP achieved an F1 
score of 0.7185 using the SMOTE sampling method, 
compared to its baseline score of 0.7473. [7]. 

In addition to the aforementioned studies, recent research 
has showcased the potential of deep learning models for HAR: 

 Wan et al. (2020) introduced deep models for real-time 
HAR using smartphones, including CNN and LSTM 
models, achieving high accuracies of 91.00% and 
85.86%, respectively on the PAMAP 2 Dataset [15]. 

 Xu et al. (2022) proposed several methods, including 
classical CNN, LSTM, and Inception-LSTM with 
attention mechanisms, achieving F1 scores ranging 
from 0.8949 to 0.9513 [16]. 

 Tehrani et al. (2023) utilized a deep multi-layer Bi-
LSTM model for sensor-based HAR, obtaining 
promising results with F1-score, Precision, Recall, and 
Accuracy all reaching 93.41% [17]. 

 Thakur et al. (2022) demonstrated that a hybrid model 
combining CNN and LSTM with an autoencoder for 
dimensionality reduction achieved an impressive F1 
score of 0.9446 and an accuracy of 94.33% for HAR 
[4]. 

 Challa et al. (2022) proposed a multibranch CNN-
BiLSTM model for human activity recognition using 
wearable sensor data, achieving an impressive accuracy 
of 94.29% [18]. 

Table I summarizes the performance of various deep 
learning models on the PAMAP2 dataset using different 
sampling methods for sensor-based HAR. 

These studies collectively emphasize the positive impact 
of oversampling techniques, particularly SMOTE, in 
enhancing model performance when compared to training on 
imbalanced datasets. These insights lay the foundation for this 
research, which aims to build upon this foundation and further 
investigate the efficacy of sampling methods in improving the 
performance of deep learning models for HAR on the 
PAMAP2 dataset. 

In the field of HAR, a significant gap in existing research 
has been found. There hasn't been enough focus on how 
different sampling techniques affect the performance of deep 
learning models in HAR. While some studies have tackled 
imbalanced data in HAR, they often overlook the critical role 
that sampling methods play. This gap highlights the need for a 
more thorough investigation into how sampling techniques 
and deep learning intersect in HAR. That's where the research 
steps in. The commitment is to address this gap by thoroughly 
studying how various sampling methods impact the 
performance of deep learning models in real-world HAR 
scenarios. The goal is to provide a clearer picture of how 
sampling methods and deep learning models work together, 
ultimately improving the accuracy and reliability of activity 
recognition in sensor-based applications. 
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TABLE I. PREVIOUS STUDIES PERFORMANCE ON PAMAP2 DATASET USING DEEP LEARNING MODELS AND SAMPLING METHODS FOR SENSOR BASED HAR 

Study year Dataset Classification method Sampling method Accuracy F1 score Precision Recall 

[14] 2020 SPHERE CNN NONE 0.7030 - - - 

[14] 2020 SPHERE LSTM NONE 0.6598 - - - 

[14] 2020 SPHERE CNN-LSTM NONE 0.6829 - - - 

[14] 2020 SPHERE CNN SMOTE 0.9355 - - - 

[14] 2020 SPHERE LSTM SMOTE 0.9298 - - - 

[14] 2020 SPHERE CNN-LSTM SMOTE 0.9367 - - - 

[14] 2020 SPHERE CNN UNDERSAMPLING 0.2937 - - - 

[14] 2020 SPHERE LSTM UNDERSAMPLING 0.3794 - - - 

[14] 2020 SPHERE CNN-LSTM UNDERSAMPLING 0.3085 - - - 

[15] 2020 PAMAP2 LSTM NONE 0.8580 0.8534 0.8651 0.8467 

[16] 2022 PAMAP2 LSTM NONE 0.8920 0.8949 0.8969 0.8928 

[17] 2023 PAMAP2 Bi-LSTM NONE 0.9341 0.9341  0.9341  0.9347  

[4] 2022 PAMAP2 convLSTM AE NONE 0.9433 0.9446 - - 

[18] 2022 PAMAP2 CNN-BiLSTM NONE 0.9429 - - - 

[7] 2022 PAMAP2 MLP SMOTE -- 0.7473 0.7769 0.7493 

III. MATERIAL AND METHODS 

In this research, the impact of class imbalance on HAR 
using wearable sensor data and deep learning models was 
investigated. To address this issue, three sampling methods 
were thoroughly examined: SMOTE, Random 
Undersampling, and a hybrid combination of the 
aforementioned techniques. The study involved the training of 
four deep learning models, including Vanilla LSTM, 2 
Stacked LSTM, 3 Stacked LSTM, and Hybrid CNN-LSTM, 
on the PAMAP2 dataset. Through rigorous experimentation 
and evaluation, the aim was to identify the most effective 
sampling approach to improve model performance and 
generalization in HAR. The findings are expected to 
contribute valuable insights towards enhancing the accuracy 
and reliability of HAR systems deployed in real-world 
scenarios. 

A. PAMAP2 Dataset 

The PAMAP2 dataset [11], which stands for "Physical 
Activity Monitoring using a Multipurpose Sensor" holds a 
prominent role in the realm of Human Activity Recognition 
(HAR) research. Its comprehensive data collection approach, 
diverse participant demographic, and meticulous data 
organization make it a valuable resource for the research 
community. 

Here are some key characteristics of the PAMAP2 dataset, 
as extracted from the dataset documentation [11] : 

 Participant Diversity: One noteworthy aspect of the 
PAMAP2 dataset is the diversity of its participant pool. 
This dataset comprises data contributed by both 
genders, with a broad age range spanning from 23 to 32 
years. Moreover, it includes individuals with varying 
physical characteristics, such as weights ranging from 
65 to 95 kilograms and heights spanning between 168 
and 194 centimeters. This demographic diversity 

empowers researchers to develop activity recognition 
models applicable to a broad spectrum of individuals. 

 Data Collection: Researchers collected the dataset using 
a range of wearable sensors, including those worn on 
the wrist, chest, and ankle. These sensors operated at a 
high sampling rate of 100Hz, enabling the capture of an 
extensive volume of data, essential for detailed analysis 
of activities and movements (see Table II). 

 Activity Variety: The PAMAP2 dataset offers an array 
of data related to various physical activities. It 
encompasses 12 distinct activity types, with detailed 
descriptions provided in Table III. This categorization 
serves as a valuable reference for activity labeling and 
model development. 

 Data Format: The dataset is thoughtfully organized, 
with raw data from all sensors synchronized and 
labeled, and then consolidated into a single data file per 
participant and session. These files are presented in text 
format (.dat), simplifying structured data manipulation 
and analysis. 

TABLE II. PAMAP2 DATASET DESCRIPTION 

Dataset Labels 
Sampling 

Rate 

Windows 

Size 
Overlap # Subjects 

PAMAP2 12 100 Hz 1s 50% 9 

Table III provides an overview of the data distribution 
within the PAMAP2 dataset, highlighting a significant class 
imbalance among different activity labels in both the training 
and testing datasets. This issue is further underscored in Fig. 
1, where it becomes evident that the "Rope jumping" activity 
exhibits notably fewer instances compared to other activities. 
This skewed data distribution can exert a substantial impact on 
the performance of deep learning models. Consequently, it 
becomes imperative to implement suitable sampling strategies 
to guarantee the reliability and accuracy of results. 
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TABLE III. DATA DISTRIBUTION PER ACTIVITY IN THE PAMAP2 

DATASET 

Class 

id 
Activity label 

# Instances 

Training Set 70% 

# Instances 

Testing Set 70% 

0 Lying 100298 42633 

1 Sitting 58380 25358 

2 Standing 70165 29808 

3 Walking 86117 36789 

4 Running 30100 12950 

5 Cycling 63755 27585 

6 Nordic Walking 78154 33678 

7 Ascending stairs 41442 17872 

8 Descending stairs 32800 14030 

9 Vacuum cleaning 60703 26256 

10 Ironing 87885 37343 

11 Rope jumping 10889 4564 

 

Fig. 1. Data distribution by activity in PAMAP2 dataset. 

B. Deep Learning Models 

1) Long short-term memory (LSTM): LSTM networks 

belong to the category of recurrent neural networks (RNNs) 

and hold significance in time series applications, particularly 

HAR, that involve the classification of activities based on 

sensor data, such as accelerometers and gyroscope readings 

from smartphones. The strength of LSTM networks in HAR 

lies in their capability to capture and model long-term 

dependencies present within the sensor data [19]. 

2) Hybrid deep learning model (CNN-LSTM): This 

research harnesses the power of hybrid models, specifically 

the integration of Convolutional Neural Networks (CNN) and 

Long Short-Term Memory (LSTM) networks. This 

combination, as evidenced by several studies [14][4], holds 

promise for achieving high performance in HAR tasks. The 

rationale behind selecting this hybrid model is compelling: 

CNN excels at capturing spatial relationships within data, 

while LSTM is adept at modeling temporal dependencies. 

This combination allows us to leverage the strengths of both 

architectures [20]. One notable advantage of the hybrid model 

is that CNN accelerates the feature extraction process, 

enhancing training efficiency. This synergy between CNN and 

LSTM contributes to the model's overall effectiveness in 

recognizing human activities based on sensor data. 

3) Deep learning models configurations: In the following 

deep learning configuration for multiclass HAR classification, 

various layers play distinct roles. These include the LSTM 

layer, dropout layer, dense layer with Softmax activation for 

probability estimation, convolutional (Conv1D) layer, and 

max pooling layers. Each layer plays a specific role in a deep 

learning architecture for multiclass classification. The LSTM 

layer captures sequential dependencies in the data, making it 

suitable for time series or sequential data. The dropout layer 

helps prevent overfitting by randomly deactivating a fraction 

of neurons during training, enhancing the model's 

generalization. The dense layer, often found in the final stage, 

produces class scores. The softmax activation function applied 

to these logits converts them into class probabilities. The 

convolutional (Conv1D) layer extracts spatial features from 

the input data. Max pooling layers reduce the spatial 

dimensions while retaining essential information, aiding in 

feature selection and computational efficiency. Combined, 

these layers enable the deep learning model to process, 

understand, and classify data efficiently and accurately. 

In this study, several configurations of deep learning 
models for HAR are explored. These configurations include: 

a) Vanilla LSTM: This straightforward LSTM setup 

consists of a single hidden layer of LSTM units and an output 

layer for prediction. It has proven its effectiveness in various 

small sequence prediction tasks [21]. 

Fig. 2 illustrates the architecture of the Vanilla LSTM 
model. It provides a visual representation of the model's 
structure, showcasing the flow of data through its layers, 
including the LSTM layer, dropout layers, and dense layers, 
ultimately leading to the output layer for activity 
classification. 

 

Fig. 2. Structure of vanilla LSTM model. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 10, 2023 

294 | P a g e  

www.ijacsa.thesai.org 

b) 2-Stacked LSTM: Variants of the Stacked LSTM 

model, featuring two hidden layers, are also investigated in 

this study. Emerging from research findings, Stacked LSTM 

networks exhibit improved recognition efficiency by 

iteratively extracting temporal features [21]. 

Fig. 3 provides an overview of the 2-Stacked LSTM 
model's architecture. This model is specifically designed for 
Human Activity Recognition (HAR) and excels in capturing 
intricate temporal patterns within sensor data. It consists of 
two LSTM layers with 64 units each, enabling the 
understanding and modeling of complex temporal 
relationships. Dropout layers are strategically placed to 
prevent overfitting during training. The model then utilizes 
two Dense layers, with 96 and 12 units, for feature extraction 
and final classification. Overall, the 2-stacked LSTM model's 
structure is optimized for accurate and robust activity 
recognition in HAR applications. 

 

Fig. 3. Structure of 2-stacked LSTM model. 

c) 3-Stacked LSTM: Similar to the 2-Stacked LSTM but 

with an additional layer of LSTM units, this configuration 

aims to further enhance the model's capacity for temporal 

feature extraction [21]. 

Fig. 4 provides an overview of the 3-Stacked LSTM 
model's architecture, designed for Human Activity 
Recognition (HAR). This model excels at capturing intricate 
temporal patterns within sensor data. It comprises three LSTM 
layers, each with 32 units, to model complex temporal 
relationships. Dropout layers are integrated to prevent 
overfitting during training. The model also includes two dense 
layers with 64 and 12 units, respectively, for feature extraction 
and final activity classification. In summary, the 3-Stacked 
LSTM model is engineered to achieve robust and accurate 
activity recognition in HAR scenarios by effectively handling 
temporal data dependencies and ensuring generalization 
through dropout mechanisms. 

 

Fig. 4. Structure of 3-stacked LSTM model. 

d) Hybrid Model (CNN-LSTM): The CNN-LSTM 

model, a hybrid architecture that seamlessly combines 

Convolutional Neural Networks (CNN) and Long Short-Term 

Memory (LSTM) layers. 

Fig. 5 outlines the Hybrid CNN-LSTM model for HAR. 
The architecture starts with a CNN layer followed by dropout 
and max pooling for feature extraction. Subsequently, an 
LSTM layer captures temporal patterns with dropout for 
regularization. The final dense layer performs activity 
classification. This design effectively handles spatial and 
temporal aspects of sensor data, ensuring robust activity 
recognition in HAR. 

 

Fig. 5. Structure of hybrid CNN-LSTM model. 
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C. Sampling Techniques 

To tackle the challenge of imbalanced data, three different 
sampling techniques were applied: 

1) SMOTE (Synthetic minority over-sampling technique): 

This Sampling technique serves as an effective tool for 

addressing imbalanced datasets in the realm of machine 

learning. Its function involves creating synthetic data points 

for the underrepresented class by bridging the gap between 

existing samples. In the context of sensor-based Human 

Activity Recognition (HAR) using deep learning, SMOTE 

plays a vital role in enhancing the classification accuracy of 

models like Multi-Layer Perceptrons (MLPs) [7]. 

Deep learning models require a high amount of data and 
are very sensitive to the imbalanced class problem. This is 
where SMOTE steps in, generating artificial samples for the 
minority class, thereby balancing the dataset and significantly 
improving the classification accuracy of these deep learning 
models [14]. 

2) Random undersampling: This Sampling method 

addresses imbalanced datasets by randomly removing samples 

from the majority class to achieve balance. In sensor-based 

Human Activity Recognition (HAR) with deep learning, is 

employed to boost deep learning model classification accuracy 

[14]. Deep learning models require a high amount of data and 

are sensitive to class imbalances. Thus, Random 

Undersampling eliminates samples from the majority class, 

balancing the dataset and improving classification accuracy 

[14]. However, this method can lead to the loss of critical 

information from the majority class, potentially impacting the 

model's classification accuracy [7]. Hence, it is crucial to 

carefully select the samples for removal to prevent the loss of 

vital information. 

3) Hybrid sampling: Hybrid sampling is a technique used 

to deal with imbalanced datasets in machine learning. It 

involves combining oversampling and undersampling methods 

to balance the dataset. This method generates synthetic 

samples for the minority class using SMOTE and randomly 

removes samples from the majority class using Random 

Undersampling. The combination of these two methods helps 

to balance the dataset and improve the classification accuracy 

of deep learning models [7][14]. Hybrid sampling is 

particularly effective in sensor-based Human Activity 

Recognition (HAR) when combined with deep learning 

models. This technique successfully addresses the challenge of 

imbalanced classes while simultaneously mitigating the risk of 

losing valuable information from the majority class that can 

occur with random undersampling alone. By generating 

synthetic samples for the minority class through SMOTE, 

hybrid sampling ensures a well-represented minority class in 

the dataset. This balanced dataset significantly enhances the 

classification accuracy of deep learning models, while also 

promoting data diversity [14]. 

Table A1 in Appendix A provides a comprehensive 
overview of the dataset instances before and after the 

application of various sampling methods. The table allows for 
a clear visualization of how each sampling technique impacts 
the dataset composition. 

D. Hyperparameter Tuning with Bayesian Optimization 

The Model Hyperparameters are crucial in deep learning, 
shaping training algorithms and model performance. Bayesian 
optimization offers an effective means to optimize these 
parameters, particularly in complex, function-based problems 
lacking simple analytical solutions. To apply Bayesian 
optimization to time series and sensor-based Human Activity 
Recognition (HAR) using LSTM models, the following steps 
can be followed: 

Step 1: Define the hyperparameter search space. 

Step 2: Specify the objective function to evaluate model 
performance. 

Step 3: Initialize the Bayesian optimization algorithm with 
hyperparameter values. 

Step 4: Iteratively use the algorithm to suggest 
hyperparameters for evaluation. 

Step 5: Continue until predefined convergence criteria are 
met, like a set number of iterations or desired performance 
levels. 

E. Evaluation Metrics 

In the experiment, various evaluation metrics were used to 
assess the HAR model's performance. These metrics included 
accuracy, F1 score, precision, recall, and the confusion matrix. 
These evaluation metrics determine the performance of a 
model on a dataset. The most common metric is the confusion 
matrix which is a two-dimension table of class labels; one 
represents the current class and the other represents the 
predicted one. Accuracy is the most used one to evaluate 
model classification. It defines a ratio of correct predictions 
and overall predictions. The accuracy can be a good measure 
when the dataset class is balanced. Otherwise, this metric is 
not appropriate for evaluation. In the case of imbalanced 
datasets, other metrics are used such as precision, recall, f-
measure, and specificity. Table IV presents the definition of 
all these metrics [22]. 

Understanding these performance metrics requires 
knowledge of four fundamental terms used in their 
measurement: true positive (TP), true negative (TN), false 
positive (FP), and false negative (FN). 

TABLE IV. PERFORMANCE METRICS 

Metric Formula Definition 

Accuracy 
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
 

the ratio of correct predictions 
and overall predictions 

Precision  
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

the ratio of correct predictions to 

the total predicted 

Recall of 
sensitivity 

𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

the ratio of correct predictions to 
the samples in the actual class 

Specificity 
𝑡𝑛

𝑡𝑛 + 𝑓𝑝
 

The ratio of actual class 0 to the 

correctly predicted 0  

F1 score / F-
measure 

2(𝑟𝑒𝑐𝑎𝑙𝑙 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

The weighted average of 

precision and Recall if the data is 

imbalanced 
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IV. EXPERIMENTS AND RESULTS 

A. Experimental Design 

This research aims to investigate the impact of data 
balancing techniques on the performance of deep learning 
models for Human Activity Recognition (HAR) by addressing 
the following research questions: 

1) How does class imbalance affect the performance of 

deep learning models in Human Activity Recognition (HAR) 

when applied to wearable sensor data? 

2) What are the comparative effects of different sampling 

techniques, such as SMOTE, Random Undersampling, and 

Hybrid Sampling, in addressing the class imbalance in 

wearable sensor data for HAR? 

3) What role does hyperparameter tuning play in 

improving the accuracy and performance of deep learning 

models for HAR, particularly in the context of imbalanced 

datasets? 

4) Which combination of sampling technique and 

hyperparameter tuning strategy yields the most significant 

performance improvements in HAR using deep learning 

models for imbalanced wearable sensor data? 

The hypothesis guiding this study is that balancing the 
dataset will result in enhanced classification accuracy in HAR 
using deep learning models. The experiments were carried out 
using the PAMAP2 dataset collected from wearable sensors, 
encompassing wrist, chest, and ankle devices. Four deep 
learning models were employed: Vanilla LSTM, 2-Stacked 
LSTM, 3-Stacked LSTM, and CNN-LSTM. 

B. Experimental Setup 

The conducted experiments are performed on an NVIDIA 
GPU V100 using the Google Collaboratory Pro+ platform. 
The four models' hyperparameters were optimized through 
Bayesian Hyperparameter Optimization, utilizing the Keras 
Tuner library[23]. The experiment setup is detailed in Table 
V. 

TABLE V. EXPERIMENTAL SETUP 

Platform Google Colab Pro+ 

GPU NVIDIA GPU V100 

RAM 15 GB 

Tenserflow version 2.12.0 

Keras Version 2.12.0 

Keras Tuner Version 1.3.5 

C. Experiment Pipeline 

To evaluate the models' performance on the PAMAP2 
dataset, a comprehensive experiment pipeline was executed. 

This pipeline is composed of multiple stages, each playing a 
vital role in the experiments (see Fig. 6): 

1) Data collection: Initially, the raw sensor data from 

wearable devices were collected. 

2) Data preprocessing: The dataset goes through a 

preprocessing phase, involving actions like data cleaning, 

noise reduction, and normalization. 
During this stage, the raw sensor data from wearable 

devices is readied for the proposed model. The subject-
specific files containing activity records are consolidated into 
one data frame. To adhere to PAMAP2 guidelines, invalid 
orientation columns are removed, and transient activity rows 
are dropped. Non-numeric data is transformed into numeric 
form, and missing values are interpolated to ensure data 
integrity. Scaling is applied to normalize input features, 
ensuring data uniformity. Labels are encoded and converted 
into categorical variables, a critical step for activity 
classification during model training. 

The data is then split into training and testing sets, with 
70% allocated for training and 30% for testing. Data is 
segmented into overlapping windows, with a window size of 1 
second and a 50% overlap. This segmentation process creates 
segments and associated labels for both training and testing. 
The segments and labels are reshaped to align with the LSTM 
model's input format. The experiment validates the shape of 
training and testing segments before moving on to model 
training and evaluation phases. 

3) Data class balancing: In the data balancing stage, three 

different sampling techniques were applied to tackle class 

imbalance in the experiments: SMOTE, Random 

Undersampling, and a hybrid approach. SMOTE was used to 

generate synthetic instances for minority classes, Random 

Undersampling involved reducing instances in the majority 

class, and the hybrid approach combined both methods. The 

objective was to create balanced datasets to enhance model 

training. These sampling techniques were exclusively applied 

to the training set to ensure class balance for improved model 

performance. 

4) Data segmentation: Data were segmented into 

overlapping windows, following a window size of one second 

with a 50% overlap. This facilitated the data's suitability for 

deep learning models. 

5) Training and hyperparameter optimization: Deep 

learning models performed feature extraction automatically  to 

identify relevant patterns in the segmented data. 

 

Fig. 6. Experiments pipeline. 
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The four models were trained using Bayesian Optimization 
to fine-tune hyperparameters for optimal model performance. 
The Keras Tuner library is utilized to search for the best 
hyperparameters. 

The models are fine-tuned by adjusting several critical 
hyperparameters: the LSTM units, which determine the 
number of LSTM units in each LSTM layer, are explored 
within the range of 64 to 256, with a step size of 32. Similarly, 
the dense units, specifying the number of units in the dense 
layer, are considered within the range of 32 to 128, with a step 
size of 32. The batch size hyperparameter, significant for 
model training, is chosen from the options of 32, 64, or 128. 
The learning rate, influencing the optimizer's learning rate, is 
selected from values like 1e-3, 1e-4, or 1e-5. Furthermore, the 
dropout rate, responsible for controlling the dropout applied 
after each LSTM layer and the dense layer, varies from 0.1 to 
0.5, with a step size of 0.1. The optimizer hyperparameter 
allows the choice of ADAM or RMSprop as the optimizer 
used to compile the model. The number of epochs in this 
experiments  ranges from 50 to 100.This extensive exploration 
and fine-tuning of the models ultimately result in enhanced 
accuracy and robust performance for HAR tasks. All these 
hyperparameters are summarized in Table VI. 

TABLE VI. HYPERPARAMETER RANGES FOR BAYESIAN OPTIMIZATION 

Hyperparameter Search Space 

Lstm Units [32, 64, 96, 128] 

Dense Units [32, 64, 96, 128] 

Dropout Rate [0.1, 0.2, 0.3, 0.4, 0.5] 

Optimizer ['adam', 'rmsprop'] 

Learning Rate [1e-2, 1e-3, 1e-4] 

Batch Size [32, 64, 128] 

Epochs [50, 51, ..., 100] 

6) Model evaluation: To evaluate the models performance 

on the PAMPA2 dataset. The evaluation metrics were used 

including accuracy, precision, recall, F1-score and confusion 

matrix. These metrics were compared against those reported in 

previous literature studies conducted on the same dataset, 

enabling a comprehensive assessment of the proposed model's 

effectiveness and advancements in HAR. 

Four experiments were conducted: 

 Experiment 1: Train and test the four models on an 
imbalanced dataset. 

 Experiment 2: Train and test the four models on the 
balanced dataset with SMOTE. 

 Experiment 3: Train and test the four models on the 
balanced dataset with Random Undersampling. 

 Experiment 4 : Train and test the four models on the 
balanced dataset with hybrid Sampling(SMOTE & 
Random Undersampling). 

D. Experiments Results 

1) Experiment 1: Baseline: In Experiment 1, the baseline 

was established to compare the effects of various data 

balancing techniques. 

TABLE VII. THE SUMMARIZED HYPERPARAMETERS OF THE FOUR MODELS 

FOUND BY KERAS TUNER ON IMBALANCED DATA 

Hyper 

parameter 

Vanilla 

LSTM 

2Stacked 

LSTM 

3 Stacked 

LSTM 
CNN LSTM 

Lstm Units 32 64 96 
CNN units:128 

Lstm units : 64 

Dense Units 32 96 128 - 

Dropout Rate 0.1 0.3 0.2 0.4 

Optimizer RMSPROP ADAM ADAM ADAM 

Learning Rate 0.001 0.001 0.001 0.001 

Batch Size 32 32 128 128 

Epochs 82 78 78 65 

Subsequently, the four deep learning models were trained 
on the preprocessed imbalanced dataset. The optimization of 
hyperparameters for these models was carried out using Keras 
Tuner Bayesian optimization. The best hyperparameters of 
each model are summarized in Table VII. 

Table VIII presents the results of Experiment 1, 
showcasing the performance metrics of the models, which 
include accuracy, precision, recall, and F1-score. These 
metrics were measured to establish a baseline for comparison. 

TABLE VIII. RESULTS OF EXPERIMENT 1 ON IMBALANCED DATA 

Metrics 
Vanilla 

LSTM 

2 Stacked 

LSTM 

3 Stacked 

LSTM 

CNN 

LSTM 

Accuracy 0.9257 0.9531 0.9232 0.9308 

F1 Score 0.9250 0.9529 0.9232 0.9297 

Precision  0.9281 0.9536 0.9268 0.9341 

Recall 0.9257 0.9531 0.9232 0.9308 

Fig. 7 to Fig. 10 depicts the confusion matrices for the 
Vanilla LSTM model, 2-Stacked LSTM, 3-Stacked LSTM, 
and CNN-LSTM, respectively, on the imbalanced dataset. 

 

Fig. 7. Confusion matrix of vanilla LSTM model on imbalanced data. 
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Fig. 8. Confusion matrix of 2 stacked LSTM model on imbalanced data. 

 

Fig. 9. Confusion matrix of 3 stacked LSTM model on imbalanced data. 

 

Fig. 10. Confusion matrix of CNN LSTM model on imbalanced data. 

2) Experiment 2: Balancing data with SMOTE: In this 

experiment, the evaluation of model performance was 

conducted when trained on a dataset balanced using the 

Synthetic Minority Over-sampling Technique (SMOTE). The 

four models underwent training on the SMOTE-balanced 

dataset, and the search for the best hyperparameters for each 

model was facilitated by Keras Tuner, as shown in Table VIII 

. 

Performance metrics achieved in this experiment were 
observed and reported in Table IX, with a comparison to those 
from Experiment 1. Fig. 11 to Fig. 14 depicts the confusion 
matrices for the Vanilla LSTM model, 2-Stacked LSTM, 3-
Stacked LSTM, and CNN-LSTM, respectively, on the 
balanced data with SMOTE (see Table X). 

TABLE IX. THE SUMMARIZED HYPERPARAMETERS OF THE FOUR MODELS 

FOUND BY KERAS TUNER ON BALANCED DATA WITH SMOTE 

Hyper 

parameter 

Vanilla 

LSTM 

2 Stacked 

LSTM 

3 Stacked 

LSTM 

CNN 

LSTM 

LSTM Units 96 96 64 

CNN 

UNITS:128 
LSTM 

UNITS:32 

Dense Units 64 32 128 32 

Dropout Rate 0.1 0.4 0.4 0.3 

Optimizer RMSPROP ADAM RMSPROP ADAM 

Learning Rate 0.01 0.001 0.01 0.001 

Batch Size 32 32 32 64 

Epochs 77 91 58 94 

 

Fig. 11. Confusion matrix of vanilla LSTM on balanced data with SMOTE. 

 

Fig. 12. Confusion matrix of 2 stack LSTM on balanced data with SMOTE. 
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Fig. 13. Confusion matrix of 3 stacked LSTM on balanced data with SMOTE. 

 

Fig. 14. Confusion matrix of CNN LSTM on balanced data with SMOTE. 

3) Experiment 3: Random undersampling: Experiment 3 

entailed the assessment of the models' performance when 

trained on a dataset balanced through Random 

Undersampling. The four models underwent training on the 

randomly undersampled Training set. The search for the best 

hyperparameters for each model was conducted using Keras 

Tuner, as indicated in Table XI and Table XII shows the 

Experiment 3on balanced data with random undersampling. 

Performance metrics achieved in this experiment were 
observed and reported in Table XIII, with a comparison to 
those from Experiment 1. Fig. 15 to Fig. 18 illustrate the 
confusion matrices for the Vanilla LSTM model, 2-Stacked 
LSTM, 3-Stacked LSTM, and CNN-LSTM, respectively, on 
the balanced data achieved through Random Undersampling. 

4) Experiment 4: Hybrid sampling: In Experiment 4, the 

examination of the models' performance was carried out when 

trained on a dataset balanced using hybrid sampling, 

combining SMOTE and random undersampling. The four 

models underwent training on the hybrid-sampled dataset. The 

search for the best hyperparameters for each model was 

conducted using Keras Tuner, as indicated in Table XIII. 

Performance metrics from this experiment were 
documented in Table XIV and compared with the results from 
Experiment 1. Fig. 19 to Fig. 22 illustrate the confusion 
matrices for the Vanilla LSTM model, 2-Stacked LSTM, 3-
Stacked LSTM, and CNN-LSTM, respectively, on the 
balanced data achieved through hybrid Sampling. 

TABLE X. RESULTS OF EXPERIMENT 2 ON BALANCED DATA WITH SMOTE 

 

Imbalanced data Balanced data With Smote 

Vanilla LSTM 
2 Stacked 

LSTM 

3 Stacked 

LSTM 
CNN LSTM Vanilla LSTM 

2 Stacked 

LSTM 

3 Stacked 

LSTM 
CNN LSTM 

Accuracy 0.9257 0.9531 0.9232 0.9308 0.9499 0.9438 0.9282 0.8756 

F1 Score 0.9250 0.9529 0.9232 0.9297 0.9503 0.9415 0.9129 0.8687 

Precision  0.9281 0.9536 0.9268 0.9341 0.9537 0.9470 0.9386 0.8975 

Recall 0.9257 0.9531 0.9232 0.9308 0.9499 0.9438 0.9282 0.8756 

TABLE XI. THE SUMMARIZED HYPERPARAMETERS OF THE FOUR MODELS FOUND BY KERAS TUNER ON BALANCED DATA WITH RANDOM UNDERSAMPLING 

Hyper 

Parameters 
Vanilla LSTM 2 Stacked LSTM 3 stacked LSTM CNN LSTM 

Lstm Units 32 96 128 
CNN UNITS:128 

LSTM UNITS:32 

Dense Units 96 64 32 -- 

Dropout Rate 0.2 0.2 0.3 0.2 

Optimizer RMSPROP RMSPROP RMSPROP RMSPROP 

Learning Rate 0.01 0.01 0.01 0.0001 

Batch Size 64 64 128 64 

Epochs 75 62 62 73 
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TABLE XII. RESULTS OF EXPERIMENT 3 ON BALANCED DATA WITH RANDOM UNDERSAMPLING 

 
Imbalanced Data Balanced Data With Random Undersampling 

Vanilla LSTM 
2 Stacked 

LSTM 

3 Stacked 

LSTM 
CNN LSTM Vanilla LSTM 

2 Stacked 

LSTM 

3 Stacked 

LSTM 
CNN LSTM 

Accuracy 0.9257 0.9531 0.9232 0.9308 0.7295 0.6361 0.2953 0.3706 

F1 Score 0.9250 0.9529 0.9232 0.9297 0.6946 0.6070 0.2132 0.3194 

Precision  0.9281 0.9536 0.9268 0.9341 0.6812 0.6113 0.3058 0.3767 

Recall 0.9257 0.9531 0.9232 0.9308 0.7295 0.6361 0.2953 0.3706 

 

Fig. 15. Confusion matrix of Vanilla LSTM on balanced data with random 

undersampling. 

 

Fig. 16. Confusion matrix of 2 stacked LSTM on balanced data with random 

undersampling. 

 

Fig. 17. Confusion matrix of 3 stacked LSTM on balanced data with random 

undersampling. 

 

Fig. 18. Confusion matrix of CNN-LSTM on balanced data with random 

undersampling. 

TABLE XIII. THE SUMMARIZED HYPERPARAMETERS OF THE FOUR MODELS FOUND BY KERAS TUNER ON BALANCED DATA WITH HYBRID SAMPLING 

Hyper 

parameter 
Vanilla LSTM 2 Stacked LSTM 3 Stacked LSTM 

CNN 

LSTM 

Lstm Units 32 64 96 
CNN UNITS:96 

LSTM UNITS:96 

Dense Units 64 128 32 -- 

Dropout Rate 0.3 0.3 0.2 0.3 

Optimizer ADAM RMSPROP ADAM ADAM 

Learning Rate 0.001 0.01 0.001 0.001 

Batch Size 128 64 32 32 

Epochs 56 78 81 93 
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TABLE XIV. RESULTS OF EXPERIMENT 2 ON BALANCED DATA WITH HYBRID SAMPLING 

 

Imbalanced data After hybrid undersampling 

Vanilla LSTM 
2 Stacked 

LSTM 

3 Stacked 

LSTM 
CNN LSTM Vanilla LSTM 

2 Stacked 

LSTM 

3 Stacked 

LSTM 
CNN LSTM 

Accuracy 0.9257 0.9531 0.9232 0.9308 0.9821 0.9755 0.9828 0.9351 

F1 Score 0.9250 0.9529 0.9232 0.9297 0.9821 0.9752 0.9828 0.9342 

Precision  0.9281 0.9536 0.9268 0.9341 0.9822 0.9764 0.9828 0.9350 

Recall 0.9257 0.9531 0.9232 0.9308 0.9822 0.9755 0.9828 0.9351 

 

Fig. 19. Confusion matrix of Vanilla LSTM on balanced data with hybrid 

sampling. 

 

Fig. 20. Confusion matrix of 2 stacked LSTM on balanced data with hybrid 

sampling. 

 

Fig. 21. Confusion matrix of 3 stacked LSTM on balanced data with hybrid 

sampling. 

 

Fig. 22. Confusion matrix of CNN-LSTM on balanced data with hybrid 

sampling. 

E. Comparative Results Analysis 

In this research paper, a comparative study was conducted 
employing four distinct deep learning models: Vanilla LSTM, 
2 Stacked LSTM, 3 Stacked LSTM, and hybrid CNN-LSTM. 
The study aimed to address the challenge of class imbalance in 
Human Activity Recognition (HAR) through the utilization of 
three sampling techniques: SMOTE, Random Undersampling, 
and a novel Hybrid Sampling approach. The performance of 
these models was evaluated based on key metrics, including 
accuracy, F1 score, precision, and recall. 

Accuracy Comparison of Deep Learning Models on 
Different Sampling Techniques (illustrated in Fig. 23): 

 For models trained on imbalanced data, the 2 Stacked 
LSTM model exhibited the highest accuracy, achieving 
0.9531. It was closely followed by the Vanilla LSTM 
model with an accuracy of 0.9257. 

 When using SMOTE to balance the data, the Vanilla 
LSTM model performed remarkably well, with an 
accuracy of 0.9499. The 2 Stacked LSTM also showed 
strong performance with an accuracy of 0.9438. 

 For Hybrid Sampling, the models reached even higher 
accuracy. The 2 Stacked LSTM achieved an accuracy 
of 0.9755, and the Vanilla LSTM excelled further with 
an impressive accuracy of 0.9821. The 3 Stacked 
LSTM model with Hybrid Sampling exhibited the most 
remarkable performance, achieving an accuracy of 
0.9828. 

F1-score Comparison of Deep Learning Models on 
Different Sampling Techniques (see Fig. 24): 

 In terms of F1 score, similar trends were observed. The 
2 Stacked LSTM model performed exceptionally well 
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across all sampling techniques, reaching an F1 score of 
0.9529 for imbalanced data and 0.9415 for data 
balanced with SMOTE. 

 The models with Hybrid Sampling outperformed the 
others in F1 score. The 2 Stacked LSTM model 
achieved an F1 score of 0.9752, and the Vanilla LSTM 
excelled with an impressive F1 score of 0.9821. The 3 
Stacked LSTM model with Hybrid Sampling exhibited 
the most remarkable performance, with an F1 score of 
0.9828. 

Precision Comparison of Deep Learning Models on 
Different Sampling Techniques (see Fig. 25): 

 Precision results followed a similar pattern. The 2 
Stacked LSTM model consistently showed high 
precision across all sampling techniques, with values 
ranging from 0.9536 to 0.9470. 

 When using Hybrid Sampling, precision levels were 
remarkably high, with the models achieving precision 
values ranging from 0.9764 to 0.9537. 

 The 3 Stacked LSTM model with Hybrid Sampling 
exhibited the most exceptional performance, with a 
precision of 0.9828. 

Recall Comparison of Deep Learning Models on Different 
Sampling Techniques (see Fig. 26): 

 Recall rates were also in line with accuracy and F1 
score trends. The 2 Stacked LSTM model exhibited 
high recall, especially with Hybrid Sampling, where it 
reached a recall rate of 0.9755. 

 The Vanilla LSTM model also performed well, 
achieving recall rates ranging from 0.9438 to 0.9499. 

 The 3 Stacked LSTM model with Hybrid Sampling 
showed the most impressive result, with a Recall of 
0.9828. 

In summary, this study conclusively demonstrates the 
efficacy of hybrid sampling techniques in effectively 
addressing class imbalance challenges in HAR. The proposed 
models consistently achieve good results, especially the 3 
Stacked LSTM, surpassing other models in terms of accuracy, 
precision, recall, and F1 scores. This underscores the crucial 
importance of balancing data for better-performing deep 
models. The comparative plots in Fig. 23 to Fig. 26 provide a 
visual representation of these findings. 

 

Fig. 23. Accuracy comparison of deep learning models on different sampling 

techniques. 

 

Fig. 24. F1 score comparison of deep learning models on different sampling 

techniques. 

 

Fig. 25. Precision comparison of deep learning models on different sampling 

techniques. 

 

Fig. 26. Recall comparison of deep learning models on different sampling 

techniques. 

Comparison with Previous Studies: 

Previous research has extensively explored diverse deep-
learning models for Human Activity Recognition (HAR) using 
the PAMPA2 dataset. As demonstrated in Table XV, these 
prior studies have yielded impressive outcomes. In 2022, an 
exemplary convLSTM Autoencoder (AE) model exhibited 
remarkable accuracy, recording a value of 0.9433, along with 
an F1 score of 0.9446 [4]. Similarly, in 2023, a Bi-LSTM 
model demonstrated commendable performance, achieving a 
high accuracy of 0.9341 and an F1 score of 0.9341, 
complemented by notable precision and recall values [17]. 
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TABLE XV. COMPARISON WITH PREVIOUS WORKS 

Study year Dataset Classification method Accuracy F1 score Precision Recall 

[15] 2020 PAMAP2 LSTM 0.8580 0.8534 0.8651 0.8467 

[15] 2020 PAMAP2 LSTM 0.8580 0.8534 0.8651 0.8467 

[16] 2022 PAMAP2 LSTM 0.8920 0.8949 0.8969 0.8928 

[4] 2022 PAMAP2 convLSTM AE 0.9433 0.9446 - - 

[18] 2022 PAMAP2 CNN-BiLSTM 0.9429 - - - 

[16] 2022 PAMAP2 LSTM 0.8920 0.8949 0.8969 0.8928 

[18] 2022 PAMAP2 CNN-BiLSTM 0.9429 - - - 

[7] 2022 PAMAP2 MLP with SMOTE -- 0.7473 0.7769 0.7493 

[17] 2023 PAMAP2 Bi-LSTM 0.9341 0.9341 0.9341 0.9347 

T
h

is
 S

tu
d

y
 

2023 PAMAP2 Vanilla LSTM  on imbalanced data 0.9257 0.9250 0.9281 0.9257 

2023 PAMAP2 2 Stacked lstm  on imbalanced data 0.9531 0.9529 0.9536 0.9531 

2023 PAMAP2 3 Stacked LSTM  on imbalanced data 0.9232 0.9232 0.9268 0.9232 

2023 PAMAP2 CNN-LSTM  on imbalanced data 0.9308 0.9297 0.9341 0.9308 

2023 PAMAP2 Vanilla LSTM  with  SMOTE 0.9499 0.9503 0.9537 0.9499 

2023 PAMAP2 2 Stacked LSTM with SMOTE  0.9438 0.9415 0.9470 0.9438 

2023 PAMAP2 3 Stacked LSTM with  SMOTE 0.9282 0.9129 0.9386 0.9282 

2023 PAMAP2 CNN-LSTM with SMOTE 0.8756 0.8687 0.8975 0.8756 

2023 PAMAP2 Vanilla LSTM  with   Random Undersampling 0.7295 0.6946 0.6812 0.7295 

2023 PAMAP2 2 Stacked LSTM with  Random Undersampling 0.6361 0.6070 0.6113 0.6361 

2023 PAMAP2 3 Stacked LSTM with   Random Undersampling 0.2953 0.2132 0.3058 0.2953 

2023 PAMAP2 CNN-LSTM with Random Undersampling 0.3706 0.3194 0.3767 0.3706 

2023 PAMAP2 CNN-LSTM with Hybrid Sampling 0.9351 0.9342 0.9350 0.9351 

2023 PAMAP2 2 Stacked LSTM with Hybrid Sampling  0.9755 0.9752 0.9764 0.9755 

2023 PAMAP2 Vanilla LSTM  with  Hybrid Sampling 0.9821 0.9821 0.9822 0.9822 

2023 PAMAP2 3 Stacked LSTM with  Hybrid Sampling 0.9828 0.9828 0.9828 0.9828 

Finally, our study demonstrates the effectiveness of Hybrid 
Sampling techniques in addressing class imbalance in HAR, 
leading to higher accuracy, precision, recall, and F1 scores. 
These models consistently outperformed the best-performing 
models from previous research, underscoring their potential to 
significantly enhance the accuracy and reliability of HAR 
systems and demonstrating the importance of tackling the 
imbalanced data problem. 

V. DISCUSSION 

Prior studies such as [6], [24] have highlighted the lack of 
works that address and investigate the impact of the class 
imbalance problem in human activity recognition. This present 
study fills this gap by comparing three sampling approaches, 
SMOTE, Random Undersampling, and Hybrid sampling to 
reduce the class imbalance and substantially improve human 
activity recognition (HAR) performance. 

In this section, a comprehensive discussion of the 
experimental findings and their implications for the field of 
HAR using deep learning models is presented. The 
consideration encompasses the following key aspects: the 
impact of class imbalance, the effectiveness of sampling 
techniques, and the significance of hyperparameter tuning. 

1) Hyperparameter tuning enhances model adaptability 

and performance: In all the experiments, hyperparameter 

tuning was applied in each scenario, proving to be a highly 

beneficial approach. The optimization of hyperparameters for 

each experiment ensured that the deep learning models were 

tailored to perform optimally under specific conditions. This 

adaptability is crucial in real-world applications where data 

characteristics and sampling techniques may vary. Moreover, 

hyperparameter tuning significantly contributed to the fairness 

of this comparative analysis. It prevented any model from 

having an unfair advantage due to suboptimal 

hyperparameters, ensuring a more equitable evaluation of 

different sampling techniques. 

Overall, the inclusion of hyperparameter tuning in this 
experimental design serves as a robust foundation for 
meaningful comparisons and insights into HAR. 

2) Addressing class imbalance with sampling techniques: 

The experiments aimed to investigate the impact of different 

sampling techniques on the performance of deep learning 

models in HAR. To address this, four experiments were 

conducted, each involving variations in data preprocessing and 
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sampling, and each of them incorporated hyperparameter 

tuning. 

The results clearly demonstrate the notable impact of 
sampling techniques on model performance, further enhanced 
by hyperparameter tuning. 

In Experiment 2, following the application of SMOTE and 
Hyperparameter Tuning, substantial improvements in 
accuracy, F1 score, precision, and recall were observed across 
all models. This underscores the effectiveness of SMOTE in 
addressing the class imbalance issue, especially when 
combined with optimal hyperparameters. The balanced dataset 
led to enhanced recognition efficiency, with significant gains 
in accuracy and F1 score. 

In Experiment 3, involving Random under-sampling and 
Hyperparameter Tuning, the models exhibited decreased 
performance compared to the baseline. 

In Experiment 4, employing hybrid sampling and 
hyperparameter tuning, remarkable results were achieved. By 
combining the strengths of SMOTE and Random 
Undersampling with fine-tuned hyperparameters, high 
accuracy and F1 scores were achieved, surpassing the 
baseline. This confirms the potential of hybrid sampling as a 
powerful technique for enhancing model performance, 
especially when hyperparameters are tuned effectively. 

Hybrid sampling demonstrates its effectiveness in 
balancing data by leveraging the strengths of both 
oversampling (SMOTE) and undersampling (Random 
Undersampling) techniques. It begins by oversampling the 
minority class, increasing its representation, and then follows 
with undersampling the majority class to reduce redundancy. 
This approach enhances model performance, mitigates 
overfitting, and ensures that deep learning models are exposed 
to a more representative and diverse distribution of data. 
Consequently, these factors contribute to improved 
generalization, enabling models to make more accurate 
predictions. It is the combination of these advantages that 
positions hybrid sampling as an outperforming technique 
compared to other sampling methods. 

3) Model performance and generalization: The findings 

suggest that deep learning models trained on balanced datasets 

exhibit improved performance compared to those trained on 

imbalanced data. This result highlights the significance of 

addressing class imbalance in HAR applications. Furthermore, 

these models demonstrated robust generalization capabilities, 

indicating their potential for real-world deployment. 

4) Practical implications: The practical implications of 

this research extend to various applications, including 

healthcare, fitness tracking, and human-computer interaction. 

By improving the accuracy and reliability of HAR systems 

through both sampling techniques and hyperparameter tuning, 

this work contributes to enhancing user experiences and 

promoting healthier lifestyles. 

5) Limitations and future work: It’s important to 

acknowledge the limitations of this study. The choice of 

datasets, model architectures, and hyperparameters may 

impact the generalizability of the findings. Future research 

could explore additional datasets, and more complex model 

architectures, and further investigate hyperparameter tuning 

techniques. Additionally, the real-world deployment of HAR 

systems should consider challenges related to sensor 

placement, data privacy, and user variability. 

In conclusion, this study emphasizes the critical role of 
both sampling techniques and hyperparameter tuning in 
improving the performance of deep learning models for HAR. 
SMOTE and hybrid sampling methods, when coupled with 
effective hyperparameter tuning, demonstrate their 
effectiveness in addressing class imbalance. The achievement 
of enhanced accuracy and F1 scores through these combined 
techniques paves the way for more reliable and efficient HAR 
systems with broader applications. 

VI. CONCLUSION 

In this extensive study on Human Activity Recognition 
(HAR) using deep learning models and wearable sensor data, 
the goal was to enhance the accuracy and reliability of HAR 
systems, which are crucial in healthcare and sports analytics. 
The challenge of imbalanced datasets in HAR was addressed 
by exploring different sampling techniques: Synthetic 
Minority Over-sampling Technique (SMOTE), random 
undersampling, and hybrid sampling (a combination of 
SMOTE and random undersampling). These techniques were 
tested with various deep learning models, including Vanilla 
LSTM, 2 Stacked LSTM, 3 Stacked LSTM, and Hybrid CNN-
LSTM. The findings showed significant improvements in 
model performance when using sampling techniques to 
balance the data. SMOTE and hybrid sampling were 
particularly effective in countering class imbalance, leading to 
notable enhancements in model accuracy, precision, recall, 
and the F1 score. The importance of hyperparameter tuning, 
involving adjustments to specific model settings, was also 
highlighted. By fine-tuning these parameters, even better 
model performance was achieved, emphasizing the critical 
connection between data preprocessing and parameter 
configuration. As wearable sensors become more prevalent, 
this research contributes to the creation of systems that can 
better understand and interpret human actions in various real-
world scenarios. Future work will involve experiments with 
more diverse public datasets, the exploration of more complex 
deep learning models, and the investigation of additional 
sampling techniques to further advance the field of Human 
Activity Recognition 
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APPENDIX A 

TABLE A1: DATASET INSTANCES BEFORE AND AFTER APPLYING SAMPLING METHODS 

Activity 

ID 

Class 

ID 

# Instances in 

training set of the 

imbalanced data 

# Instances in the 

testing set 

# Instances training set 

After SMOTE 

# Instances training set 

After Random 

Undersampling 

# Instances training 

set After Hybrid 

Sampling 

1 0 100298 42633 100298 10889 1968 

2 1 58380 25358 100298 10889 1160 

3 2 70165 29808 100298 10889 1436 

4 3 86117 36789 100298 10889 1723 

5 4 30100 12950 100298 10889 599 

6 5 63755 27585 100298 10889 1249 

7 6 78154 33678 100298 10889 1546 

12 7 41442 17872 100298 10889 849 

13 8 32800 14030 100298 10889 661 

16 9 60703 26256 100298 10889 1226 

17 10 87885 37343 100298 10889 1774 

24 11 10889 4564 100298 10889 221 

 


