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Abstract—Indoor localization presents formidable challenges 

across diverse sectors, encompassing indoor navigation and asset 

tracking. In this study, we introduce an inventive indoor 
localization methodology that combines Truncated Singular 

Value Decomposition (Truncated SVD) for dimensionality 

reduction with the K-Nearest Neighbors Regressor (KNN 

Regression) for precise position prediction. The central objective 

of this proposed technique is to mitigate the complexity of high-
dimensional input data while preserving critical information 

essential for achieving accurate localization outcomes. To 

validate the effectiveness of our approach, we conducted an 

extensive empirical evaluation employing a publicly accessible 

dataset. This dataset covers a wide spectrum of indoor 
environments, facilitating a comprehensive assessment. The 

performance evaluation metrics adopted encompass the Root 

Mean Squared Error (RMSE) and the Euclidean distance error 

(EDE)—widely embraced in the field of localization. 

Importantly, the simulated results demonstrated promising 
performance, yielding an RMSE of 1.96 meters and an average 

EDE of 2.23 meters. These results surpass the achievements of 

prevailing state-of-the-art techniques, which typically attain 

localization accuracies ranging from 2.5 meters to 2.7 meters 

using the same dataset. The enhanced accuracy in localization 
can be attributed to the synergy between Truncated SVD's 

dimensionality reduction and the proficiency of KNN Regression 

in capturing intricate spatial relationships among data points. 

Our proposed approach highlights its potential to deliver 

heightened precision in indoor localization outcomes, with 
immediate relevance to real-time scenarios. Future research 

endeavors involving comprehensive comparative analyses with 

advanced techniques hold promise in propelling the field of 

accurate indoor localization solutions forward. 
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System; KNN regression; Truncated Singular Value Decomposition 

I. INTRODUCTION  

Indoor positioning has become a prominent research area in 
recent years, driven by the increasing demand for location-

based services in various applications, such as indoor 

navigation, asset tracking, and context-aware services. 
Traditional positioning systems relying on Global Positioning 

System (GPS) are not always reliable indoors due to limited 
satellite signals penetration and multi-path effects, making 

them less accurate for indoor environments. This limitation has 
led to the emergence of alternative techniques, with machine 

learning proving to be a promising approach for indoor 

positioning tasks. Machine learning methods offer the ability to 

model complex relationships between Wi-Fi Received Signal 
Strength Indicator (RSSI) measurements and indoor locations, 

enabling accurate predictions in indoor settings  [1]. Among the 
diverse machine learning algorithms, the K-Nearest Neighbors 

(KNN) algorithm has garnered significant attention and success 
in indoor positioning applications  [2, 3]. KNN is a non-

parametric and instance-based learning algorithm that classifies 

or predicts a target value based on the similarity of features 
from neighboring data points. Its simplicity and effectiveness 

have made it a popular choice for indoor positioning tasks. 
However, the conventional KNN algorithm can be sensitive to 

noise and imbalanced data, necessitating the exploration of 
specialized variants to improve performance. 

One such variant is the Weighted K-nearest neighbors  

(WKNN), which assigns different weights to neighboring data 
points based on their distance or other factors  [4]. This enables 

WKNN to give h igher importance to closer points, leading to 
more accurate predictions and better handling of imbalanced 

data distributions. The authors in study [4] propose a method 
that utilizes Improved W-KNN to enhance indoor localizat ion 

performance based on fingerprinting by leveraging the 
relationship between the nearest fingerprint and (K-1) auxiliary  

fingerprints to determine the position. In the quest for enhanced 

adaptability, Adaptive KNN ad justs the number of neighbors 
(K) based on the local density of data points, dynamically  

tailoring the algorithm to varying spatial distributions within  
the indoor environment [5]. The paper introduces an enhanced 

KNN algorithm featuring a variable K. The fundamental 
concept revolves around dynamically modify ing the K value 

according to the discrepancies between measured signals and 

the corresponding values within the database. In this paper, 
adaptability contributes to improved performance across 

different regions with distinct data densities. Additionally, 
KNN Regression is used when predicting continuous target 

variables, such as indoor coordinates, making it particularly  
suitable for regression tasks in indoor positioning. Apart from 

KNN-based methods, deep learning techniques have also been 

exp lored for indoor positioning. Convolutional Neural 
Networks (CNN) [6, 7] and Long Short-Term Memory  

(LSTM) [8] networks are notable examples. CNN can  
effectively extract spatial features from Wi-Fi images, while 

LSTM can model temporal dependencies in time-series data, 
such as RSSI signals. In [7], the authors introduces an 

innovative method for converting Wi-Fi signatures into 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 10, 2023 

315 | P a g e  

www.ijacsa.thesai.org 

images, establishing a scalable fingerprinting framework 
utilizing convolutional neural networks (CNNs), These deep 

learning models have shown promise in achieving h igh 
accuracy in indoor positioning tasks, but they may require 

more extensive datasets and computation resources. 

The authors in [9, 10] conducted an overview study on 
several data dimensionality reduction methods and their 

effectiveness in reducing computation time while preserving 
information. Data preprocessing is of paramount importance in  

indoor positioning tasks to enhance model performance and 
reduce computational complexity. High-dimensional Wi-Fi 

RSSI data can be computationally intensive and challenging to 

handle. To address this issue, dimensionality reduction 
techniques are applied to retain critical information while 

significantly reducing the number of features. Principal 
Component Analysis (PCA) is a popular method for 

dimensionality reduction, but it may not be ideal for all 
scenarios due to its requirement for the data to be centered and 

scaled. As an alternative, Truncated Singular Value 

Decomposition (Truncated SVD) [11] is employed, which is a 
variant of PCA that can efficiently handle large datasets and 

does not require data centering. In this paper, we propose an 
approach for indoor positioning that combines Truncated SVD 

for dimensionality reduction of Wi-Fi RSSI data with KNN 
regression for accurate indoor location estimation. The 

solutions mentioned above all aim to reduce errors in location 

estimation. However, a challenge arises in studies using Wi-Fi 
signals, where the use of high-dimensional data complicates 

the training process due to the time required for both training 
and prediction. Therefore, reducing data dimensionality is 

considered an effective solution to reduce model complexity  
and simultaneously enhance data processing flexibility. 

Combining Truncated SVD and KNN Regression yields a 
flexible method applicable to various indoor positioning 

scenarios, not constrained by specific data structures or 

characteristics. The proposed approach will be extensively 
evaluated and compared with other state-of-the-art methods to 

demonstrate its effectiveness and applicability. 

In the subsequent sections, we will delve into the details 

which are as follows: Section II is about the related works , 
Section III deals with the proposed approach. Section IV gives 

results, and discussion, and concludes  with implications for 

future research in Section V, thereby contributing to the 
advancement of indoor positioning technology and its real-time 

applications. 

II. RELATED WORKS 

A. Challenges in Indoor Localization using Wi-Fi Signals 

Addressing the problem of enhancing accuracy in indoor 
positioning still encounters numerous difficulties due to the 

persistence of challenges such as limited GPS signals. Unlike 
outdoor environments where Global Positioning System (GPS) 

signals are readily available, indoor spaces often lack direct 
access to GPS signals due to signal attenuation caused by 

walls, ceilings, and other structural elements. This limitation 

hampers the effectiveness of traditional GPS-based localizat ion 
techniques. Multipath effects further complicate indoor 

positioning. Indoor environments introduce multipath effects, 
where wireless signals bounce off surfaces and create multiple 

signal paths. This leads to signal interference, phase shifts, and 
fluctuations, making signal strength-based localizat ion less 

accurate and reliable. Moreover, signal propagation variability 
within indoor spaces can vary significantly due to factors such 

as furniture placement, architectural elements, and interference 

from electronic devices. This variability challenges the 
establishment of consistent and reliable signal patterns for 

accurate localization. Non-line-of-sight (NLOS) conditions due 
to obstructions like walls and obstacles can block the direct line 

between the transmitter and receiver, introducing additional 
complexities in signal propagation and affecting accuracy. The 

phenomenon of multipath fading, where signals arriving via 

different paths interfere constructively or destructively, 
contributes to signal fluctuations and inaccuracies in distance 

estimation. Dealing with high-dimensional data, such as Wi-Fi 
Received Signal Strength Indicator (RSSI) readings from 

multiple access points, is a computational challenge in indoor 
localization. The presence of interference and noise from 

electronic devices further impacts the accuracy of localizat ion 

algorithms. Different indoor environments with unique layouts 
and architectural features add complexity to localizat ion 

algorithms, as a one-size-fits-all approach may not be effective. 
Privacy concerns arising from collecting and analyzing 

personal data in indoor localization require careful 
consideration of data handling and user consent. Furthermore, 

many indoor localization applications demand real-t ime 

accuracy for guiding users or tracking assets, posing a 
challenge in achieving both precision and speed. Addressing 

these challenges necessitates innovative techniques that 
consider the intricacies of indoor environments. The proposed 

methodology aims to tackle these obstacles by combining 
dimensionality reduction and regression techniques for 

accurate indoor localizat ion. In the context of employing 
methods such as K-Nearest Neighbors (KNN), Weighted K-

Nearest Neighbors (WKNN), Adaptive K-Nearest Neighbors 

(Adaptive KNN), Convolutional Neural Networks (CNN), and 
Long Short-Term Memory (LSTM) for indoor position 

prediction, various limitations become apparent. For K-Nearest 
Neighbors (KNN), its sensitivity to the choice of K neighbors 

introduces computational complexities as K increases. 
Additionally, KNN is sensitive to noise and imbalanced data. 

Weighted K-Nearest Neighbors (WKNN) presents challenges 

in effectively setting weight parameters to enhance prediction 
performance. Adaptive K-Nearest Neighbors (Adaptive KNN) 

involves uncertainty in dynamically determining the optimal 
number of neighbors (K) for individual cases. Convolutional 

Neural Networks (CNN) demand substantial training data and 
computational resources, especially in real-time scenarios. 

Long Short-Term Memory (LSTM) requires longer time-series 

data for complex pattern recognition. Overall, while these 
methods offer unique strengths to tackle indoor positioning 

challenges, they also exhibit limitations, necessitating careful 
customization and consideration of the specific environment 

for an effective solution. 

To address these challenges comprehensively, innovative 

techniques that account for the intricacies of indoor 
environments are indispensable. The proposed methodology 

aims to overcome these hurdles by synergistically employing 

dimensionality reduction techniques and regression 
methodologies for accurate indoor localization. The ensuing 
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sections delve into the details of this approach, experimental 
evaluation, and results, underscoring its efficacy in tackling 

these persistent challenges and enhancing indoor positioning 
accuracy.  

B. Dimensionality Reduction Techniques 

In the realm of indoor positioning, addressing the 

challenges posed by high-dimensional data is crucial for 

achieving accurate and efficient results. This section provides 
an overview of various dimensionality reduction techniques 

that have been employed to tackle the complexity of indoor 
positioning datasets. Dimensionality reduction aims to extract 

essential information from the data while reducing its 
dimensionality, thus enhancing the efficiency of subsequent 

analysis and prediction processes. 

One commonly used technique is Principal Component 

Analysis (PCA) [12-14], which projects the original data onto a 

new orthogonal coordinate system defined by its principal 
components. By retaining the most significant dimensions and 

discarding less informative ones, PCA simplifies the data 
representation while preserving as much variance as possible. 

Another approach, [15] Truncated SVD, is a variant of PCA 
that efficiently approximates the original data matrix by 

retaining only the top singular values and corresponding 

singular vectors. This method is particularly suitable for large  
datasets and offers advantages in terms of computational 

efficiency. 

In addition to these techniques, various other methods can 

also play a role in dimensionality reduction. However, the 
choice of method depends on the characteristics of the data and 

the specific requirements of the indoor positioning task. By  

effectively reducing the dimensionality of the input data, these 
techniques contribute to enhancing the performance of 

subsequent algorithms and models for accurate indoor 
positioning. The following sections will delve into the details 

of how these techniques are applied and their impact on the 
proposed methodology. 

1) Truncated singular value decomposition (Truncated 

SDV) Method: The Truncated Singular Value Decomposition 

(Truncated SVD) method is a dimensionality reduction 

technique commonly employed to mitigate the challenges 

associated with high-dimensional data in various applications, 

including indoor positioning. This approach builds upon the 

concept of Singular Value Decomposition (SVD), which  

decomposes a data matrix into three separate matrices 

representing its singular values and corresponding left  and 

right singular vectors. In the context of indoor positioning, 

Truncated SVD involves retaining only the top singular values 

and their corresponding singular vectors, effectively reducing 

the dimensionality of the data while p reserving its essential 

informat ion. This process is particularly beneficial for 

managing large datasets, as it significantly decreases the 

computational burden and enhances the efficiency of 

subsequent analysis. The core idea of Truncated SVD is to 

approximate the original data matrix using a lower -

dimensional representation that captures the most significant 

patterns and relationships within the data. By  selecting a 

specific number of singular values to retain, this method 

allows researchers and practitioners to balance between 

dimensionality reduction and preserving relevant information. 
Truncated SVD finds applications in various fields, 

including image processing, natural language processing, and 

data compression. In the context of indoor positioning, it offers 
a valuable tool for preprocessing Wi-Fi Received Signal 

Strength Indicator (RSSI) data, effectively reducing its 

dimensionality while maintaining its inherent structure. The 
reduced-dimension representation obtained through Truncated 

SVD can then be used as input for subsequent algorithms, such 
as K-Nearest Neighbors (KNN) regression, to enhance the 

accuracy and efficiency of indoor positioning predictions. The 
goal of Truncated SVD is to reduce the dimensionality of the 

data by retaining a limited number of important singular values 

and vectors. This helps to simplify the complexity of the 
original data and create a reduced version that can be used in 

various tasks such as classification, prediction, and indoor 
positioning. Algorithm 1 presents Truncated SVD Algorithm. 

Algorithm 1: Truncated SVD Algorithm 

Input: The initial data is a matrix A with dimensions m x n, 

where m is the number of samples and n is the dimensionality 
of the data. 

Output: The matrix A_reduced represents the reduced data 
and includes the most important components from the original 

data. 

Step 1: Compute Singular Value Decomposition (SVD): 
Perform the Singular Value Decomposition on the data matrix 

A: A = U * Σ * Vt  
Where: 

 U is the matrix containing the left singular vectors 
(columns) of A. 

 Σ is the diagonal matrix containing the singular 
values of A. 

 Vt is the matrix containing the right singular 
vectors (rows) of A. 

Step 2: Select Number of Components: Choose the number 

of components (singular values and vectors) that you want to 
retain after dimensionality reduction. This is an important 

parameter to adjust the level of dimensionality reduction. 
Step 3: Truncate Singular Values and Vectors: Keep only 

the singular values and vectors corresponding to the number of 
components selected in the previous step. Create the truncated 

matrices U reduced and Vt reduced. 
Step 4: Reconstruct Reduced Data: Generate a new data 

matrix (reduced data) by multiplying the truncated matrix U 

reduced, the diagonal matrix Σ reduced (containing singular 
values), and the transpose of the matrix Vt_reduced: 

A_reduced = U_reduced * Σ_reduced * Vt_reduced 

 

 

2) K nearest neighbors regression algorithm: KNN 

regression is a non-parametric algorithm that relies on the 

similarity of feature vectors to make predictions. It assumes 

that similar instances will have similar target values. The 

algorithm doesn't involve model train ing like some other 

regression algorithms; instead, it stores the entire dataset and 

calculates predictions based on the K nearest neighbors of the 
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query instance. The choice of K is crucial, as a small K might 

lead to noisy predict ions, while a large K might lead to  overly  

smoothed predictions. KNN regression can be sensitive to 

outliers and irrelevant features, so preprocessing the data and 

feature selection can impact its performance. Fig. 1 describes 

the KNN regression for improving the accuracy of indoor 

localization.   

Begin

Colectting RSSIi from data base 

for each RP

Chosen value of k Calculate the 

distance between the query feature 

vector and all the feature vectors 

in the dataset using a distance 

metric such as Euclidean distance 

or Manhattan distance

Find K Neighbors: Select the K 

feature vectors from the dataset 

that are closest to the query feature 

vector based on the calculated 

distances

Calculate Predicted Value: The predicted 

target value  can be calculated as the 

average (or weighted average) of the target 

values of the K nearest neighbors

Coordinate position of object

End

Normalized data

Chosen value of k

 
Fig. 1. The algorithm of WKNN for indoor positioning system. 

III. PROPOSED APPROACH 

This section presents the proposed solution that combines 

dimensionality reduction using Truncated Singular Value 
Decomposition (Truncated SVD) with KNN regression for 

indoor position prediction.  

A. Proposal Model Block Diagram 

Fig. 2 describes the block diagram illustrates the proposed 
approach that integrates two main components: Truncated 

Singular Value Decomposition (Truncated SVD) and K 
Nearest Neighbors (KNN) regression. The process begins with 

the collection of Wi-Fi RSSI data, which is the initial step for 
indoor position prediction. 

RSSI 

Wi-Fi

AP1

AP2
APn

...

...

...

...
...

Data 

normalizat

ion

Truncated SVD 

data

Fingerprinting 

Database

AP1

AP2 ...
APn

predicted 

Position

Online Phase

Offline Phase 

..
.

Truncated 

SVD

KNN 

Regression 

Model

 

Fig. 2. The structure of proposed approach based on KNN regression. 

Data collection and preprocessing: 

 Wi-Fi RSSI data is gathered from mult iple access points 
within the indoor environment. 

 The collected data is preprocessed to remove noise, 
handle missing values, and normalize the features. 

Truncated Singular Value Decomposition (Truncated 
SVD): 

 The preprocessed Wi-Fi RSSI data undergoes 
Truncated SVD, a dimensionality reduction technique. 

 Truncated SVD reduces the dimensionality of the data 

while retaining the most significant features that capture 
the underlying patterns. 

 The transformed data is then ready for further 
processing. 

K Nearest Neighbors (KNN) regression: 

 The transformed data from Truncated SVD serves as 

input to the KNN regression model. 

 KNN regression aims to predict the indoor position 

based on the similarity of the transformed data points. 

 The model identifies the K nearest neighbors to the 
input data point and uses their positions to estimate the 

target position. 

Indoor position prediction: 

 The combination of Truncated SVD and KNN 
regression results in an accurate indoor position 

prediction. 

 The estimated position is output as the final result of the 

model. 

The block diagram demonstrates how the proposed method 

utilizes Truncated SVD for dimensionality reduction to handle 

the high-dimensional Wi-Fi RSSI data effectively. The 
reduced-dimensional data is then fed into the KNN regression 

model, which leverages the spatial relationships between data 
points to predict the indoor position accurately. This integrated 

approach aims to overcome the challenges of noise, signal 
variability, and dimensionality while providing enhanced 

precision in indoor position prediction. 

B. Indoor Positioning Dataset 

In this study, we assessed our proposed solution using an 
online dataset [16], previously standardized for indoor 

positioning research. This dataset, employed in previous work 

including [17] aimed to enhance indoor positioning precision 
by LSTM algorithms. The study in [6] achieved a positioning 

error are range 2.5 meters to 2.7 meters on the public dataset 
[16]. The paper [16] verified the dataset's normalization and 

reliability for indoor localization research. The dataset covered 
a library space of over 300 square meters on the 3rd and 5th 

floors, collected over 15 months, and comprising 60,000 

measurements. It included object positions, Wi-Fi AP access 
point RSSI values, execution time, and identification data. 

With 448 Wi-Fi AP access points at around 2.65 meters above 
the ground on both floors, a fingerprint database was created 

from multiple locations and directions, including front, back, 
left, and right measurements. Offline train ing involved known 

reference points and a Samsung Galaxy S3 phone equipped 
with an application to capture RSSI data. The dataset was 

divided into training (16,704 fingerprints from 24 reference 

points) and test sets (46,800 fingerprints from 106 reference 
points), each containing 448 RSSI indicators from access 

points. Following the approach of [6], our experiments on the 
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normalized public dataset utilized the Minmaxscale() function 
and Formula (1).  

 min

max min

scaled

X X
X

X X





 (1) 

where X is the initial value of the feature, 
maxX and 

minX

are the maximum and minimum values in the feature. 

C. Error Estimation Criteria 

We employed four machine learn ing-based evaluation 

criteria to assess the proposed solution's effectiveness. Initially, 
we used the mean absolute error (MAE) to gauge the average 

absolute error within the prediction dataset. Further evaluation 
employed mean squared error (MSE) or RMSE, widely utilized  

in machine learning regression problems, to quantify the 
squared error between predicted and actual values. 

Additionally, the determination coefficient R2 was employed 

as a measure of the model's predictive capability. R2 assesses 
how well the model predicts the dependent variable based on 

independent variables, showcasing the goodness -of-fit. Higher 
R2 values signify better model fit, with a range from 0 to 1. 

Negative values can emerge if the model performs worse than 
a constant model predicting the mean. Despite its usefulness, 

R2 has assumptions and limitations that warrant consideration. 

This coefficient's range lies between 0 and 1. A value closer to 
1 indicates strong model fit and accurate prediction of position. 

Furthermore, we introduced the EDE as an additional 
metric to measure prediction accuracy. The EDE calculates the 

direct geometric distance between predicted and actual 
positions, offering a straightforward measure of how far the 

predictions deviate from the true positions. This distance was 

calculated using the Euclidean distance formula, provid ing 
valuable insight into the spatial accuracy of the proposed 

solution. 
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Where itruePos is the i th observed position, itestPos is the 

i th  estimation position. i th  is the number of samples in 

the test dataset. 

IV. RESULTS AND DISCUSSION 

In this study, we conducted a thorough investigation to 

determine the optimal number of principal components 

(components) to retain when applying the truncated SVD 
technique. The objective was to minimize the EDE, a critical 

metric for assessing the accuracy of our proposed indoor 
positioning solution.  

The process of choosing the appropriate value for 
components began with a systematic survey across a range of 

values, assessing the performance of the solution at each step. 

We employed the EDE as the primary  evaluation criterion, 
aiming to identify the component's value that yielded the 

lowest error. Our experimentation revealed that at the number 
of components = 35, the solution achieved the minimal EDE. 

This observation was consistent with our goal of minimizing 
error while ensuring computational efficiency, as retain ing 35 

principal components struck an optimal balance between 

accuracy and resource consumption. By retain ing 35 principal 
components, we effectively reduced the dimensionality of the 

data while preserving the critical information necessary for 
accurate indoor localization. This choice optimized  the model's 

ability to capture relevant spatial relationships among data 
points, resulting in a significant reduction in the EDE. In  

conclusion, our survey and experimentation led us to select the 
number of components = 35 as the optimal configuration for 

the truncated SVD algorithm. This choice aligns with our 

objective of achieving the lowest EDE while maintaining 
efficiency, demonstrating the effectiveness of this approach in 

improving indoor positioning accuracy. 

The analysis of Fig. 3, which depicts the relationship 

between the number of components in truncated SVD (n) and 
the EDE, reveals several key insights: 

Firstly, at n = 35, we observe the lowest EDE, indicating  

that this configuration results in the most accurate indoor 
positioning predictions. This point aligns with our earlier 

discussion, highlighting n = 35 as the optimal choice for 
retaining principal components. When n is smaller than 35, the 

reduction in dimensionality becomes excessive, leading to a 
loss of critical information required for accurate localization. 

 

Fig. 3. The relationship between the number of truncated SVD components 
and euclidean distance error. 
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Conversely, when the numbers of components (n) are 
greater than 35, the model becomes overly complex, 

potentially introducing noise and dimin ishing its predictive 
capabilities. The fact that the EDE consistently rises for values 

of n smaller or larger than 35 emphasizes the importance of 

careful parameter tuning in the truncated SVD technique. It 
highlights the delicate balance between dimensionality 

reduction and information preservation. 

 

Fig. 4. The relationship between k and euclidean distance error. 

Fig. 4, which illustrates the relationship between the 

number of nearest neighbors (k) and the EDE, provides crucial 
insights into our study. The plot demonstrates a clear trend that 

supports the idea that selecting k = 30 is an optimal choice for 

our KNN regression-based indoor positioning solution. This 
specific k-value results in the lowest EDE, indicating the 

highest precision in predicting indoor positions. When k 
deviate from this optimal k-value, either by choosing k values 

smaller or larger than 30, we consistently observe an increase 
in EDE. This pattern emphasizes the sensitivity of our model's 

performance to the choice of k. If k is smaller than 30, the 
model may not adequately capture essential spatial 

relationships, leading to less accurate predictions. Conversely, 

when k exceeds 35, the model might over smooth the data, 
potentially losing critical local information, which results in 

increased prediction errors. The observation that EDE 
increases for k values smaller or larger than 30 underscores the 

importance of selecting the appropriate parameter for KNN 
regression. It reinforces the idea that finding the right balance 

in the number of neighbors considered is vital for achieving 

accurate indoor localization. Fig.  4 highlights the significance 
of choosing k = 30 as the optimal parameter for our KNN 

regression-based indoor positioning solution. This choice leads 
to the lowest EDE value, indicating the highest accuracy in 

position prediction. Deviating from this value consistently 
results in increased EDE, affirming the effectiveness of our 

proposed approach in enhancing indoor localization accuracy. 

Fig. 5 provides a visual representation of 100 randomly  
selected real positions (depicted as blue dots) and their 

corresponding predicted positions (depicted as red dots). This 
graph serves as a valuable illustration of the performance of 

our indoor positioning model. The meanings of the parameters 

on Fig. 5 are described below:  

 

Fig. 5. 100 predicted and real positions. 

1) Blue dots - real positions: The blue dots represent the 

actual positions of objects in the indoor environment, 

providing a reference for the ground truth. These positions are 

based on the collected dataset. 

2) Red dots - predicted positions: The red dots, on the 

other hand, signify the positions predicted by our proposed 

indoor positioning model. These predictions are generated 

using the combination of Truncated SVD for d imensionality  

reduction and KNN regression for position estimation. 

3) Visual comparison: By visually comparing the red and 

blue dots, it's evident that our model's pred ictions are 

generally very close to the actual positions. This alignment  

between the predicted and actual positions highlights the 

accuracy and effectiveness of our proposed solution. 

4) Scattered distribution: The distribution of both red and 

blue dots across the graph demonstrates that the model is 

capable of predict ing positions in various locations throughout 

the indoor environment. Th is showcases the versatility and 

applicability of our approach across different scenarios. 

5) Few outliers: While most of the red  dots closely match 

the blue dots, there may be a few outliers where the predicted 

positions slightly deviate from the actual positions. These 

outliers could be attributed to factors such as signal 

interference or complex spatial relationships in the indoor 

environment. 

Fig. 5 visually reinforces the accuracy and reliability of our 
proposed indoor positioning solution. The close alignment 

between the predicted and actual positions across a range of 
locations underscores the model's effectiveness in accurately 

estimating indoor positions, thus contributing to enhanced 

indoor localization. 

Fig. 6 shows the CDF of our proposed solution compared 

to the research [15]. The results in Fig. 6 clearly indicate that 
our solution performs significantly better in predicting 

locations when compared to the reference paper on the same 
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public dataset and similar situations. Fig. 6 also demonstrates 
that, for distance errors of two meters or less, our solution 

achieves an accuracy rate of over 50%, while the research [15] 
reaches around 30%. These results provide valuable insights 

into the performance distribution of the solution concerning 

distance errors. Observing this relationship, it is evident that: 

For distance errors less than or equal to 1 meter, the 

probability of achieving such accuracy is approximately 20%. 

 
Fig. 6. CDF of the positioning error distance. 

Expanding the acceptable error threshold to two meters 

significantly increases the probability of success to around 
52%. 

This visualization is further reinforced by the visual 

representation in Fig. 7, which viv idly illustrates the proportion 
of predictions falling within different error ranges. It is evident 

that the proposed solution demonstrates a notable capability in  
achieving sub-2 meters accuracy, making it suitable for a range 

of indoor positioning applications. In accordance with the 
evaluation criteria outlined in Section III(C), the performance 

metrics for our model are as follows: a Root Mean Square 
Error (RMSE) stand is  1.97 meters, EDE is 2.23 meters, Mean 

Squared Error (MSE) is calculated at 3.91 meters, and R-

squared (R²) demonstrates a value of 0.69. Additionally, our 
model shows promising results in terms of error percentages, 

with 19.41% of errors falling within a 1-meter range and 
52.36% within a 2-meter range. The RMSE value is 

approximately 1.97 meters, indicating a relatively s mall 
average deviation between predictions and actual values. This 

reflects the model's accuracy in estimating positions . The 

average Euclidean distance is around 2.23 meters, signifying 
the average difference between predictions and actual values. 

This is a critical evaluation criterion widely used in location-
related tasks. Mean Squared Error (MSE) value is 

approximately 3.91 meters, representing the average squared 
error between predictions and actual values. This value 

indicates the variability of errors and can be used for model 

comparison. R-squared (R2): The R2 value is approximately  
0.69, indicating the model's accuracy in exp laining data 

variance. A high R2 value close to 1 suggests that the model is 

reasonably good at explaining the data. Percentage of errors 
within 1 meter: Around 19.41% of predictions have errors 

within 1 meter, demonstrating that the model achieves a 
relatively good level of accuracy in predicting positions with 

errors less than 1 meter. Percentage of errors within 2 meters: 

Approximately 52.36% of predictions have errors within 2 
meters, which is an acceptable threshold for many real-time 

applications. 

 
Fig 7. The chart of prediction errors with varying error distances. 

In [17], the authors applied deep learning models, 

specifically RNN/LSTM, to predict indoor positions, achieving 
accuracy with distance errors ranging from 2.5 meters to 2.7 

meters. A significant contribution of our study lies in the 
substantial enhancement of position prediction accuracy 

offered by our proposed solution. More precisely, we reduced 
the error margin from the range of 2.5 meters - 2.7 meters to a 

mere 2.23 meters, marking a remarkable improvement ranging 
from 10.8% to 17.4%. The simulation results demonstrate the 

effectiveness of the Truncated SVD and KNN Regression 

combination in significantly bolstering position prediction 
capabilities, particularly in error reduction. Furthermore, our 

solution also made substantial strides in prediction time 
efficiency when compared to the findings in reference [17]. As 

indicated in [17], the train ing time using the RNN model was 
564.1396 seconds, with 10.0848 seconds required for testing. 

When LSTM was employed, the training process took 

581.3599 seconds, and testing consumed 10.1721 seconds. In 
contrast, our solution demonstrated remarkable efficiency, 

taking only 4.5523 seconds to complete the same experimental 
scenario. These results underscore not only the enhancement in 

accuracy achieved by our approach but also its superior 
efficiency in prediction time. Additionally, our method 

simplifies the intricate train ing process commonly associated 

with traditional machine learning and deep learning 
methodologies. 

V. CONCLUSIONS 

In conclusion, our study highlights the significant 

effectiveness of the proposed solution, which combines 
Truncated Singular Value Decomposition (Truncated SVD) 

with K-Nearest Neighbors (KNN) regression for indoor 
positioning. This innovative approach brings about a 

substantial improvement in predict ion accuracy while meet ing 
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real-time requirements. One of the notable advantages lies in 
the simplicity and efficiency of KNN regression. Unlike 

traditional machine learning and deep learning solutions that 
require complex pre-training processes, our method does not 

burden the user with such complexit ies. This streamlines the 

implementation and makes it an attractive choice for various 
indoor localization scenarios. By integrating Truncated SVD as 

a dimensionality reduction technique, we enhance the model's 
robustness and precision. Through rigorous experimentation, 

we determined that setting Truncated SVD's number of 
components to 35 minimizes EDEs in predictions, further 

showcasing the effectiveness of this hybrid approach. This 

combined methodology not only advances indoor positioning 
accuracy but also ensures that the solution is practical for real-

time applications. In summary, our work presents a powerful 
and efficient solution for indoor positioning, opening doors to 

improved location-based services and applications. 
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