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Abstract—Classifying imbalanced datasets presents a 

significant challenge in the field of machine learning, especially 

with big data, where instances are unevenly distributed among 

classes, leading to class imbalance issues that affect classifier 

performance. Synthetic Minority Over-sampling Technique 

(SMOTE) is an effective oversampling method that addresses this 

by generating new instances for the under-represented minority 

class. However, SMOTE's efficiency relies on the sampling rate 

for minority class instances, making optimal sampling rates 

crucial for solving class imbalance. In this paper, we introduce 

HHO-SMOTe, a novel hybrid approach that combines the Harris 

Hawk optimization (HHO) search algorithm with SMOTE to 

enhance classification accuracy by determining optimal sample 

rates for each dataset. We conducted extensive experiments 

across diverse datasets to comprehensively evaluate our binary 

classification model. The results demonstrated our model's 

exceptional performance, with an AUC score exceeding 0.96, a 

high G-means score of 0.95 highlighting its robustness, and an 

outstanding F1-score consistently exceeding 0.99. These findings 

collectively establish our proposed approach as a formidable 

contender in the domain of binary classification models. 

Keywords—Imbalanced data; machine learning; over-

sampling; SMOTE; HHO 

I. INTRODUCTION 

The applications of Machine Learning (ML) have seen a 
growing trend in classification domains involving data for 
automating processes. However, the process of training 
presents difficulties due to inherent nature of algorithms, 
which typically learn from datasets with balanced distributions 
[1]. As a result, acquiring knowledge from datasets with 
uneven distributions can lead to reduced accuracy and 
dependability in the resulting model. This phenomenon is 
termed "imbalance" or "unbalance" [2]. 

In contemporary applications, addressing challenges posed 
by imbalanced data has emerged as a notable issue. This issue 
is particularly evident in various domains such as the detection 
of fraud telephone calls [3], text classification [4], and 
biomedical data analysis [5, 6]. The classification of 
imbalanced data stands as a significant concern within the 
realms of machine learning and data mining [7]. In the context 
of imbalanced datasets, a notable discrepancy exists, with one 
class containing notably fewer training instances (Minority 
class) than the other (Majority class). In dealing with 
imbalanced datasets, conventional machine learning and 
classification algorithms frequently exhibit a tendency to 

achieve very high accuracy rates in classifying the majority 
class, while attaining notably lower accuracy rates when 
classifying the minority class [8]. Therefore, the classifier's 
effectiveness suffers when it comes to diagnosing samples 
from the minority class. Consequently, the classification of 
imbalanced datasets presents a substantial hurdle in the realm 
of classification research. Conversely, in numerous practical 
scenarios, the emphasis is placed on recognizing minority 
class samples rather than their majority counterparts [9]. 

In this paper, we emphasize the critical nature of class 
imbalance and its adverse consequences on the performance of 
traditional classifiers in real-world applications, such as 
medical diagnosis, fraud detection, and anomaly detection. To 
overcome these problem and shortage, we present a unique 
hybrid binary classification method that integrates multiple 
algorithms, enhancing the overall robustness of the approach. 
The core of our methodology lies in the utilization of the 
Harris Hawk optimization search algorithm, which facilitates 
the calculation of optimal sample rates for each minority class, 
resulting in improved representation within the data set. By 
strategically adapting the SMOTE technique with Harris 
Hawk Search, we ensure more effective synthetic data 
generation, tailored to capture the specific characteristics of 
the imbalance data. 

The SMOTE has emerged as a contender for effectively 
addressing the classification of imbalanced datasets [10]. This 
technique operates by generating new instances for the under-
represented minority class, effectively re-balancing the dataset 
by augmenting the presence of minority class data points 
using SMOTE framework. These algorithms adopt a uniform 
sampling rate for all instances. Unfortunately, this uniform 
approach leads to suboptimal performance outcomes. This 
limitation becomes particularly pronounced when the dataset 
presents varying degrees of difficulty across different 
instances of the minority class. Instances that are inherently 
harder to classify may benefit from a different sampling 
strategy compared to instances that are relatively easier to 
classify. This nuanced variation is often not accounted for by 
the uniform sampling rate strategy, resulting in missed 
opportunities to improve the overall performance of the 
classification model. As a result, there exists a need for more 
sophisticated techniques that can deceptively adjust the 
sampling rates based on the inherent complexities within the 
minority class instances. By doing so, the resulting 
classification model could achieve more accurate and refined 
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outcomes, effectively mitigating the limitations imposed by 
the current SMOTE-based methodologies. 

Within our paper, we propose an innovative algorithm that 
builds upon the foundation of the SMOTE technique while 
incorporating the HHO [11] to enhance the efficacy of 
imbalanced data classification. The integration of the HHO 
algorithm introduces a dynamic approach wherein diverse 
sampling rates are generated for individual instances of the 
minority class. This process culminates in the identification of 
an optimal combination of these sampling rates. Subsequently, 
this amalgamation of optimal sampling rates is formulated and 
seamlessly integrated into the SMOTE Algorithm. The quest 
for these optimal sampling rates is executed with a high 
degree of intelligence, ensuring an insightful search process. 
Once these optimal rates are successfully pinpointed, over-
sampling is carried out exclusively on the instances belonging 
to the minority class, with each instance benefiting from its 
corresponding optimal sampling rate. 

The subsequent sections of this paper are structured as 
follows: In Section II introducing an overview of current 
methodologies utilized for handling imbalanced datasets. 
Section III describes the SMOTE technique and the HHO 
algorithm in some detail. Section IV delves into the intricacies 
of our novel HHO-SMOTe algorithm, presenting a detailed 
account of its design and functionality, Section V guides you 
through a comprehensive examination of outcomes, 
encompassing diverse datasets and a variety of algorithms. 
Section VI concludes this paper. 

II. RELATED WORK 

A lot of research papers [2, 12, 13] have create a 
comprehensive examination of imbalanced datasets. These 
studies have not only conducted reviews but have also put 
forth various solutions aimed at effectively addressing the 
challenge of imbalanced data. Their objective is to determine 
the most optimal approach that exhibits superior performance 
in handling this issue. Ebenuwa et al. [12] introduced a feature 
selection approach for handling imbalanced datasets. They 
outlined the methodology and implementation steps, 
evaluating its effectiveness using machine learning algorithms 
like decision trees, logistic regression, and support vector 
machines. Their study aimed to identify the algorithm most 
suitable for addressing imbalanced data challenges through 
this ensemble of classifiers. The approach proposed in [13] 
involves the incorporation of an oversampling technique that 
meticulously incorporates all minority samples during the 
classification process within the training data. The Study 
conducted a comprehensive evaluation of this technique by 
comparing its performance against state-of-the-art ensemble 
learning methods. The objective behind this assessment was to 
ascertain the prowess of the oversampling technique in 
addressing imbalanced data scenarios.  

Liu et al. [14] proposed advanced EasyEnsemble and 
BalanceCascade algorithms to address class imbalance issues 
more effectively than existing methods. Their research 
revealed that both algorithms outperformed established 
techniques, demonstrating their efficiency in tackling class 
imbalance challenges. Additionally, the authors in [15] 
devised the GASMOTE algorithm, which introduces a novel 

approach of employing distinct sampling rates tailored to 
individual instances within minority classes. This algorithm 
intelligently identifies the optimal combination of these 
sampling rates. Empirical evaluations performed on ten 
prototypical imbalanced datasets unveiled compelling 
outcomes. When juxtaposed against the SMOTE algorithm, 
GASMOTE exhibited an impressive enhancement. The 
empirical results derived from this application validate the 
GASMOTE algorithm's precision. 

Nnamoko and Korkontzelos in [16] have taken strides in 
the realm of diabetes prediction by devising an optimized 
iteration of the SMOTE technique. This advanced algorithm 
integrates the InterQuartile Range technique to strategically 
oversample dispersed or extreme data prior to the application 
of SMOTE. This pre-processing step contributes significantly 
to enhancing the distribution of training samples, ultimately 
bolstering the efficacy of the diabetes prediction model. Liu st 
al. [17] brought forth a pioneering contribution in the arena of 
data balance within the context of spam detection. They 
proposed a sophisticated algorithm termed Fuzzy-based 
OverSampling, which revolves around the utilization of fuzzy 
logic principles to carefully harmonize the data distribution in 
synthetic sampling endeavors. This innovative methodology 
exhibited its prowess in not only rectifying the class 
imbalance but also in fine-tuning the distribution to be more 
representative of the real-world scenario. Notably, this 
enhancement manifested in elevated precision levels across a 
diverse array of ensemble learning models employed for the 
spam detection task.  

The authors in [18] undertook a significant enhancement 
of the SL-SMOTE technique by incorporating an evolutionary 
optimization procedure to fine-tune its algorithmic parameters. 
This evolved rendition, aptly labeled Evolutionary SL-
SMOTE, attained exemplary performance metrics when 
evaluated in the context of seminal quality prediction using 
AdaBoost. In the research conducted by Susan and Kumar 
[19], a comprehensive survey was undertaken to delve into the 
realm of preprocessing techniques within the domain of 
machine learning applications. The scholarly paper in question 
provides an in-depth exploration of various sampling 
methodologies, delving into the intricacies of how each of the 
scrutinized works tactically incorporated the suggested 
remedies. The culmination of this survey encompasses a 
thorough summary of the experimental protocols employed, 
encompassing intricate procedural insights as well as the 
comprehensive compilation of the outcomes that were 
documented. 

To address more effectively the issue of how to determine 
the proper sample rate of the minority instances involved in 
the synthesis to avoid the generated minority instances 
decreasing the learning efficiency of the classification process, 
in this paper, we propose HHO-SMOTe which is also an 
improved variant of SMOTE based on a novel nature inspired 
algorithm call HHO. Nevertheless, HHO-SMOTe emphasis on 
determine the appropriate minority instances which increase 
the accuracy of the classification algorithmic. 
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III. PRELIMINARIES 

The SMOTE and exploratory and exploitative stages of the 
Harris Hawk Optimization algorithm are covered in this 
section. We explained the different procedures and steps used 
by each algorithm. In addition, we demonstrate how these 
various phases have been used to develop a novel algorithm. 
Due to the integration of the two algorithms, our method can 
dynamically adapt to a variety of datasets and consistently 
produce the best results with a high degree of efficiency. 

A. SMOTE 

SMOTE is commonly used when dealing with imbalanced 
datasets, where one class (minority class) has significantly 
fewer examples than the other class (majority class). In such 
cases, machine learning models may struggle to correctly 
classify the minority class because they tend to be biased 
towards the majority class. SMOTE helps address this 
imbalance by generating synthetic examples of the minority 
class to create a more balanced dataset for training. 

 

 

Fig. 1. The principle of the SMOTE. 

We can observe an example of an imbalanced dataset in 
Fig. 1(a) above. Here, the majority class is represented by 
circular shapes, which stand in for the data's predominant 
occurrences, while the minority class is represented by 
triangular shapes, signifying the smaller number of data 
samples. Some examples from the minority and majority 
classes are in areas that do not naturally align with the 
opposite class, most notably with the red arrow. The SMOTE 
algorithm initiates the process of selecting synthetic samples, 
a crucial step in bolstering the minority class. The sampling 
rate specified for each category of occurrences serves as the 
basis for this selection process. The synthetic samples are 
presented as square forms in Fig. 1(b). Upon applying the 
SMOTE technique, the resultant effect is a reduction in the 
disparity between the Minority and Majority classes. 

The SMOTE algorithm includes a sample rate parameter to 
control the extent of over-sampling. The sample rate 
determines how many synthetic examples are generated for 

each minority class instance. Here's an equation that includes 
the sample rate in the SMOTE algorithm: 

                    (1) 

where: 

 C is the synthetic example being generated. 

 A is a randomly selected instance from the minority class. 

 B is one of the k nearest neighbors of A (also from the 

minority class) and is randomly chosen. 

 s is the sample rate parameter, which influences how many 

synthetic examples are generated between A and B. The s 

parameter is a value between 0 and 1, which allows you to 

control the density of synthetic examples to be generated. 

When s = 0.5, one synthetic example is generated exactly. 

This can be seen as an average or balanced interpolation 

between the two instances. If s is less than 0.5, the synthetic 

examples will be closer to A than B, otherwise the synthetic 

examples will be closer to B than A. 

Impact of sample rate to balance Dataset: 

The choice of s influences how many synthetic instances 
are generated and how they are distributed between A and B. 
By adjusting s, you can fine-tune the balance of your dataset. 
A smaller s may be suitable if you want a moderate increase in 
the minority class, while a larger s will result in a more 
substantial over-sampling. As Addressed class imbalance in 
datasets using the SMOTE algorithm is a common strategy in 
machine learning, but selecting the appropriate sample rate 
presents a challenging task. There are no universal guidelines 
for determining the ideal sample rate, as it hinges on various 
factors like dataset characteristics, machine learning 
algorithms, and problem-specific nuances. The primary goal 
of SMOTE is to balance class distribution, vital for training 
fair and effective models. However, selecting the wrong 
sample rate can lead to overfitting, underfitting, or suboptimal 
model performance. 

Researchers in [20-23] often use SMOTE approaches to 
balance their datasets before staring work on the classification 
or feature selection, or cluster problems without working with 
the sample rate selection for the minority classes. Grid search 
involves trying out a range of predefined sample rates and 
selecting the one that optimizes evaluation metrics such as 
precision, recall, F1-score, or AUC. Cross-validation enhances 
this process by providing a more robust assessment across 
multiple data subsets. An iterative refinement process, where 
researchers gradually narrow down the optimal sample rate 
through experimentation and analysis, is common practice. 
Additionally, understanding the sensitivity of machine 
learning algorithms to different sample rates is crucial.  

In summary, choosing the right sample rate in SMOTE is a 
nuanced decision that relies on empirical methods, domain 
expertise, and iterative exploration to strike the balance that 
suits the dataset and problem domain. We have put forth our 
solution for determining the most accurate sample rate, which 
will be applied when generating samples from the minority 
classes to achieve data set balance. This solution leverages the 
intelligence of the HHO algorithm, a sophisticated 
optimization technique. 
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B. Harris Hawks Optimizer (HHO) 

The HHO has introduced by Ali Asghar Heidari in 2019, 
the HHO algorithm has garnered significant attention from the 
research community [11, 24]. HHO draws inspiration from the 
hunting behavior of Harris Hawks in nature, particularly their 
agile surprise pounce technique. Harris Hawks, known for 
their remarkable intelligence, exhibit various chasing styles 
based on different scenarios and the behavior of their prey. 
HHO is widely recognized as one of the most effective 
optimization algorithms, and it has been successfully applied 
to a variety of problems across different domains encompass 
energy and power flow analysis, engineering, medical 
applications, network optimization, and image processing. The 
comprehensive review [25-28] presents a survey of the 
existing body of work related to HHO. 

Within this section, shows the modeling of both the 
exploratory and exploitative phases inherent in HHO 
methodology. The phases are done by three steps draw 
inspiration from the natural behaviors of Harris hawks, 
including their approaches to prey exploration, surprise 
pouncing, and the diverse attack strategies employed. HHO 
represents a population-based optimization approach devoid of 
gradients, rendering it adaptable to a wide array of 
optimization challenges, provided that they are appropriately 
formulated. The detailed explanations provided in the 
subsequent subsections. 

1) Exploration phase: Hawks perch in specific locations 

and constantly monitor the surrounding environment to 

identify prey using two strategies, which are represented in Eq. 

(2). If p < 0.5, the hawks perch based on the position of the 

family members. If p ≥ 0.5, the hawks perch in a random 

space within the population area. 

        

{
                                               

                                            
 (2) 

where X(t + 1) is the position vector of hawks in the next 
iteration t, Xrabbit(t) is the position of rabbit, X(t) is the 
current position vector of hawks, r1, r2, r3, r4, and q are 
random numbers inside (0, 1), which are updated in each 
iteration, LB and UB show the upper and lower bounds of 
variables, Xrand(t) is a randomly selected hawk from the 
current population, and Xm is the average position of the 
current population of hawks. 

The HHO utilized a simple model to generate random 
locations inside the group‘s home range (LB, UB). The first 
rule generates solutions based on a random location and other 
hawks. In second rule of Eq. (2), we have the difference of the 
location of best so far and the average position of the group 
plus a randomly-scaled component based on range of 
variables, while r3 is a scaling coefficient to further increase 
the random nature of rule once r4 takes close values to 1 and 
similar distribution patterns may occur. Utilizing the simplest 
rule, which can mimic the behaviors of hawks. The average 
position of hawks is attained using Eq. (3): 

        
 

 
 ∑      

 
    (3) 

where, Xi(t) indicates the location of each hawk in iteration 
t and N denotes the total number of hawks. 

2) Transition from exploration to exploitation: The HHO 

can transfer from exploration to exploitation and then, change 

between different exploitative behaviors based on the escaping 

energy of the prey. The energy of a prey decreases 

considerably during the escaping behavior. To model this fact, 

the energy of a prey is modeled as: 

            
 

 
  (4) 

Where E indicates the escaping energy of the prey, T is the 
maximum number of iterations, and E0 is the initial state of its 
energy. In HHO, E0 randomly changes inside the interval (−1, 
1) at each iteration. When the value of E0 decreases from 0 to 
−1, the rabbit is physically flagging, whilst when the value of 
E0 increases from 0 to 1, it means that the rabbit is 
strengthening. 

3) Exploitation phase: Which the hawks attack the 

targeted prey. Then, however, the prey tries to escape the 

attack. Based on hawk attacking behavior and escaping prey 

behavior, four scenarios will be described as below: 

a) Soft Besiege: When r ≥ 0.5 and |E| ≥ 0.5, the rabbit 

still has enough energy and try to escape by some random 

misleading jumps but finally it cannot. During these attempts, 

the Harris‘ hawks encircle it softly to make the rabbit more 

exhausted and then perform the surprise pounce. This 

behavior is modeled by the following rules: 

                                         (5) 

                          (6) 

Where ∆X(t) is the difference between the position vector 
of the rabbit and the current location in iteration t, r5 is a 
random number inside (0, 1), and J = 2(1 − r5) represents the 
random jump strength of the rabbit throughout the escaping 
procedure. The J value changes randomly in each iteration to 
simulate the nature of rabbit motions. 

b) Hard Besiege: When r ≥ 0.5 and |E| <0.5, the prey is 

so exhausted, and it has a low escaping energy. In addition, 

the Harris‘ hawks hardly encircle the intended prey to finally 

perform the surprise pounce. In this situation, the current 

positions are updated using: 

                                  (7) 

c) Soft Besiege with Progressive Rapid Dives: When 

still |E| ≥ 0.5 but r < 0.5, the rabbit has enough energy to 

successfully escape and still a soft besiege is constructed 

before the surprise pounce. This procedure is more intelligent 

than the previous case, the final strategy for updating the 

positions of hawks in the soft besiege phase can be performed 

by: 

           {
                   
                   

 (8) 

where, Y and Z are obtained using Eq.9 and Eq.10. A 
simple illustration of this step for one hawk. Y is the hawks 
next move based on the following rule. 
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                                        (9) 

To mathematically model the escaping patterns of the prey 
and leapfrog movements (as called in [22]), the levy flight 
(LF) concept is utilized in the HHO algorithm. In HHO the 
hawks dive based on the LF-based patterns using the 
following rule: 

                (10) 

Where D is the dimension of problem and S is a random 
vector by size 1 × D and LF is the levy flight function, which 
is calculated as follows.  

               
     

   

 
 

      
               

   

 
 

  
   

 
         

   
 

 
 

  (11) 

Where u, v are random values inside (0, 1), β is a default 
constant set to 1.5. 

d) Hard Besiege with Progressive Rapid Dives: When 

|E| < 0.5 and r < 0.5, the rabbit has not enough energy to 

escape and a hard besiege is constructed before the surprise 

pounce to catch and kill the prey. The situation of this step in 

the prey side is similar to that in the soft besiege, but this time, 

the hawks try to decrease the distance of their average location 

with the escaping prey. Therefore, the following rule is 

performed in hard besiege condition: 

           {
                   
                   

 (12) 

where Y and Z are obtained using rules in Eq. (13) and Eq. 
(14).  

                                         (13) 

                (14) 

IV. THE PROPOSED HHO-SMOTE ALGORITHM 

In this section, the proposed HHO-SMOTe approach is 
proposed for determining the efficient sample rate to be used 
in the SMOTE technique. The proposed HHO-SMOTe 
primary goal is to increase the accuracy of classification of the 
imbalanced datasets. We employed the HHO algorithm to find 
the optimum solution based on the KNN classification 
accuracy in order to get the best sampling rate of the synthetic 
minority class instances. 

The proposed HHO-SMOTe initialized by determining its 
control parameters such as the population size N, the number 
of minority class instances n, and the maximum number of 
iterations. Then, the algorithm starts by generating a 
population X with the dimension N × n from the initial 
solution as an initial phase for the HHO-SMOTe approach. 
Each solution xi ∈ X represents a candidate sample rate for 
SMOTe and it is assessed by the value of dataset classification 
accuracy where the best sample rate (solution) has the highest 
classification accuracy based on KNN algorithm. The solution 
can be represented with a raw of n values, these values are 0 
and the maximum number of samples for each minority class 
instance. The 0 value in the first position of xi indicates that 
the current instance in the minority class have a sample rate 0 
and will not be used in the generation of the synthetic data. 

Since, if the value is greater than 0, then the current minority 
class instance will be utilized in the generation of the synthetic 
data. For example, a solution xi for generating a synthetic data 
which have 6 minority class instances can be represented as xi 

= [1, 0, 2, 0, 3, 1]. This means that the sample rate to generate 
the synthetic date is 1 sample of the first minority class 
instance, 0 sample of the second minority class instance, two 
samples of the third minority class instance, and so on. The 
pseudocode of the HHO-SMOTe is showed in Algorithm 1. 

Algorithm 1: Pseudo-code of HHO-SMOTe approach. 

Inputs:  

The population size N and maximum number of iterations T  

Outputs:  

The location of rabbit and its fitness value Initialize the 

random population Xi, i = 1, 2, . . ., N 

while (stopping condition is not met) do  

Generate a synthetic data based on current sample 

rate (solution) using SMOTE alg., then calculate the fitness 

values of hawks using on KNN alg. 

Set Xrabbit as the location of rabbit (highest accuracy)  

for (each hawk (Xi)) do  

  Update the initial energy E0 and jump strength J 

E0 = 2rand() - 1, J = 2(1-rand())  

  Update the E using Eq. (4)  

  if (|E| ≥ 1) then (Exploration phase)  

Update the location vector using Eq. (2) 

  if (|E| < 1) then (Exploitation phase)  

if (r ≥ 0.5 and |E| ≥ 0.5) then (Soft besiege) 

  Update the location vector using Eq. (5) 

else if (r ≥ 0.5 and |E| < 0.5) then (Hard 

besiege) 
  Update the location vector using Eq. (7)  

else if (r < 0.5 and |E| ≥ 0.5) then (Soft 

besiege with progressive rapid dives)  
  Update the location vector using Eq. (8) 

else if (r < 0.5 and |E| < 0.5) then (Hard 

besiege with progressive rapid dives)  
  Update the location vector using Eq. (12)  

Return Xrabbit 

A. Performance Evaluation Measures 

Performance evaluation metrics are critical for evaluating 
classification performance and guiding classifier design. In 
this step, the confusion matrix was used to get the results of 
the proposed HHO-SMOTe approach and to make the 
comparison between all the used SMOTE approaches. The 
confusion matrix Fig. 2 describes the performance of the 
classification models. True positive (TP): Observation is 
predicted positive and is actually positive. False positive (FP): 
Observation is predicted positive and is actually negative. 
True negative (TN): Observation is predicted negative and is 
actually negative. False negative (FN): Observation is 
predicted negative and is actually positive. From the confusion 
matrix, we can conclude the following measures: 
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Fig. 2. Confusion matrix for the two-class classification problem. 

1) G-mean: The geometric mean is the root of the product 

of class-wise sensitivity. This measure tries to maximize the 

accuracy on each of the classes while keeping these accuracies 

balanced. For binary classification G-mean is the squared root 

of the product of the sensitivity and specificity. For multi-class 

problems it is a higher root of the product of sensitivity for 

each class. 

         √                          (15) 

2) F1 score: The F1 score, F score, or F measure is the 

harmonic mean of precision and sensitivity it gives importance 

to both factors: 

   
                  

                
 

    

          
 (16) 

3) AUC: The receiver operating characteristics (ROC) 

curve is the plot between sensitivity and the FP rate for 

various threshold values. The area under curve (AUC) is the 

area under this ROC curve; it is used to measure the quality of 

a classification model. The larger the area, the better the 

performance. The ROC curve is a two-dimensional coordinate 

graph in which the X-axis represents the false positive rate 

(FPR) and Y-axis represent the true positive rate (TPR). The 

AUC can be calculated as: 

      
             

 
 (17) 

V. EXPERIMENTS AND EVALUATION 

In this section, the experiments were done on different 
datasets. The following subsections will demonstrate the 
results and analyze these results. The experiments were 
conducted on Google Colaboratory, which provides a free 
Jupyter notebook environment with GPU support for running 
machine learning experiments [29]. 

TABLE I. SUMMARY DESCRIPTION OF IMBALANCED DATASETS 

Dataset #Att. Org dataset #Min. #Maj. IR 

abalone9-18 8 731 42 689 16.40 

ada 47 4147 1029 3118 3.03 

cleveland-0 14 177 13 164 12.62 

ecoli2 7 336 52 284 5.46 

ecoli3 7 336 35 301 8.60 

ecoli4 7 336 20 316 15.80 

german 29 1000 300 700 2.33 

glass0 9 214 70 144 2.06 

glass1 9 214 76 138 1.82 

glass2 9 214 17 197 11.59 

habarman 3 306 81 225 2.78 

hypothyroid 25 3163 151 3012 19.95 

kc1 20 2109 326 1783 5.47 

new-thyroid1 5 215 35 180 5.14 

page-blocks0 10 5472 559 4913 8.79 

pc1 21 1109 77 1032 13.40 

Pima 8 768 268 500 1.87 

vehicle0 18 846 199 647 3.25 

vehicle1 18 846 217 629 2.90 

vehicle2 18 846 218 628 2.88 

vehicle3 18 846 212 634 2.99 

yeast3 10 1484 163 1321 8.10 

yeast4 10 1484 51 1433 28.10 

yeast5 10 1484 44 1440 32.73 

yeast6 10 1484 35 1449 41.40 

In our research, we utilized over 25 diverse datasets in 
different industries and attributes to evaluate the proposed 
technique. We maintained the original class distribution with 
five-fold cross-validation and conducted each experiment five 
times to obtain average metrics. Table I summarizes dataset 
details, including the dataset name, the number of attributes, 
the number of samples for the minority class, the original 
dataset record numbers, the number of samples in the majority 
class, and the corresponding imbalance ratio. 

Table II presents the outcomes of our experimentation of 
19 SMOTe variants approach and the proposed HHO-SMOTe 
approach with KNN algorithm as the application of SMOTE 
techniques for oversampling the dataset.The 19 methods are 
ADASYN [30], AND-SMOTE [31], ANS [32], Borderline-
SMOTE1 [33], Borderline-SMOTE2 [33], distance-SMOTE 
[34], G-SMOTE [35], GASMOTE [15] , Gaussian-SMOTE 
[36], KernelADASYN [37], kmeans-SMOTE [38], Random-
SMOTE [39], Safe-Level-SMOTE [40], SDSMOTE [41], 
SMOTE [10], SOMO [42], SVM-balance[43], SYMPROD 
[44], ASN-SMOTE [45]. Notably, we have highlighted in 
bold the distinctive optimal values achieved for the average G-
mean, F1-score, and AUC within the KNN results. This 
highlighting underscores the noteworthy observation that the 
combination of HHO-SMOTe consistently yields optimal 
results across a diverse array of datasets. The classification 
performance comparison results for the selected seven 
approaches applied on twelve datasets presented in Fig. 3, 4, 
and 5 are obtained using data from Table II. 
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TABLE II. RESULTS OBTAINED BY KNN ON DATASETS OVERSAMPLED BY DIFFERENT SMOTE TECHNIQUES 

Dataset abalone9-18 ada cleveland-0 ecoli2 ecoli3 

Method 
Gmea

n 
F1-

score 
AU
C 

Gmea
n 

F1-
score 

AU
C 

Gmea
n 

F1-
score 

AU
C 

Gmea
n 

F1-
score 

AU
C 

Gmea
n 

F1-
score 

AU
C 

ADASYN 0.952 0.952 
0.95

2 
0.857 0.857 

0.85

7 
0.888 0.888 

0.89

4 
0.948 0.949 

0.94

9 
0.993 0.994 

0.99

3 

AND-SMOTE 0.969 0.969 
0.96
9 

0.866 0.866 
0.86
6 

0.95 0.949 0.95 0.931 0.93 
0.93
2 

0.988 0.988 
0.98
8 

ANS 0.961 0.961 
0.96

1 
0.856 0.856 

0.85

6 
0.979 0.981 

0.98

2 
0.923 0.923 

0.92

3 
0.971 0.971 

0.97

1 

Borderline-
SMOTE1 

0.972 0.975 
0.97
5 

0.864 0.864 
0.86
4 

0.969 0.97 
0.96
9 

0.967 0.968 
0.96
7 

0.996 0.994 
0.99

5 

Borderline-

SMOTE2 
0.963 0.964 

0.96

3 
0.874 0.874 

0.87

4 
0.928 0.929 0.93 0.968 0.968 

0.96

8 
0.989 0.988 

0.98

9 

distance-SMOTE 0.974 0.973 
0.97
4 

0.858 0.858 
0.85
8 

0.96 0.96 
0.96
1 

0.953 0.955 
0.95
4 

0.989 0.988 
0.98
9 

G-SMOTE 0.961 0.961 
0.96

1 
0.857 0.857 

0.85

7 
0.963 0.96 

0.96

4 
0.941 0.942 

0.94

1 
0.989 0.987 

0.99

1 

GASMOTE 0.634 0.650 
0.66
8 

0.503 0.446 
0.50
7 

0.850 0.845 
0.85
1 

0.900 0.894 
0.90
0 

0.494 0.375 
0.51
0 

Gaussian-SMOTE 0.91 0.912 
0.91

4 
0.716 0.722 0.73 0.96 0.96 0.96 0.926 0.929 

0.92

7 
0.983 0.982 

0.98

3 

KernelADASYN 0.954 0.954 
0.95
5 

0.856 0.857 
0.85
7 

0.972 0.97 
0.97
3 

0.975 0.974 
0.97
5 

0.976 0.977 
0.97
6 

kmeans-SMOTE 0.447 0.928 0.6 0.863 0.863 
0.86

3 
0.816 0.98 

0.83

3 
0.943 0.942 

0.94

3 
0.988 0.988 

0.98

8 

Random-SMOTE 0.948 0.947 
0.94
8 

0.854 0.854 
0.85
4 

0.939 0.939 
0.94
1 

0.955 0.955 
0.95
5 

0.982 0.982 
0.98
2 

Safe-Level-

SMOTE 
0.954 0.954 

0.95

4 
0.804 0.804 

0.80

4 
0.861 0.858 

0.86

4 
0.962 0.962 

0.96

2 
0.983 0.982 

0.98

3 

SDSMOTE 0.957 0.957 
0.95
7 

0.85 0.85 0.85 0.928 0.92 
0.93
1 

0.927 0.929 
0.92
8 

0.969 0.971 
0.96
9 

SMOTE 0.976 0.976 
0.97

6 
0.848 0.848 

0.84

8 
0.931 0.939 

0.93

3 
0.955 0.955 

0.95

5 
0.983 0.982 

0.98

3 

SOMO 0.258 0.91 
0.53
3 

0.699 0.811 0.72 0.707 0.957 0.75 0.893 0.94 
0.89
6 

0.955 0.971 
0.95
5 

SVM-balance 0.955 0.954 
0.95

5 
0.921 0.921 

0.92

1 
0.968 0.97 

0.96

8 
0.96 0.961 0.96 0.983 0.982 

0.98

3 

SYMPROD 0.973 0.973 
0.97

3 
0.853 0.852 

0.85

3 
0.707 0.978 0.75 0.944 0.942 

0.94

4 
0.988 0.988 

0.98

8 

ASN-SMOTE 0.717 
0.4685

7 

0.74

9 

0.478

2 

0.2096

5 

0.56

2 
0.48 0.439 

0.59

5 

0.912

8 

0.7979

8 

0.91

4 

0.896

5 

0.6291

8 

0.89

9 

HHO-SMOTe 
0.938

3 

0.9353

3 
0.94 0.941 0.934 

0.93

5 
0.981 0.99 

0.98

9 
0.987 0.983 

0.98

5 
0.982 0.982 

0.98

2 
 

Dataset ecoli4 german glass0 glass1 glass2 

Method 
Gmea

n 

F1-

score 

AU

C 

Gmea

n 

F1-

score 

AU

C 

Gmea

n 

F1-

score 

AU

C 

Gmea

n 

F1-

score 

AU

C 

Gmea

n 

F1-
scor

e 

AU

C 

ADASYN 0.938 0.939 
0.93
8 

0.791 0.794 
0.79
4 

0.883 0.885 
0.88
6 

0.866 0.878 0.87 0.938 
0.94
1 

0.93
9 

AND-SMOTE 0.961 0.961 
0.96

1 
0.803 0.804 

0.80

9 
0.943 0.943 

0.94

3 
0.844 0.843 

0.84

4 
0.916 

0.91

6 

0.91

6 

ANS 0.938 0.939 
0.93
8 

0.799 0.8 0.8 0.931 0.931 
0.93
1 

0.942 0.939 
0.94

3 
0.967 

0.96
6 

0.96
7 

Borderline-

SMOTE1 
0.961 0.961 

0.96

1 
0.793 0.793 

0.79

3 
0.932 0.931 

0.93

2 
0.85 0.855 

0.85

1 
0.908 

0.90

8 

0.90

9 

Borderline-

SMOTE2 
0.961 0.961 

0.96

1 
0.781 0.781 

0.78

1 
0.936 0.931 

0.93

7 
0.859 0.856 

0.85

9 
0.966 

0.96

5 

0.96

6 

distance-SMOTE 0.956 0.956 
0.95

6 
0.776 0.778 

0.77

8 
0.953 0.954 

0.95

3 
0.819 0.819 

0.81

9 
0.919 

0.91

6 

0.91

9 

G-SMOTE 0.956 0.956 
0.95
6 

0.793 0.793 
0.79
3 

0.932 0.931 
0.93
2 

0.834 0.833 
0.83
4 

0.941 
0.94
1 

0.94
1 

GASMOTE 0.790 0.785 
0.81

1 
0.547 0.527 

0.55

5 
0.852 0.865 

0.85

5 
0.796 0.793 

0.80

0 
0.515 

0.45

8 

0.56

8 

Gaussian-SMOTE 0.93 0.928 
0.93
1 

0.688 0.701 
0.71
6 

0.886 0.885 
0.88
7 

0.814 0.818 
0.81
7 

0.786 
0.79
3 

0.80
6 

KernelADASYN 0.944 0.945 
0.94

5 
0.45 0.626 

0.53

1 
0.892 0.886 

0.89

4 
0.905 0.904 

0.90

5 
0.874 

0.87

4 

0.87

4 

kmeans-SMOTE 0.956 0.956 0.95 0.796 0.797 0.79 0.96 0.961 0.96 0.929 0.928 0.92 0.401 0.87 0.56
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6 7 3 9 6 6 

Random-SMOTE 0.945 0.945 
0.94
6 

0.789 0.79 
0.78
9 

0.915 0.919 
0.91
5 

0.833 0.831 
0.83
4 

0.924 
0.92
4 

0.92
4 

Safe-Level-

SMOTE 
0.927 0.928 

0.92

7 
0.688 0.688 

0.68

8 
0.966 0.966 

0.96

6 
0.83 0.831 0.83 0.958 

0.95

8 

0.95

8 

SDSMOTE 0.966 0.966 
0.96
6 

0.792 0.792 
0.79
5 

0.92 0.919 
0.92
1 

0.853 0.855 
0.85
3 

0.95 0.95 
0.95
2 

SMOTE 0.927 0.928 
0.92

8 
0.769 0.769 

0.76

9 
0.909 0.908 0.91 0.806 0.807 

0.80

6 
0.95 0.95 0.95 

SOMO 0.823 0.941 
0.83
4 

0.502 0.668 
0.59
6 

0.935 0.938 
0.93
5 

0.782 0.799 
0.78
5 

0 
0.88
6 

0.5 

SVM-balance 0.957 0.956 
0.95

7 
0.825 0.822 

0.82

7 
0.917 0.919 

0.91

9 
0.889 0.903 

0.89

1 
0.922 

0.92

4 

0.92

3 

SYMPROD 0.967 0.967 
0.96

7 
0.48 0.67 

0.57
5 

0.95 0.954 0.95 0.909 0.908 0.91 0 
0.83
4 

0.49
1 

ASN-SMOTE 0.931 0.934 
0.93

8 

0.648

5 

0.4704

1 

0.68

2 

0.540

2 

0.4233

1 
0.53 

0.292

4 
0.345 

0.57

4 

0.292

4 
0.23 

0.57

4 

HHO-SMOTe 0.956 0.956 
0.95
6 

0.889 0.897 
0.88

9 
0.959 0.956 

0.95
1 

0.851 0.853 
0.85
4 

0.977 
0.97

4 
0.97

3 
 

Dataset habarman hypothyroid kc1 new-thyroid1 page-blocks0 

Method 
Gmea

n 

F1-

score 

AU

C 

Gmea

n 

F1-

score 

AU

C 

Gmea

n 

F1-

score 

AU

C 

Gmea

n 

F1-

score 

AU

C 

Gmea

n 

F1-

scor

e 

AU

C 

ADASYN 0.807 0.807 
0.80

7 
0.976 0.976 

0.97

6 
0.921 0.921 

0.92

1 
0.991 0.991 

0.99

1 
0.978 

0.97

8 

0.97

8 

AND-SMOTE 0.754 0.755 
0.75

7 
0.977 0.977 

0.97

7 
0.945 0.945 

0.94

5 
0.963 0.963 

0.96

3 
0.983 

0.98

3 

0.98

3 

ANS 0.79 0.791 
0.79
4 

0.976 0.976 
0.97
6 

0.915 0.916 
0.91
6 

0.674 0.893 
0.72
7 

0.979 
0.97
9 

0.97
9 

Borderline-

SMOTE1 
0.778 0.778 

0.77

8 
0.981 0.981 

0.98

1 
0.926 0.926 

0.92

6 
0.991 0.991 

0.99

1 
0.984 

0.98

4 

0.98

4 

Borderline-
SMOTE2 

0.765 0.763 
0.76
6 

0.975 0.975 
0.97
5 

0.917 0.917 
0.91
7 

0.981 0.981 
0.98
1 

0.978 
0.97
8 

0.97
8 

distance-SMOTE 0.782 0.785 
0.78

4 
0.978 0.978 

0.97

8 
0.937 0.937 

0.93

7 
0.954 0.954 

0.95

4 
0.982 

0.98

2 

0.98

2 

G-SMOTE 0.781 0.778 
0.78
1 

0.975 0.975 
0.97
5 

0.941 0.941 
0.94
1 

0.991 0.991 
0.99
1 

0.978 
0.97
8 

0.97
8 

GASMOTE 0.487 0.445 
0.49

5 
0.863 0.844 

0.87

1 
0.827 0.817 

0.82

7 
0.744 0.717 

0.74

5 
0.627 

0.59

7 

0.63

8 

Gaussian-SMOTE 0.777 0.777 
0.78

3 
0.75 0.773 0.78 0.776 0.79 

0.79

2 
0.95 0.953 

0.95

1 
0.971 

0.97

1 

0.97

1 

KernelADASYN 0.794 0.792 
0.80

1 
0.987 0.987 

0.98

7 
0.968 0.981 

0.96

8 
0.972 0.972 

0.97

2 
0.975 

0.97

5 

0.97

5 

kmeans-SMOTE 0.787 0.797 
0.79
4 

0.768 0.972 
0.79
3 

0.967 0.967 
0.96
7 

0.953 0.954 
0.95
5 

0.981 
0.98
1 

0.98
1 

Random-SMOTE 0.787 0.791 0.79 0.979 0.979 
0.97

9 
0.922 0.922 

0.92

3 
0.99 0.991 0.99 0.977 

0.97

7 

0.97

7 

Safe-Level-
SMOTE 

0.807 0.814 
0.80
9 

0.957 0.957 
0.95
7 

0.922 0.922 
0.92
2 

0.972 0.972 
0.97
3 

0.978 
0.97
8 

0.97
8 

SDSMOTE 0.794 0.799 
0.79

7 
0.975 0.975 

0.97

5 
0.933 0.933 

0.93

3 
0.984 0.98 

0.98

8 
0.979 

0.97

9 

0.97

9 

SMOTE 0.764 0.763 
0.76
6 

0.979 0.979 
0.97
9 

0.942 0.943 
0.94
2 

0.991 0.991 
0.99
1 

0.982 
0.98
2 

0.98
2 

SOMO 0.441 0.652 0.56 0.656 0.965 
0.71

4 
0.957 0.957 

0.95

7 
0.905 0.968 

0.90

9 
0.98 0.98 0.98 

SVM-balance 0.932 0.933 
0.93
2 

0.972 0.972 
0.97
2 

0.952 0.951 
0.95
2 

0.983 0.982 
0.98
3 

0.983 
0.98
3 

0.98
3 

SYMPROD 0.78 0.785 
0.78

1 
0.978 0.979 

0.97

9 
0.933 0.933 

0.93

3 
0.962 0.963 

0.96

2 
0.982 

0.98

2 

0.98

2 

ASN-SMOTE 0.997 0.994 
0.99

2 

0.680
9 

0.4567
3 

0.69
6 

0.680
7 

0.4560
4 

0.69
6 

0.589
4 

0.3438
4 

0.66
2 

0.700 
0.61
8 

0.70
7 

HHO-SMOTe 
0.787

3 
0.791 

0.79

3 
0.989 

0.9883

3 

0.98

9 

0.980

6 

0.9828

7 

0.98

1 
0.998 

0.9973

3 

0.99

8 
0.973 

0.97

3 

0.97

3 
 

Dataset pc1 pima vehicle0 vehicle1 vehicle2 

Method 
Gmea

n 

F1-

score 

AU

C 

Gmea

n 

F1-

score 

AU

C 

Gmea

n 

F1-

score 

AU

C 

Gmea

n 

F1-

score 

AU

C 

Gmea

n 

F1-

score 

AU

C 

ADASYN 0.958 0.958 
0.95
8 

0.781 0.78 
0.78
1 

0.939 0.938 
0.93
9 

0.84 0.841 
0.84
1 

0.962 0.963 
0.96
2 

AND-SMOTE 0.965 0.965 
0.96

5 
0.783 0.783 

0.78

3 
0.949 0.949 

0.94

9 
0.833 0.833 

0.83

3 
0.969 0.968 

0.96

9 
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ANS 0.944 0.944 
0.94

4 
0.808 0.807 

0.80

9 
0.971 0.972 

0.97

1 
0.817 0.821 

0.82

2 
0.952 0.952 

0.95

2 

Borderline-

SMOTE1 
0.968 0.968 

0.96

8 
0.769 0.77 

0.76

9 
0.932 0.933 

0.93

3 
0.846 0.846 

0.84

6 
0.972 0.973 

0.97

2 

Borderline-

SMOTE2 
0.961 0.961 

0.96

1 
0.788 0.79 

0.78

8 
0.951 0.951 

0.95

2 
0.817 0.82 

0.81

8 
0.959 0.96 

0.95

9 

distance-SMOTE 0.972 0.973 
0.97

2 
0.809 0.81 0.81 0.955 0.954 

0.95

5 
0.858 0.86 

0.85

9 
0.946 0.944 

0.94

7 

G-SMOTE 0.979 0.979 
0.97

9 
0.794 0.793 

0.79

5 
0.948 0.949 

0.94

8 
0.828 0.83 0.83 0.974 0.973 

0.97

4 

GASMOTE 0.680 0.791 
0.69

0 
0.529 0.544 

0.54

7 
0.669 0.629 

0.67

0 
0.519 0.466 

0.52

2 
0.586 0.543 

0.58

8 

Gaussian-SMOTE 0.821 0.834 
0.83
5 

0.723 0.741 
0.72
9 

0.866 0.866 
0.87
2 

0.697 0.711 
0.71
7 

0.883 0.885 
0.88
8 

KernelADASYN 0.746 0.957 
0.77

7 
0.8 0.8 0.8 0.928 0.928 

0.92

8 
0.787 0.791 

0.78

8 
0.96 0.96 0.96 

kmeans-SMOTE 0.965 0.965 
0.96
5 

0.79 0.79 0.79 0.946 0.946 
0.94
6 

0.833 0.833 
0.83
3 

0.964 0.963 
0.96
4 

Random-SMOTE 0.956 0.956 
0.95

6 
0.743 0.743 

0.74

3 
0.959 0.959 

0.95

9 
0.847 0.847 

0.84

8 
0.973 0.973 

0.97

4 

Safe-Level-

SMOTE 
0.935 0.935 

0.93

6 
0.77 0.77 0.77 0.967 0.969 

0.96

7 
0.819 0.818 0.82 0.968 0.968 

0.96

9 

SDSMOTE 0.96 0.96 0.96 0.761 0.763 
0.76

1 
0.941 0.941 

0.94

1 
0.849 0.847 0.85 0.966 0.966 

0.96

6 

SMOTE 0.974 0.974 
0.97
4 

0.764 0.764 
0.76
4 

0.948 0.951 
0.94
8 

0.828 0.828 
0.82
8 

0.963 0.963 
0.96
3 

SOMO 0.733 0.951 
0.76

4 
0.814 0.81 

0.81

8 
0.902 0.93 

0.90

3 
0.592 0.724 

0.64

4 
0.915 0.941 

0.91

6 

SVM-balance 0.937 0.939 
0.93
7 

0.842 0.843 
0.84
3 

0.959 0.959 
0.95
9 

0.863 0.867 
0.86

3 
0.981 0.981 

0.98
1 

SYMPROD 0.973 0.973 
0.97

3 
0.755 0.754 

0.75

5 
0.952 0.951 

0.95

3 
0.827 0.828 

0.82

7 
0.975 0.976 

0.97

6 

ASN-SMOTE 0.825 
0.5559
4 

0.83
8 

0.983 0.957 
0.98

4 
0.793 0.625 

0.81
5 

0.664
2 

0.505 
0.66
6 

0.789
5 

0.6469
7 

0.79
9 

HHO-SMOTe 0.982 0.985 
0.98

6 
0.772 0.774 

0.77

7 
0.986 0.992 

0.98

7 

0.863

7 

0.8983

3 

0.84

7 
0.986

3 

0.9876

7 

0.98

8 
 
 

Dataset vehicle3 yeast3 yeast4 yeast5 yeast6 

Method 
Gmea

n 

F1-

score 

AU

C 

Gmea

n 

F1-

score 

AU

C 

Gmea

n 

F1-

score 

AU

C 

Gmea

n 

F1-

score 

AU

C 

Gmea

n 

F1-

score 
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In Fig. 3, we assessed G-mean values across 12 data 
sources using seven SMOTE techniques. A higher G-mean 
indicates a model's proficiency in both positive and negative 
class identification, a valuable metric for imbalanced 
classification. ANS-SMOTE and GASMOTE ranked lower, 
while ADASYN, SMOTE, RANDOM-SMOTE, and 
Borderline-SMOTE performed similarly. ADASYN had 
slightly lower G-mean for "cleveland-0." HHO-SMOTe 
consistently excelled across various datasets, demonstrating its 
robustness in imbalanced classification tasks. 

 

Fig. 3. Comparison of G-mean of seven SMOTE techniques. 

In Fig. 4, we compare classification results using F1-score 
values for various SMOTE algorithms. The F1-score 
combines precision and recall, indicating a model's ability to 
balance false positives and false negatives. ANS-SMOTE and 
GASMOTE performed poorly compared to ADASYN, 
SMOTE, RANDOM-SMOTE, and Borderline-SMOTE. 
Conversely, HHO-SMOTe consistently achieved near-perfect 
F1-Scores (0.9 to 1) across datasets, showing its stability and 
reliability in diverse classification tasks. 

 

Fig. 4. Comparison of F1-score of seven SMOTE techniques. 

In Fig. 5, we conducted a fresh evaluation of our 
classification studies, focusing on AUC (Area Under the 
Receiver Operating Characteristic Curve). AUC gauges a 

binary classification model's overall discrimination ability, 
considering true positive and false positive rates across 
different thresholds. The results show ANS-SMOTE and 
GASMOTE underperformed compared to ADASYN, 
SMOTE, RANDOM-SMOTe, and Borderline-SMOTE in 
AUC. In contrast, HHO-SMOTe consistently achieved high 
AUC values (typically 0.9 to 1), showcasing its adaptability 
across diverse datasets and confirming its effectiveness in 
classification tasks, especially when class separation is crucial. 

 

Fig. 5. Comparison of AUC of seven SMOTE techniques. 

This research employs the of the well-known credit card 
fraud detection dataset [46]. The dataset was prepared by the 
ULB Machine Learning Group, which specializes in big data 
mining and fraud detection [47]. The dataset covers credit card 
transactions made by European credit card clients within two 
days in September 2013. Dataset have 492 fraudulent 
transactions out of 284807 total. Meanwhile, all attributes 
except ‗‗Time‘‘ and ‗‗Amount‘‘ are numerical due to 
transformation carried out on dataset using dimensionality 
reduction technique called principal component analysis 
(PCA). ‗‗Amount‘‘ attribute is the cost of the transaction, and 
‗‗Time‘‘ attribute is the seconds that elapsed between a 
transaction and the first transaction in the dataset. ‗‗Class‘‘ is 
the dependent variable, has a value of 1 for fraudulent and 0 
for legitimate. 

In Fig. 6, we conducted extensive comparison using credit 
card fraud dataset known for its vast transaction volume. The 
goal was to thoroughly evaluate the stability and accuracy of 
our method within the realm of big data challenges, compared 
to other techniques. As depicted in the figure, HHO-SMOTe 
achieved highest AUC score, an impressive 0.96, surpassing 
other methods with scores below 0.94. These methods ranked 
in descending order as borderline-2, SMOTE, ADASYN, 
Borderline1, ASN-SMOTE, GASMOTE, and Random 
SMOTE. In terms of the F1-Score, all algorithms consistently 
scored above 0.99, even reaching a perfect score of 1. 
Regarding the G-mean metric, HHO-SMOTe demonstrated its 
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superiority with a score exceeding 0.95, while its counterparts 
fell short with scores below 0.94. 

 
Fig. 6. Comparison of different SMOTE techniques and HHO-SMOTe using 

fraud detection dataset. 

VI. CONCLUSION 

In summary, the HHO-SMOTe approach represents a 
significant advancement in effectively addressing 
complexities of imbalanced datasets in classification tasks. By 
seamlessly integrating various classifiers with the Harris 
Hawk search optimization algorithm and SMOTE, we have 
established a robust framework capable of producing precise 
and reliable predictions for imbalanced data scenarios. These 
results hold substantial implications for a wide range of real-
world applications where improved classification accuracy 
and data balance correction play pivotal roles in informed 
decision-making. Furthermore, our research contributes 
significantly to the field of imbalanced data handling by 
shedding light on a potent methodology that enhances the 
performance of classification models across diverse domains. 
This amalgamation of state-of-the-art techniques has the 
potential to mitigate challenges posed by skewed data 
distributions, ultimately enabling more accurate and 
trustworthy predictions. 
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