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Abstract—Indoor localization presents formidable challenges 

across diverse sectors, encompassing indoor navigation and asset 

tracking. In this study, we introduce an inventive indoor 

localization methodology that combines Truncated Singular 

Value Decomposition (Truncated SVD) for dimensionality 

reduction with the K-Nearest Neighbors Regressor (KNN 

Regression) for precise position prediction. The central objective 

of this proposed technique is to mitigate the complexity of high-

dimensional input data while preserving critical information 

essential for achieving accurate localization outcomes. To 

validate the effectiveness of our approach, we conducted an 

extensive empirical evaluation employing a publicly accessible 

dataset. This dataset covers a wide spectrum of indoor 

environments, facilitating a comprehensive assessment. The 

performance evaluation metrics adopted encompass the Root 

Mean Squared Error (RMSE) and the Euclidean distance error 

(EDE)—widely embraced in the field of localization. 

Importantly, the simulated results demonstrated promising 

performance, yielding an RMSE of 1.96 meters and an average 

EDE of 2.23 meters. These results surpass the achievements of 

prevailing state-of-the-art techniques, which typically attain 

localization accuracies ranging from 2.5 meters to 2.7 meters 

using the same dataset. The enhanced accuracy in localization 

can be attributed to the synergy between Truncated SVD's 

dimensionality reduction and the proficiency of KNN Regression 

in capturing intricate spatial relationships among data points. 

Our proposed approach highlights its potential to deliver 

heightened precision in indoor localization outcomes, with 

immediate relevance to real-time scenarios. Future research 

endeavors involving comprehensive comparative analyses with 

advanced techniques hold promise in propelling the field of 

accurate indoor localization solutions forward. 

Keywords—Dimensionality Reduction; Indoor Positioning 

System; KNN regression; Truncated Singular Value Decomposition 

I. INTRODUCTION  

Indoor positioning has become a prominent research area in 
recent years, driven by the increasing demand for location-
based services in various applications, such as indoor 
navigation, asset tracking, and context-aware services. 
Traditional positioning systems relying on Global Positioning 
System (GPS) are not always reliable indoors due to limited 
satellite signals penetration and multi-path effects, making 
them less accurate for indoor environments. This limitation has 
led to the emergence of alternative techniques, with machine 
learning proving to be a promising approach for indoor 

positioning tasks. Machine learning methods offer the ability to 
model complex relationships between Wi-Fi Received Signal 
Strength Indicator (RSSI) measurements and indoor locations, 
enabling accurate predictions in indoor settings [1]. Among the 
diverse machine learning algorithms, the K-Nearest Neighbors 
(KNN) algorithm has garnered significant attention and success 
in indoor positioning applications [2, 3]. KNN is a non-
parametric and instance-based learning algorithm that classifies 
or predicts a target value based on the similarity of features 
from neighboring data points. Its simplicity and effectiveness 
have made it a popular choice for indoor positioning tasks. 
However, the conventional KNN algorithm can be sensitive to 
noise and imbalanced data, necessitating the exploration of 
specialized variants to improve performance. 

One such variant is the Weighted K-nearest neighbors  
(WKNN), which assigns different weights to neighboring data 
points based on their distance or other factors [4]. This enables 
WKNN to give higher importance to closer points, leading to 
more accurate predictions and better handling of imbalanced 
data distributions. The authors in study [4] propose a method 
that utilizes Improved W-KNN to enhance indoor localization 
performance based on fingerprinting by leveraging the 
relationship between the nearest fingerprint and (K-1) auxiliary 
fingerprints to determine the position. In the quest for enhanced 
adaptability, Adaptive KNN adjusts the number of neighbors 
(K) based on the local density of data points, dynamically 
tailoring the algorithm to varying spatial distributions within 
the indoor environment [5]. The paper introduces an enhanced 
KNN algorithm featuring a variable K. The fundamental 
concept revolves around dynamically modifying the K value 
according to the discrepancies between measured signals and 
the corresponding values within the database. In this paper, 
adaptability contributes to improved performance across 
different regions with distinct data densities. Additionally, 
KNN Regression is used when predicting continuous target 
variables, such as indoor coordinates, making it particularly 
suitable for regression tasks in indoor positioning. Apart from 
KNN-based methods, deep learning techniques have also been 
explored for indoor positioning. Convolutional Neural 
Networks (CNN) [6, 7] and Long Short-Term Memory 
(LSTM) [8] networks are notable examples. CNN can 
effectively extract spatial features from Wi-Fi images, while 
LSTM can model temporal dependencies in time-series data, 
such as RSSI signals. In [7], the authors introduces an 
innovative method for converting Wi-Fi signatures into 
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images, establishing a scalable fingerprinting framework 
utilizing convolutional neural networks (CNNs), These deep 
learning models have shown promise in achieving high 
accuracy in indoor positioning tasks, but they may require 
more extensive datasets and computation resources. 

The authors in [9, 10] conducted an overview study on 
several data dimensionality reduction methods and their 
effectiveness in reducing computation time while preserving 
information. Data preprocessing is of paramount importance in 
indoor positioning tasks to enhance model performance and 
reduce computational complexity. High-dimensional Wi-Fi 
RSSI data can be computationally intensive and challenging to 
handle. To address this issue, dimensionality reduction 
techniques are applied to retain critical information while 
significantly reducing the number of features. Principal 
Component Analysis (PCA) is a popular method for 
dimensionality reduction, but it may not be ideal for all 
scenarios due to its requirement for the data to be centered and 
scaled. As an alternative, Truncated Singular Value 
Decomposition (Truncated SVD) [11] is employed, which is a 
variant of PCA that can efficiently handle large datasets and 
does not require data centering. In this paper, we propose an 
approach for indoor positioning that combines Truncated SVD 
for dimensionality reduction of Wi-Fi RSSI data with KNN 
regression for accurate indoor location estimation. The 
solutions mentioned above all aim to reduce errors in location 
estimation. However, a challenge arises in studies using Wi-Fi 
signals, where the use of high-dimensional data complicates 
the training process due to the time required for both training 
and prediction. Therefore, reducing data dimensionality is 
considered an effective solution to reduce model complexity 
and simultaneously enhance data processing flexibility. 
Combining Truncated SVD and KNN Regression yields a 
flexible method applicable to various indoor positioning 
scenarios, not constrained by specific data structures or 
characteristics. The proposed approach will be extensively 
evaluated and compared with other state-of-the-art methods to 
demonstrate its effectiveness and applicability. 

In the subsequent sections, we will delve into the details 
which are as follows: Section II is about the related works, 
Section III deals with the proposed approach. Section IV gives 
results, and discussion, and concludes with implications for 
future research in Section V, thereby contributing to the 
advancement of indoor positioning technology and its real-time 
applications. 

II. RELATED WORKS 

A. Challenges in Indoor Localization using Wi-Fi Signals 

Addressing the problem of enhancing accuracy in indoor 
positioning still encounters numerous difficulties due to the 
persistence of challenges such as limited GPS signals. Unlike 
outdoor environments where Global Positioning System (GPS) 
signals are readily available, indoor spaces often lack direct 
access to GPS signals due to signal attenuation caused by 
walls, ceilings, and other structural elements. This limitation 
hampers the effectiveness of traditional GPS-based localization 
techniques. Multipath effects further complicate indoor 
positioning. Indoor environments introduce multipath effects, 
where wireless signals bounce off surfaces and create multiple 

signal paths. This leads to signal interference, phase shifts, and 
fluctuations, making signal strength-based localization less 
accurate and reliable. Moreover, signal propagation variability 
within indoor spaces can vary significantly due to factors such 
as furniture placement, architectural elements, and interference 
from electronic devices. This variability challenges the 
establishment of consistent and reliable signal patterns for 
accurate localization. Non-line-of-sight (NLOS) conditions due 
to obstructions like walls and obstacles can block the direct line 
between the transmitter and receiver, introducing additional 
complexities in signal propagation and affecting accuracy. The 
phenomenon of multipath fading, where signals arriving via 
different paths interfere constructively or destructively, 
contributes to signal fluctuations and inaccuracies in distance 
estimation. Dealing with high-dimensional data, such as Wi-Fi 
Received Signal Strength Indicator (RSSI) readings from 
multiple access points, is a computational challenge in indoor 
localization. The presence of interference and noise from 
electronic devices further impacts the accuracy of localization 
algorithms. Different indoor environments with unique layouts 
and architectural features add complexity to localization 
algorithms, as a one-size-fits-all approach may not be effective. 
Privacy concerns arising from collecting and analyzing 
personal data in indoor localization require careful 
consideration of data handling and user consent. Furthermore, 
many indoor localization applications demand real-time 
accuracy for guiding users or tracking assets, posing a 
challenge in achieving both precision and speed. Addressing 
these challenges necessitates innovative techniques that 
consider the intricacies of indoor environments. The proposed 
methodology aims to tackle these obstacles by combining 
dimensionality reduction and regression techniques for 
accurate indoor localization. In the context of employing 
methods such as K-Nearest Neighbors (KNN), Weighted K-
Nearest Neighbors (WKNN), Adaptive K-Nearest Neighbors 
(Adaptive KNN), Convolutional Neural Networks (CNN), and 
Long Short-Term Memory (LSTM) for indoor position 
prediction, various limitations become apparent. For K-Nearest 
Neighbors (KNN), its sensitivity to the choice of K neighbors 
introduces computational complexities as K increases. 
Additionally, KNN is sensitive to noise and imbalanced data. 
Weighted K-Nearest Neighbors (WKNN) presents challenges 
in effectively setting weight parameters to enhance prediction 
performance. Adaptive K-Nearest Neighbors (Adaptive KNN) 
involves uncertainty in dynamically determining the optimal 
number of neighbors (K) for individual cases. Convolutional 
Neural Networks (CNN) demand substantial training data and 
computational resources, especially in real-time scenarios. 
Long Short-Term Memory (LSTM) requires longer time-series 
data for complex pattern recognition. Overall, while these 
methods offer unique strengths to tackle indoor positioning 
challenges, they also exhibit limitations, necessitating careful 
customization and consideration of the specific environment 
for an effective solution. 

To address these challenges comprehensively, innovative 
techniques that account for the intricacies of indoor 
environments are indispensable. The proposed methodology 
aims to overcome these hurdles by synergistically employing 
dimensionality reduction techniques and regression 
methodologies for accurate indoor localization. The ensuing 
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sections delve into the details of this approach, experimental 
evaluation, and results, underscoring its efficacy in tackling 
these persistent challenges and enhancing indoor positioning 
accuracy.  

B. Dimensionality Reduction Techniques 

In the realm of indoor positioning, addressing the 
challenges posed by high-dimensional data is crucial for 
achieving accurate and efficient results. This section provides 
an overview of various dimensionality reduction techniques 
that have been employed to tackle the complexity of indoor 
positioning datasets. Dimensionality reduction aims to extract 
essential information from the data while reducing its 
dimensionality, thus enhancing the efficiency of subsequent 
analysis and prediction processes. 

One commonly used technique is Principal Component 
Analysis (PCA) [12-14], which projects the original data onto a 
new orthogonal coordinate system defined by its principal 
components. By retaining the most significant dimensions and 
discarding less informative ones, PCA simplifies the data 
representation while preserving as much variance as possible. 
Another approach, [15] Truncated SVD, is a variant of PCA 
that efficiently approximates the original data matrix by 
retaining only the top singular values and corresponding 
singular vectors. This method is particularly suitable for large 
datasets and offers advantages in terms of computational 
efficiency. 

In addition to these techniques, various other methods can 
also play a role in dimensionality reduction. However, the 
choice of method depends on the characteristics of the data and 
the specific requirements of the indoor positioning task. By 
effectively reducing the dimensionality of the input data, these 
techniques contribute to enhancing the performance of 
subsequent algorithms and models for accurate indoor 
positioning. The following sections will delve into the details 
of how these techniques are applied and their impact on the 
proposed methodology. 

1) Truncated singular value decomposition (Truncated 

SDV) Method: The Truncated Singular Value Decomposition 

(Truncated SVD) method is a dimensionality reduction 

technique commonly employed to mitigate the challenges 

associated with high-dimensional data in various applications, 

including indoor positioning. This approach builds upon the 

concept of Singular Value Decomposition (SVD), which 

decomposes a data matrix into three separate matrices 

representing its singular values and corresponding left and 

right singular vectors. In the context of indoor positioning, 

Truncated SVD involves retaining only the top singular values 

and their corresponding singular vectors, effectively reducing 

the dimensionality of the data while preserving its essential 

information. This process is particularly beneficial for 

managing large datasets, as it significantly decreases the 

computational burden and enhances the efficiency of 

subsequent analysis. The core idea of Truncated SVD is to 

approximate the original data matrix using a lower-

dimensional representation that captures the most significant 

patterns and relationships within the data. By selecting a 

specific number of singular values to retain, this method 

allows researchers and practitioners to balance between 

dimensionality reduction and preserving relevant information. 
Truncated SVD finds applications in various fields, 

including image processing, natural language processing, and 
data compression. In the context of indoor positioning, it offers 
a valuable tool for preprocessing Wi-Fi Received Signal 
Strength Indicator (RSSI) data, effectively reducing its 
dimensionality while maintaining its inherent structure. The 
reduced-dimension representation obtained through Truncated 
SVD can then be used as input for subsequent algorithms, such 
as K-Nearest Neighbors (KNN) regression, to enhance the 
accuracy and efficiency of indoor positioning predictions. The 
goal of Truncated SVD is to reduce the dimensionality of the 
data by retaining a limited number of important singular values 
and vectors. This helps to simplify the complexity of the 
original data and create a reduced version that can be used in 
various tasks such as classification, prediction, and indoor 
positioning. Algorithm 1 presents Truncated SVD Algorithm. 

Algorithm 1: Truncated SVD Algorithm 

Input: The initial data is a matrix A with dimensions m x n, 

where m is the number of samples and n is the dimensionality 

of the data. 

Output: The matrix A_reduced represents the reduced data 

and includes the most important components from the original 

data. 

Step 1: Compute Singular Value Decomposition (SVD): 

Perform the Singular Value Decomposition on the data matrix 

A: A = U * Σ * Vt  

Where: 

 U is the matrix containing the left singular vectors 

(columns) of A. 

 Σ is the diagonal matrix containing the singular 

values of A. 

 Vt is the matrix containing the right singular 

vectors (rows) of A. 

Step 2: Select Number of Components: Choose the number 

of components (singular values and vectors) that you want to 

retain after dimensionality reduction. This is an important 

parameter to adjust the level of dimensionality reduction. 

Step 3: Truncate Singular Values and Vectors: Keep only 

the singular values and vectors corresponding to the number of 

components selected in the previous step. Create the truncated 

matrices U reduced and Vt reduced. 

Step 4: Reconstruct Reduced Data: Generate a new data 

matrix (reduced data) by multiplying the truncated matrix U 

reduced, the diagonal matrix Σ reduced (containing singular 

values), and the transpose of the matrix Vt_reduced: 

A_reduced = U_reduced * Σ_reduced * Vt_reduced 

 

2) K nearest neighbors regression algorithm: KNN 

regression is a non-parametric algorithm that relies on the 

similarity of feature vectors to make predictions. It assumes 

that similar instances will have similar target values. The 

algorithm doesn't involve model training like some other 

regression algorithms; instead, it stores the entire dataset and 

calculates predictions based on the K nearest neighbors of the 
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query instance. The choice of K is crucial, as a small K might 

lead to noisy predictions, while a large K might lead to overly 

smoothed predictions. KNN regression can be sensitive to 

outliers and irrelevant features, so preprocessing the data and 

feature selection can impact its performance. Fig. 1 describes 

the KNN regression for improving the accuracy of indoor 

localization.   

Begin

Colectting RSSIi from data base 

for each RP

Chosen value of k Calculate the 

distance between the query feature 

vector and all the feature vectors 

in the dataset using a distance 

metric such as Euclidean distance 

or Manhattan distance

Find K Neighbors: Select the K 

feature vectors from the dataset 

that are closest to the query feature 

vector based on the calculated 

distances

Calculate Predicted Value: The predicted 

target value  can be calculated as the 

average (or weighted average) of the target 

values of the K nearest neighbors

Coordinate position of object

End

Normalized data

Chosen value of k

 
Fig. 1. The algorithm of WKNN for indoor positioning system. 

III. PROPOSED APPROACH 

This section presents the proposed solution that combines 
dimensionality reduction using Truncated Singular Value 
Decomposition (Truncated SVD) with KNN regression for 
indoor position prediction.  

A. Proposal Model Block Diagram 

Fig. 2 describes the block diagram illustrates the proposed 
approach that integrates two main components: Truncated 
Singular Value Decomposition (Truncated SVD) and K 
Nearest Neighbors (KNN) regression. The process begins with 
the collection of Wi-Fi RSSI data, which is the initial step for 
indoor position prediction. 

RSSI 

Wi-Fi

AP1

AP2
APn

...

...

...

...
...

Data 

normalizat

ion

Truncated SVD 

data

Fingerprinting 

Database

AP1

AP2 ...
APn

predicted 

Position

Online Phase

Offline Phase 

..
.

Truncated 

SVD

KNN 

Regression 

Model

 

Fig. 2. The structure of proposed approach based on KNN regression. 

Data collection and preprocessing: 

 Wi-Fi RSSI data is gathered from multiple access points 
within the indoor environment. 

 The collected data is preprocessed to remove noise, 
handle missing values, and normalize the features. 

Truncated Singular Value Decomposition (Truncated 
SVD): 

 The preprocessed Wi-Fi RSSI data undergoes 
Truncated SVD, a dimensionality reduction technique. 

 Truncated SVD reduces the dimensionality of the data 
while retaining the most significant features that capture 
the underlying patterns. 

 The transformed data is then ready for further 
processing. 

K Nearest Neighbors (KNN) regression: 

 The transformed data from Truncated SVD serves as 
input to the KNN regression model. 

 KNN regression aims to predict the indoor position 
based on the similarity of the transformed data points. 

 The model identifies the K nearest neighbors to the 
input data point and uses their positions to estimate the 
target position. 

Indoor position prediction: 

 The combination of Truncated SVD and KNN 
regression results in an accurate indoor position 
prediction. 

 The estimated position is output as the final result of the 
model. 

The block diagram demonstrates how the proposed method 
utilizes Truncated SVD for dimensionality reduction to handle 
the high-dimensional Wi-Fi RSSI data effectively. The 
reduced-dimensional data is then fed into the KNN regression 
model, which leverages the spatial relationships between data 
points to predict the indoor position accurately. This integrated 
approach aims to overcome the challenges of noise, signal 
variability, and dimensionality while providing enhanced 
precision in indoor position prediction. 

B. Indoor Positioning Dataset 

In this study, we assessed our proposed solution using an 
online dataset [16], previously standardized for indoor 
positioning research. This dataset, employed in previous work 
including [17] aimed to enhance indoor positioning precision 
by LSTM algorithms. The study in [6] achieved a positioning 
error are range 2.5 meters to 2.7 meters on the public dataset 
[16]. The paper [16] verified the dataset's normalization and 
reliability for indoor localization research. The dataset covered 
a library space of over 300 square meters on the 3rd and 5th 
floors, collected over 15 months, and comprising 60,000 
measurements. It included object positions, Wi-Fi AP access 
point RSSI values, execution time, and identification data. 
With 448 Wi-Fi AP access points at around 2.65 meters above 
the ground on both floors, a fingerprint database was created 
from multiple locations and directions, including front, back, 
left, and right measurements. Offline training involved known 
reference points and a Samsung Galaxy S3 phone equipped 
with an application to capture RSSI data. The dataset was 
divided into training (16,704 fingerprints from 24 reference 
points) and test sets (46,800 fingerprints from 106 reference 
points), each containing 448 RSSI indicators from access 
points. Following the approach of [6], our experiments on the 
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normalized public dataset utilized the Minmaxscale() function 
and Formula (1).  

 min

max min

scaled

X X
X

X X





 (1) 

where X is the initial value of the feature, 
maxX and 

minX

are the maximum and minimum values in the feature. 

C. Error Estimation Criteria 

We employed four machine learning-based evaluation 
criteria to assess the proposed solution's effectiveness. Initially, 
we used the mean absolute error (MAE) to gauge the average 
absolute error within the prediction dataset. Further evaluation 
employed mean squared error (MSE) or RMSE, widely utilized 
in machine learning regression problems, to quantify the 
squared error between predicted and actual values. 
Additionally, the determination coefficient R2 was employed 
as a measure of the model's predictive capability. R2 assesses 
how well the model predicts the dependent variable based on 
independent variables, showcasing the goodness-of-fit. Higher 
R2 values signify better model fit, with a range from 0 to 1. 
Negative values can emerge if the model performs worse than 
a constant model predicting the mean. Despite its usefulness, 
R2 has assumptions and limitations that warrant consideration. 
This coefficient's range lies between 0 and 1. A value closer to 
1 indicates strong model fit and accurate prediction of position. 

Furthermore, we introduced the EDE as an additional 
metric to measure prediction accuracy. The EDE calculates the 
direct geometric distance between predicted and actual 
positions, offering a straightforward measure of how far the 
predictions deviate from the true positions. This distance was 
calculated using the Euclidean distance formula, providing 
valuable insight into the spatial accuracy of the proposed 
solution. 
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Where itruePos is the i th observed position, itestPos is the 

i th  estimation position. i th  is the number of samples in 

the test dataset. 

IV. RESULTS AND DISCUSSION 

In this study, we conducted a thorough investigation to 
determine the optimal number of principal components 
(components) to retain when applying the truncated SVD 
technique. The objective was to minimize the EDE, a critical 
metric for assessing the accuracy of our proposed indoor 
positioning solution.  

The process of choosing the appropriate value for 
components began with a systematic survey across a range of 
values, assessing the performance of the solution at each step. 
We employed the EDE as the primary evaluation criterion, 
aiming to identify the component's value that yielded the 
lowest error. Our experimentation revealed that at the number 
of components = 35, the solution achieved the minimal EDE. 
This observation was consistent with our goal of minimizing 
error while ensuring computational efficiency, as retaining 35 
principal components struck an optimal balance between 
accuracy and resource consumption. By retaining 35 principal 
components, we effectively reduced the dimensionality of the 
data while preserving the critical information necessary for 
accurate indoor localization. This choice optimized the model's 
ability to capture relevant spatial relationships among data 
points, resulting in a significant reduction in the EDE. In 
conclusion, our survey and experimentation led us to select the 
number of components = 35 as the optimal configuration for 
the truncated SVD algorithm. This choice aligns with our 
objective of achieving the lowest EDE while maintaining 
efficiency, demonstrating the effectiveness of this approach in 
improving indoor positioning accuracy. 

The analysis of Fig. 3, which depicts the relationship 
between the number of components in truncated SVD (n) and 
the EDE, reveals several key insights: 

Firstly, at n = 35, we observe the lowest EDE, indicating 
that this configuration results in the most accurate indoor 
positioning predictions. This point aligns with our earlier 
discussion, highlighting n = 35 as the optimal choice for 
retaining principal components. When n is smaller than 35, the 
reduction in dimensionality becomes excessive, leading to a 
loss of critical information required for accurate localization. 

 
Fig. 3. The relationship between the number of truncated SVD components 

and euclidean distance error. 
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Conversely, when the numbers of components (n) are 
greater than 35, the model becomes overly complex, 
potentially introducing noise and diminishing its predictive 
capabilities. The fact that the EDE consistently rises for values 
of n smaller or larger than 35 emphasizes the importance of 
careful parameter tuning in the truncated SVD technique. It 
highlights the delicate balance between dimensionality 
reduction and information preservation. 

 

Fig. 4. The relationship between k and euclidean distance error. 

Fig. 4, which illustrates the relationship between the 
number of nearest neighbors (k) and the EDE, provides crucial 
insights into our study. The plot demonstrates a clear trend that 
supports the idea that selecting k = 30 is an optimal choice for 
our KNN regression-based indoor positioning solution. This 
specific k-value results in the lowest EDE, indicating the 
highest precision in predicting indoor positions. When k 
deviate from this optimal k-value, either by choosing k values 
smaller or larger than 30, we consistently observe an increase 
in EDE. This pattern emphasizes the sensitivity of our model's 
performance to the choice of k. If k is smaller than 30, the 
model may not adequately capture essential spatial 
relationships, leading to less accurate predictions. Conversely, 
when k exceeds 35, the model might over smooth the data, 
potentially losing critical local information, which results in 
increased prediction errors. The observation that EDE 
increases for k values smaller or larger than 30 underscores the 
importance of selecting the appropriate parameter for KNN 
regression. It reinforces the idea that finding the right balance 
in the number of neighbors considered is vital for achieving 
accurate indoor localization. Fig. 4 highlights the significance 
of choosing k = 30 as the optimal parameter for our KNN 
regression-based indoor positioning solution. This choice leads 
to the lowest EDE value, indicating the highest accuracy in 
position prediction. Deviating from this value consistently 
results in increased EDE, affirming the effectiveness of our 
proposed approach in enhancing indoor localization accuracy. 

Fig. 5 provides a visual representation of 100 randomly 
selected real positions (depicted as blue dots) and their 
corresponding predicted positions (depicted as red dots). This 
graph serves as a valuable illustration of the performance of 
our indoor positioning model. The meanings of the parameters 
on Fig. 5 are described below:  

 

Fig. 5. 100 predicted and real positions. 

1) Blue dots - real positions: The blue dots represent the 

actual positions of objects in the indoor environment, 

providing a reference for the ground truth. These positions are 

based on the collected dataset. 

2) Red dots - predicted positions: The red dots, on the 

other hand, signify the positions predicted by our proposed 

indoor positioning model. These predictions are generated 

using the combination of Truncated SVD for dimensionality 

reduction and KNN regression for position estimation. 

3) Visual comparison: By visually comparing the red and 

blue dots, it's evident that our model's predictions are 

generally very close to the actual positions. This alignment 

between the predicted and actual positions highlights the 

accuracy and effectiveness of our proposed solution. 

4) Scattered distribution: The distribution of both red and 

blue dots across the graph demonstrates that the model is 

capable of predicting positions in various locations throughout 

the indoor environment. This showcases the versatility and 

applicability of our approach across different scenarios. 

5) Few outliers: While most of the red dots closely match 

the blue dots, there may be a few outliers where the predicted 

positions slightly deviate from the actual positions. These 

outliers could be attributed to factors such as signal 

interference or complex spatial relationships in the indoor 

environment. 

Fig. 5 visually reinforces the accuracy and reliability of our 
proposed indoor positioning solution. The close alignment 
between the predicted and actual positions across a range of 
locations underscores the model's effectiveness in accurately 
estimating indoor positions, thus contributing to enhanced 
indoor localization. 
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Fig. 6. CDF of the positioning error distance. 

The results presented in Figure 6 demonstrate a significant 
improvement in our solution's performance compared to the 
reference paper [17] when applied to the same public dataset 
under similar conditions. Specifically, Figure 6 shows that our 
solution achieves an accuracy rate of nearly 60% for distance 
errors of 2 meters or less, whereas the reference study [17] 
achieves approximately 35%. This suggests that our approach 
significantly outperforms the existing method. Further analysis 
reveals that for distance errors of 1 meter or less, the 
probability of accurate predictions is around 30%. 

This visualization is further reinforced by the visual 
representation in Figure 7, which vividly illustrates the 
proportion of predictions falling within different error ranges. 
It is evident that the proposed solution demonstrates a notable 
capability in achieving sub-2 meters accuracy, making it 
suitable for a range of indoor positioning applications. In 
accordance with the evaluation criteria outlined in Section C, 
the performance metrics for our model are as follows: The 
Root Mean Square Error (RMSE) is 1.97 meters, the Error 
Distance Error (EDE) is 2.23 meters, the Mean Squared Error 
(MSE) is 3.91 square meters, and the R-squared (R²) value is 
0.69. Additionally, our model demonstrates promising results 
in terms of error percentages, with approximately 30% of 
errors falling within a 1-meter range and around 60% within a 
2-meter range. The RMSE value of approximately 1.97 meters 
indicates a relatively small average deviation between 
predictions and actual values. This reflects the model's 
accuracy in estimating positions. The average Euclidean 
distance is around 2.23 meters, signifying the average 
difference between predictions and actual values. This is a 
critical evaluation criterion widely used in location-related 
tasks. Mean Squared Error (MSE) value is approximately 3.91 
meters, representing the average squared error between 
predictions and actual values. This value indicates the 
variability of errors and can be used for model comparison. R-
squared (R2): The R2 value is approximately 0.69, indicating 
the model's accuracy in explaining data variance. A high R2 
value close to 1 suggests that the model is reasonably good at 
explaining the data. Approximately 30% of predictions have 
errors within 1 meter, indicating that the model achieves a 
relatively good level of accuracy for predicting positions with 
errors less than 1 meter. Additionally, around 60% of 

predictions have errors within 2 meters, which is an acceptable 
threshold for many real-time applications. 

 

Fig. 7. The chart of prediction errors with varying error distances. 

In [17], the authors applied deep learning models, 
specifically RNN/LSTM, to predict indoor positions, achieving 
accuracy with distance errors ranging from 2.5 meters to 2.7 
meters. A significant contribution of our study lies in the 
substantial enhancement of position prediction accuracy 
offered by our proposed solution. More precisely, we reduced 
the error margin from the range of 2.5 meters - 2.7 meters to a 
mere 2.23 meters, marking a remarkable improvement ranging 
from 10.8% to 17.4%. The simulation results demonstrate the 
effectiveness of the Truncated SVD and KNN Regression 
combination in significantly bolstering position prediction 
capabilities, particularly in error reduction. Furthermore, our 
solution also made substantial strides in prediction time 
efficiency when compared to the findings in reference [17]. As 
indicated in [17], the training time using the RNN model was 
564.1396 seconds, with 10.0848 seconds required for testing. 
When LSTM was employed, the training process took 
581.3599 seconds, and testing consumed 10.1721 seconds. In 
contrast, our solution demonstrated remarkable efficiency, 
taking only 4.5523 seconds to complete the same experimental 
scenario. These results underscore not only the enhancement in 
accuracy achieved by our approach but also its superior 
efficiency in prediction time. Additionally, our method 
simplifies the intricate training process commonly associated 
with traditional machine learning and deep learning 
methodologies. 

V. CONCLUSION 

In conclusion, our study highlights the significant 
effectiveness of the proposed solution, which combines 
Truncated Singular Value Decomposition (Truncated SVD) 
with K-Nearest Neighbors (KNN) regression for indoor 
positioning. This innovative approach brings about a 
substantial improvement in prediction accuracy while meeting 
real-time requirements. One of the notable advantages lies in 
the simplicity and efficiency of KNN regression. Unlike 
traditional machine learning and deep learning solutions that 
require complex pre-training processes, our method does not 
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burden the user with such complexities. This streamlines the 
implementation and makes it an attractive choice for various 
indoor localization scenarios. By integrating Truncated SVD as 
a dimensionality reduction technique, we enhance the model's 
robustness and precision. Through rigorous experimentation, 
we determined that setting Truncated SVD's number of 
components to 35 minimizes EDEs in predictions, further 
showcasing the effectiveness of this hybrid approach. This 
combined methodology not only advances indoor positioning 
accuracy but also ensures that the solution is practical for real-
time applications. In summary, our work presents a powerful 
and efficient solution for indoor positioning, opening doors to 
improved location-based services and applications. 
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