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Abstract—Handling high-dimensional big data presents 

substantial challenges for Machine Learning (ML) algorithms, 

mainly due to the curse of dimensionality that leads to 

computational inefficiencies and increased risk of overfitting. 

Various dimensionality reduction and Feature Selection (FS) 

techniques have been developed to alleviate these challenges. 

Random Forest (RF), a widely-used Ensemble Learning Method 

(ELM), is recognized for its high accuracy and robustness, 

including its lesser-known capability for effective FS. While 

specialized RF models are designed for FS, they often struggle 

with computational efficiency on large datasets. Addressing these 

challenges, this study proposes a novel Feature Selection Model 

(FSM) integrated with data reduction techniques, termed 

Dynamic Correlated Regularized Random Forest (DCRRF). The 

architecture operates in four phases: Preprocessing, Feature 

Reduction (FR) using Best-First Search with Rough Set Theory 

(BFS-RST), FS through DCRRF, and feature efficacy assessment 

using a Support Vector Machine (SVM) classifier. Benchmarked 

against four gene expression datasets, the proposed model 

outperforms existing RF-based methods in computational 

efficiency and classification accuracy. This study introduces a 

robust and efficient approach to feature selection in high-

dimensional big-data scenarios. 

Keywords—Random forest; SVM; machine learning; big data; 

feature selection; best-first search; rough set theory 

I. INTRODUCTION 

High-dimensional big data poses significant challenges for 
Machine Learning (ML) algorithms due to the "curse of 
dimensionality," a phenomenon where the computational 
complexity and resource requirements increase exponentially 
as the number of dimensions (features) grows [1]. Traditional 
algorithms can struggle to make accurate predictions as they 
become lost in the vastness of the feature space, leading to 
issues such as overfitting, where the model captures noise 
instead of the underlying data structure. To mitigate these 
problems, various dimensionality reduction techniques like 
Principal Component Analysis (PCA), t-distributed Stochastic 
Neighbor Embedding (t-SNE), and autoencoders have been 
developed to compress the feature space while retaining as 
much of the meaningful information as possible [2]. 
Additionally, feature selection methods like the Least 
Absolute Shrinkage and Selection Operator (LASSO), Mutual 
Information (MI), and Chi-Square Test (CST) are used to 
identify the most informative features. More sophisticated ML 
models, such as Deep Learning (DL) models, are also 
designed to automatically capture hierarchical representations 

of the data, thereby mitigating some of the challenges posed 
by high dimensionality. 

The Random Forest (RF) technique is a collective learning 
approach that integrates numerous decision trees to build a 
more robust and precise forecasting model. Functionally, each 
tree in the ensemble is built from a bootstrapped sample of the 
data, and during the tree-building process, a random subset of 
features is chosen at each node split [3]. This randomization 
not only decorates the trees but also makes the ensemble less 
prone to overfitting, enabling it to perform well on unseen 
data. As a predictor, RF is renowned for its exceptional 
accuracy, capability to process vast datasets with extensive 
dimensionality, and capability to handle missing values. One 
of the lesser-known but advantageous features of an RF model 
is its innate capability for Feature Selection (FS) [4]. During 
training, it computes a score for each feature that indicates its 
importance in making predictions. This feature importance 
score is often derived from the average reduction in impurity 
that each feature brings across all trees in the forest. By 
ranking features based on this score, RF provides a practical 
and intuitive way for FS, helping to improve the performance 
of not only itself but also other ML models that may be 
sensitive to irrelevant or redundant features [5]. 

Many RF models are specialized for FS, each offering 
unique advantages and disadvantages. Variants like Boruta [6] 
focus on systematically identifying important attributes by 
comparing them to randomly shuffled versions of themselves, 
while Conditional Inference Forest (CIF) [7] aims for 
unbiased FS through statistical hypothesis tests. Regularized 
RF [8] applies a regularization term to prioritize a sparse set of 
features, and Extremely Randomized Trees (RT) [9] adds an 
extra layer of randomness for potentially more robust 
selections. However, a common drawback in most of this RF-
based Feature Selection Model (FSM) is their lack of focus on 
handling large datasets. These methods often strive for 
computational efficiency, facing challenges related to memory 
space and computing time. To mitigate these issues, high-
performance computing environments and parallel 
architectures are often necessary for effective FS on big 
datasets. Failing to use such computational resources can 
significantly ramp up hardware and software costs. For 
example, scalable software frameworks like Hadoop 
MapReduce are often required for the learning and analysis 
stages to manage large datasets efficiently. Therefore, while 
RF-based methods offer numerous avenues for FS, their 
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applicability to big data scenarios often necessitates additional 
computational resources to overcome inherent limitations. 

Considering the challenges associated with computational 
time complexity and classification accuracy in high-
dimensional datasets, a novel FSM integrated with data 
reduction techniques is proposed. The architecture operates in 
four distinct phases. Initially, high-dimensional data undergo 
preprocessing to standardize and clean the dataset. 
Subsequently, the preprocessed data are processed through a 
Best-first Search with Rough Set Theory (BFS-RST) Feature 
Reduction Model (FRM) in the second phase. This specialized 
model aims to reduce the feature size effectively. In the third 
phase, a novel proposed variant of RF termed Dynamic 
Correlated Regularized Random Forest (DCRRF) is 
employed. This DCRRF model incorporates correlated FSM 
to identify an optimal set of features from the already-reduced 
set. The final phase involves a rigorous assessment of the 
quality and efficacy of the FS using a Support Vector Machine 
(SVM) classifier. Performance benchmarks indicate that this 
proposed model outperforms existing RF-based FSM when 
tested on four gene expression datasets. The architecture aims 
to mitigate computational inefficiency and enhance 
classification accuracy, offering a more robust approach to FS 
in complex data scenarios. 

The paper is organized as follows: Section II presents the 
literature review, Section III presents the methodologies used 
in the work, Section IV presents the proposed model, Section 
V analyses the work using different experiments, and Section 
VI concludes the work. 

II. LITERATURE REVIEW 

This section delves into various works that have employed 
RF-based models for FS, offering insights into their efficacy 
and limitations. 

The research in [10-12] presents a two-step RF-based 
FSM. The first step selects features based on variable 
importance scores and then employs the search process in the 
second step to finalize a feature subset. The approach was 
tested on the KDD’99 intrusion detection dataset, derived 
from the DARPA 98 dataset. Notably, the KDD’99 dataset 
was modified to remove redundant records, resulting in a 
refined dataset called RRE-KDD for training and testing. 
Experimental results indicated that this approach reduced the 
feature set and computational time and enhanced classification 
accuracy. The study in [13-15] explores the use of the RF 
classifier for FS in prostate cancer detection. Utilizing an 
ensemble of Decision Trees (DT) for classification, the study 
notes that the accuracy improves with adding more trees. The 
classifier is adept at handling incomplete data attributes and is 
scalable for large datasets. Emphasizing the pivotal role of FS, 
the research finds that their method boosts detection accuracy 
by roughly 87%, underscoring the importance of effective FS 
in enhancing prostate cancer detection. The research in [16-
18] study introduces a recursive FSM using RF to enhance 
protein structural class prediction. The method underwent 
evaluation through four experiments and was compared to 
existing prediction techniques. Findings suggest that this 
feature selection approach significantly bolsters the efficiency 
of predicting protein structural classes. Remarkably, the 

method uses fewer than 5% of the features yet boosts 
prediction accuracy by 4.6-13.3%. Further analysis revealed 
that features related to predicted secondary structures yielded 
the best performance, providing insights that could inform the 
development of even more effective prediction methods for 
protein structural classes. 

The study in [19-23] explores how the number of trees and 
class separability influence the consistency of variable 
importance rankings in RF algorithms. The research concludes 
that achieving stable importance values is possible either by 
incorporating a large number of trees in a single execution of 
the model or by taking the average values from multiple runs 
with fewer trees. While the second approach is more 
economical regarding computational cost, both methods 
produce comparable rankings for the variables. The research 
additionally points out that the ideal number of model 
iterations fluctuates depending on class separability and offers 
recommendations for ascertaining the appropriate number of 
runs or trees to achieve stable rankings of variable importance. 
In study [24-28], introduce an explainable Artificial 
Intelligence (AI) model for blood test sample-based COVID 
diagnosis. Despite the advancements in AI-based diagnostic 
models, few effectively integrate human-centered and 
machine-centered approaches. This research employs human-
computer interaction design principles to address this gap. 
Employing graph analysis for the visualization and 
optimization of features, the model integrates an interpretable 
decision forest classifier to categorize COVID-19 cases using 
existing blood test information. This enables clinicians to 
leverage DT structures and feature visualizations for better 
model interpretability. They proved that their model had not 
just better diagnostic accuracy but also reduced computation 
time. 

The research in [29-34] examines the efficacy of ML 
algorithms like RF and its variations in selecting Single 
Nucleotide Polymorphisms (SNPs) for fine-scale genetic 
population assignment in wildlife conservation. The study, 
which uses unpublished data for Atlantic salmon and 
published data for Alaskan Chinook Salmon (ACS), found 
that ML methods outperformed traditional Fixation Index 
(FST) rankings in identifying informative genetic markers. 
Specifically, RF-based methods led to an accuracy 
improvement of up to 7.8% and 11.2% for ACS, respectively. 
The findings underscore the potential of ML algorithms in 
enhancing genetic marker selection for conservation efforts. 
The research in [35-40] addresses the challenges in intrusion 
detection systems, such as the scarcity of labeled datasets, 
computational overhead, and suboptimal accuracy. The 
research introduces an Auto-Encoder Intrusion Detection 
System (AE-IDS) that leverages the RF algorithm for 
improved performance. The approach focuses on creating a 
robust training set through FS and grouping in [41-45]. Post-
training, the model employs an auto-encoder for prediction, 
significantly reducing detection time and enhancing accuracy. 
Experimental findings suggest that AE-IDS outperform 
conventional ML-based IDS, offering more accessible 
training, better adaptability, and higher detection accuracy in 
[46-50]. The research in [51-55] employs an RF algorithm for 
county-scale cotton mapping, using spectral, vegetation, and 
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texture features. The study found that texture features, 
particularly the Gray Level Co-occurrence Matrix (GLCM), 
significantly improve classification accuracy. Compared to 
other classifiers like SVM and ANN, RF exhibited better 
stability and higher accuracy. The method that combined 
multiple features achieved an average accuracy of 93.36%, 
showing the effectiveness of using RF and multiple features 
for precise cotton mapping [56-58]. 

III. PROPOSED METHODOLOGIES 

A. Random Forest 

RF is an Ensemble Learning (EL) algorithm that builds a 
forest of DT, usually trained with the "bagging" method. The 
general idea of the Ensemble Learning Method (ELM) is to 
combine weak learners to create a robust model. In RF, each 
DT,    is trained on a different bootstrap sample    Drawn 
from the original dataset. The algorithm performs this 
operation   times based on the parameter     , effectively 
creating   different trees. A unique aspect of RF is that it 
considers only a subset of features when making each split, a 
number specified by the parameter     . This random subset 

of features introduces diversity among the trees, leading to a 
more robust model. 

For regression problems, the output of a RF model is the 
mean prediction of all the trees, mathematically expressed as 
Eq. (1). 

 ̂    
 

 
    

        (1) 

In classification tasks, the model employs a Majority 
Voting Scheme (MVS), choosing the mode of the classes 
predicted by individual trees, given as Eq. (2). 

 ̂                              .  (2) 

This EML provides a way to reduce the variance that 
might be present in a single DT, improving generalization to 
unseen data. One of the essential aspects of RF is the criteria 
used for node splitting, often specified by the Gini Impurity 
(GI) as shown in Eq. (3). 

           
    

 ,   (3) 

where    is the proportion of samples of class   at a node, 
GI quantifies the "messiness" of the data. The algorithm aims 
to minimize the weighted sum of the GI of child nodes when 
making each split. This weighted sum can be calculated as in 
Eq. (4). 

       
  

|  |

   
 (  ). (4) 

In addition to GI, entropy is another criterion which is 
sometimes used for splitting nodes, defined as      
     

           . The algorithm then selects the split that 
maximizes the information gain, calculated as in Eq. (5). 

                 
  

|  |

   
 (  ).  (5) 

One lesser-known but critical aspect of RF is the Out-of-
Bag (OOB) error. This internal error estimate eliminates the 
need for a separate validation set. Each tree in the forest leaves 

out some samples during its bootstrap training, called OOB 
samples. The OOB error for each tree    is calculated using 
its corresponding      samples as in Eq. (6). 

           
 

 

      
              

 (         )  (6) 

The overall OOB error for the RF is the average of these 
individual tree OOB errors as shown in Eq. (7). 

 Overall           
 

 
   

             
  

 (7) 

where,      ̂  is a loss function measuring the difference 
between the true label   and the predicted label  ̂. 

Algorithm 1 for RF Algorithm 

Initialize Parameters: 

(i) tree count in the forest (M):  “      

(ii) features needed for each split:         

(iii) each tree’s maximum depth: “      

(iv) the sample count needed to split a node: “              

(v) The sample count needed to be a leaf node: 

“           . 

For     to: 

 Bootstrap Sampling 

 Draw a bootstrap sample    of size   from the training 

dataset. 

 Identify Out-of-Bag samples           

 Build Tree    

 Initialize the root node with    

For Each node: 

 Check Terminal Conditions 

If depth equals      or                  or      

           , make the node a leaf and stop. 

Feature Selection 

 Randomly select      Features without replacement. 

Find Best Split 

For Each  

 FS compute the best split based on either GI or Entropy.  

 The best split minimizes the weighted GI or maximizes  

Information Gain. 

Split the Node 

 Divide    into two subsets         and          based on 

the best split. 

Recursive Split 
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 Repeat steps 1.2.1 to 1.2.4 for the child nodes         and 

        . 

Calculate OOB Error for    

           
  

 
 

      
             

  (         ) 

Calculate Overall OOB Error 

 Overall          
 

 
    

             
  

 

End If 

End 

1) Variable importance scores from RF: RF is not only 

known for its robust predictive power but also for its built-in 

FS capabilities. One of the metrics that the algorithm provides 

for understanding the dataset is the variable importance score 

for each feature. Understanding variable importance is crucial 

for improving and interpreting the model's decisions.The 

variable importance score in an RF algorithm is computed 

based on two principal factors: 

a) Mean Decrease in Impurity (MDI): This method 

calculates the average reduction in impurity-Gini impurity or 

entropy, for example, for each feature brought about when 

used for node splitting. Mathematically, the Mean Decrease in 

Impurity for feature   is computed as shown in Eq. (8). 

        

  all nodes using    Impurity of Parent Node - Weighted Impurity of  hild Nodes    

(8) 

b) Mean Decrease in Accuracy (MDA): Another 

method, which usually involves using the Out-of-Bag       

error, calculates the decrease in model accuracy when a 

particular feature is permuted. The idea is to assess how much 

worse the model performs without each feature. The formula 

for MDA can be generalized as Eq. (9). 

        
 

 
   

   ( OO   rror 
with  

  OO   rror 
without  

) (9) 

Calculation Steps: 

Step 1. Run the RF Algorithm: First, generate the RF model 

using all variables and calculate the OOB error rate. 

Step 2. Permute Each Variable: For Each feature   in the 

dataset, randomly permute the values of   in the OOB 

samples and record the new OOB error. 

Step 3. Compute Importance: For Each feature , compute 

the Mean Decrease in Accuracy or Mean Decrease in 

Impurity, depending on which method you're using. 

Step 4. Normalize Scores: The raw importance scores can 

be normalized to sum to one, making them easier to 

interpret and compare. 

2) Regularized random forest (RRF): RRF is an advanced 

extension of the traditional RF algorithm. While RF is already 

effective in ensemble learning, RRF takes a step further by 

incorporating regularization techniques aimed at reducing 

overfitting and improving feature selection. In standard RF 

models, each DT    is trained independently on a bootstrap 

sample   , with no explicit mechanism for feature 

regularization. RRF, however, adds a regularization term to 

the ELM, effectively penalizing the complexity of individual 

trees. 

The objective function for each tree in RRF can be 
mathematically represented as in Eq. (10). 

                                              

 (10) 

Here, Impurity      refers to the impurity measure, which 
can be either GI or entropy. Complexity      is a function 
quantifying the complexity of the tree, such as the depth or the 
number of leaves.   is the regularization parameter controlling 
the trade-off between impurity and complexity. This 
parameter is usually determined through cross-validation. In 
the RRF model, the standard information gain is replaced by a 
regularized form,             , which integrates the 
regularization term: 

             {
              if    

            if    
 (11) 

Here,   is the set of feature indices already used for 
splitting in previous nodes. The term   serves as the penalty 
coefficient. Regularization in RRF can be applied at different 
stages: 

 During Feature Selection: The regularization term is 
incorporated into the evaluation metric used for 
selecting the features for node splitting. 

 During Tree Pruning: After constructing the trees, they 
can be pruned to minimize the regularized objective 
function. 

By introducing the regularization term, RRF balances 
model complexity and fit quality, ensuring a more 
interpretable and robust ensemble model. This is particularly 
useful in cases where the dataset contains many irrelevant 
features or when overfitting is a concern. Therefore, RRF 
benefits from the inherent advantages of Random Forests 
while simultaneously mitigating some of their limitations. 

B. Best-First Search (BFS) 

BFS is a tree-based search algorithm that aims to find the 
most optimal solution by navigating through the state space of 
possible solutions. In the context of feature selection, each 
node   in the search tree represents a subset of features  , and 
the root node usually represents an empty set or the complete 
feature set. The primary driving force of the algorithm is an 
evaluation function     , which measures the 'quality' or 
'promising nature' of node  . Mathematically, the evaluation 
function      can be expressed as in Eq. (12). 

               (12) 
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where,      is the cost to reach the current node from the 
root (often equal to the number of features in   when feature 
reduction is the goal), and      is the heuristic estimate of the 
cost to reach an optimal solution from  . The algorithm 
maintains a priority queue  , initialized with the root node. 
The nodes are sorted in   based on their evaluation scores. 
The algorithm iteratively performs the following steps until a 
stopping criterion is met: 

Algorithm 2 for BFS for FS 

Input: 

   : Complete set of features 

     : Evaluation function for a node   

 Stopping Criteria:   

Output: 

 Optimal subset of features  optimal  

Initialize: 

 Create an empty priority queue   

 Create a root node  root  with no features or all features, 

add  root  to   

Steps: 

While   is not empty and stopping criteria   are not met: 

 Pop the node   with the lowest      from   

If   satisfies   : 

Return  optimal  as the feature subset in N 

Exit 

Else 

 Generate child nodes of   by adding or removing 

features from   

Evaluate      For Each Child Node 

 Insert the child nodes into   

 Re-sort   based on      

The mathematical representation of the priority queue after 
‘k’ iterations can be represented as in Eq. (13). 

   {          }  s t                      
  (13) 

By focusing on the most promising subsets of features, 
BFS achieves a balance between exhaustive search and greedy 
algorithms. However, it can be computationally intensive, 
especially when the feature space is ample, as the time 

complexity can go up to      , where   is the branching 
factor, and   is the depth of the solution. 

C. Rough Set Theory (RST) 

FR helps reduce the computational cost, simplifying 
models and sometimes even improving the performance by 

eliminating irrelevant or redundant features. RST developed 
that can be employed for feature reduction. RST provides a 
formal mathematical framework to deal with vagueness and 
uncertainty in data. In the context of Feature Reduction (FR), 
it helps identify the minimal set of features indispensable for 
preserving the discernibility between objects. In simpler 
terms, it helps find the most miniature set of features 
necessary and sufficient for classification tasks. 

Let   represent the universe of objects or instances in the 
dataset, and let   denote the set of attributes or features. A 
decision table         may be formed, in which   
comprises the rows, and   makes up the columns. 
Additionally,   a subset of  , can be introduced as the 
decision attribute(s) of interest. Using this foundation, the 
following aspects of RST are discussed: 

a) Indiscernibility Relation: The fundamental concept in 

RST is the indiscernibility relation. For a given subset of 

attributes,    an indiscernibility relation        is defined 

as follows in Eq. (14). 

       {                        }  (14) 

Here,      is the value of attribute   for object  . The 
indiscernibility relation        groups objects that cannot be 
distinguished by attributes in   

b) Lower and Upper Approximations: Given a target set 

   , the lower and upper approximations are defined as in 

Eq.  (15) and Eq. (16). 

Lower Approximation:    {          }  (15) 

Upper Approximation:   
̅̅̅̅̅̅̅̅  {            }  (16) 

Here,      represents the equivalence class of   
concerning  . 

c) Core and Reduct: The core attributes are 

indispensable for maintaining the exact lower approximation 

for every subset of   as the entire set  . Mathematically, Eq. 

(17). 

           {          { }  } (17) 

A reduct is a minimal subset   of   such that      . In 

other words,   and   give the same lower approximations for 
each decision class. 

D. Feature Reduction using RST 

The overarching goal is to identify all possible reducts and 
then choose the one with the least number of attributes while 
preserving the classification power of the original dataset. 
However, finding all reducts can be computationally taxing. 
For this reason, heuristic approaches are frequently used to 
approximate a minimal reduct effectively. 

1) Initialize with core attributes: Start by calculating the 

core attributes, denoted as Core      , which are essential for 

classification. Initialize the reduct set, Reduct, with these core 

attributes. 

2) Iterative refinement: Continue refining the reduct set 

until it provides the same classification power as the complete 
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attribute set  . Specifically, iterating while reducing    is not 

equal to   . 

 Evaluate Significance: For each remaining attribute   
in   - Reduct, evaluate its significance in 
distinguishing between different classes. 

 Select Most Significant Attribute: Add the attribute 
with the highest significance score to the Reduct set. 

By the end of this iterative process, Reduct will contain a 
minimal set of attributes that retains the original dataset's 
ability to distinguish between different classes. 

E. Correlation-based Feature Selection (CFS) 

CFS is an FSM designed to improve model performance 
by FS that are highly correlated with the target variable and 
minimally correlated with each other. The process typically 
begins with data preprocessing to standardize or normalize the 
features then calculating a correlation matrix. Based on this 
matrix, an initial subset of FS either through predefined 
correlation thresholds or optimization algorithms. The 
criterion     often used to maximize the quality of the feature 
subset, is Eq. (18). 

   
     

 

√             
 

,  (18) 

where,   is the number of features,    
 is the average 

correlation between features and the class label, and    
 is the 

average inter-feature correlation. This subset is then further 
evaluated using methods like cross-validation. 

It is important to note that the CFS employs a heuristic 
search strategy within its multivariate FS algorithm to pinpoint 
optimal attributes in a given dataset. The criteria for selection 
are anchored in the correlation strength and statistical 
significance between a feature and its associated category. 
This unique capability has solidified CFS's role as a go-to 
method for Feature Extraction (FE), especially in large-scale 
data environments. Moreover, CFS has yielded numerous 
impactful findings that contribute to elevating the efficacy of 
Decision-Making System (DMS). 

The advantages of CFS are manifold. It tends to produce 
more superficial and interpretable models by decreasing the 
feature size, thus mitigating the risk of overfitting. However, 

the method is not without limitations. For example, Pearson's 
correlation, which is commonly used, assumes a linear 
relationship between variables and does not capture feature 
interactions. Despite this, CFS remains a powerful FSM, 
aiming to optimize the model's performance and 
generalization capabilities. When integrated with techniques 
like Regularized Random Forest (RRF), CFS can further 
enhance the FSM, leveraging the regularization capabilities of 
RRF to produce an even more robust and interpretable model. 

IV. PROPOSED FSM 

In the architecture of the proposed FSM, as shown in Fig. 
1, four key steps seamlessly integrate to provide a holistic 
solution. Initially, the dataset undergoes a preprocessing 
phase, which includes tasks like data normalization, 
formatting, and randomization, preparing the data for rigorous 
analysis. Following preprocessing, the first significant phase 
employs the innovative BFS-RST Adaptive Algorithm to 
reduce the feature set effectively. Utilizing this algorithm 
allow for a focus on a subset of features that are most relevant 
to the task, thereby enhancing the model's efficiency. This 
reduced feature set serves as the input to the second crucial 
phase, which features the Dynamic Correlated Regularized 
Random Forest (DCRRF) application. DCRRF refines FS 
dynamically, optimizing performance and interpretability 
through a combination of Correlation-based Feature Selection 
(CFS) and Regularized Random Forest (RRF) methodologies. 
After the optimal feature set has been identified, the final step 
involves a data analysis phase where the effectiveness of the 
selected features is rigorously tested using a Support Vector 
Machine (SVM) classifier. This multi-layered approach 
enhances the feature selection process and lends itself to 
detailed performance evaluation, making it a comprehensive 
solution for complex data analysis scenarios. 

A. Data Preprocessing 

The first step in the proposed FSM is Data Preprocessing. 
This phase is crucial because it converts the raw dataset into a 
more manageable, clean form, making it easier to analyze and 
feed into subsequent FR and FS stages. A properly 
preprocessed dataset not only streamlines the FSM but also 
contributes to the robustness and interpretability of the 
resulting model. The following methods are used in the 
preprocessing pipeline of the proposed architecture: 

 

Fig. 1. Proposed FSM. 
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 Data Formatting: Including Data Formatting as the 
initial step in the preprocessing pipeline is fundamental 
for making the dataset readable and interpretable by the 
following algorithms. Addressing issues like 
inconsistent data types and missing values eliminates 
the potential for errors or biases that could significantly 
affect the performance of the BFS-RST Adaptive 
Algorithm and DCRRF. Proper formatting is a stable 
foundation for the stages that follow in the feature 
selection model. 

 Data Scaling: Data Scaling finds its place in the 
preprocessing phase due to its significant impact on 
any ML algorithm’s performance  The scales of 
numerical features can vary widely, and a feature with 
a more extensive range could overshadow those with 
smaller ranges, leading to suboptimal FS or model 
training. Scaling standardizes this, ensuring that each 
feature is given equal importance, thereby enhancing 
the overall reliability and effectiveness of the BFS-
RST and DCRRF algorithms. 

 Data Randomization: Data Randomization is 
incorporated to mitigate any sequence-based biases in 
the dataset. Data points can come in sequences that 
may reflect various forms of underlying structure or 
bias, such as time-based or class-based ordering. 
Shuffling the order of data points enables the FSM, 
which employs both the BFS-RST and DCRRF 
algorithms, to learn more objectively, uninfluenced by 
the sequence in which the data points initially appear. 

B. Adaptive Feature Reduction (AFR) using BFS and RST 

FR is a vital process in ML pipelines, as it aims to cut 
down on the data dimensions without significantly affecting 
the model's performance. While several algorithms aim to do 
this, each has advantages and disadvantages. BFS is known 
for its ability to traverse the feature space optimally but can be 
computationally expensive. On the other hand, RST provides a 
formal framework to identify indispensable features but can be 
heuristic and computationally intensive for calculating 
reducts. 

An adaptive approach that combines the strengths of both 
algorithms is thus conceived to achieve effective FR. The 
rationale is to employ RST's capability to identify core 
attributes indispensable for the DMS and then use BFS to 
navigate the feature space efficiently. In the given dataset  , 
each feature subset     is a potential candidate for FR. 
These subsets are represented as nodes in the search space that 
BFS navigates. An evaluation function      is used to assess 
the "quality" of each subset  , analogous to how each node in 
a traditional BFS comes with an associated cost or value. 

1) Initialization using core attributes from RST: Rough 

Set Theory first identifies a set of core attributes  core  from 

 . These are the features that are indispensable for 

maintaining discernibility among the classes in   as shown in 

Eq. (19) 

 core  {      is indispensable for discernibility }

 (19) 

2) Evaluation function in BFS: The evaluation function 

     used in BFS combines a cost function      and a 

heuristic      to guide the search.      could represent how 

well   performs in terms of model accuracy or any other 

metric, and      is a heuristic estimate of the "distance" to the 

optimal feature subset, see Eq. (20). 

                     (20) 

Here,    and    are weight parameters. 

3) Priority assignment using RST: During the BFS 

traversal, RST is used to identify if a subset   is a reduct 

minimal set of features with discernibility power comparable 

to  . Such subsets are flagged for higher priority in the BFS 

queue. 

              {
         If    is a reduct 

       Otherwise 
 (21) 

In Eq. (21),     is a factor that lowers the evaluation 
function       for reducts, they are effectively giving them a 
higher priority in the queue. By methodically integrating RST 
for initial setup and ongoing evaluation with the traversal 
capabilities of BFS, the algorithm aims to find an optimal and 
minimal feature subset from   for dataset  .  In the proposed 
algorithm, the focus is on reducing features by generating 
child nodes with fewer attributes, followed by an evaluation of 
their effectiveness using both BSF and RST techniques. 
Feature sets that neither improve nor degrade the quality of the 
model will be pruned. With this understanding now 
established, Algorithm 3, shown below, illustrates the steps 
involved: 

Algorithm 3 for BFS-RST based on Adaptive Feature 

Reduction 

Input: 

  : Complete set of features 

     : Evaluation function for a feature subset   

   : Stopping Criteria (e.g., a set limit on the number of 

features) 

Output: 

  opt  : Optimal reduced set of features 

Initialize: 

 Compute the core attributes  core  using RST. These 

are the features that are indispensable for the 

discernibility of classes. 

 Initialize priority queue   with  core  as the root 

node, evaluated by  ( core ). 

 Algorithm Steps: 

o While   is not empty and   is not met, Do 

 Dequeue: Pop the node   with the 

lowest      from  . 
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o Check Stopping Criteria: 

o If   satisfies    Then  

o Return  opt    

o Exit 

o FR and Child Node Generation: 

 Remove one feature at a time from 

  to create smaller subsets 

           

 For Each   , if    is a reduct 

according to RST, flag it as a high-

priority node. 

Evaluate and Enqueue: 

 For Each Child Node   , Compute       

 If    is flagged as high-priority, Adjust       to 

reflect its importance. 

 Insert    into   

 Re-sort Priority Queue: Sort   based on     . 

In Step 3.3.1, each child node    has one less feature than 
its parent  . This is where FR is explicitly done. Here, Rough 
Set Theory is used for two purposes: 

(i) It provides a robust starting point  core  that contains 

indispensable features, ensuring that the essential 

features are not eliminated in the initial stages. 

(ii) It helps to flag high-priority nodes (reducts) during the 

FR process, guiding the algorithm toward a more 

meaningful feature subset. 

The BFS evaluates these smaller feature sets and 
prioritizes them in the queue. If a reduced feature set satisfies 
the stopping criteria, it is output as the optimal set of features 
 opt . In essence, this algorithm combines the strengths of both 

RST and BFS to perform feature reduction in a more effective 
and informed manner. 

C. Dynamic Correlated Regularized Random  (DCRRF) 

DCRRF is a novel hybrid model that aims to combine the 
strengths of Correlation-based Feature Selection (CFS) and 
Regularized Random Forest (RRF) to optimize FS and 
improve model performance dynamically. By incorporating 
CFS into the training of each tree within the RRF ensemble, 
DCRRF aims to maximize model robustness and 
interpretability. The model takes a reduced feature set    as 
input from the BFS-RST Adaptive algorithm. This feature set 
is standardized or normalized to make feature values 
comparable using the following steps: 

1) Standardization: In the standardization process, every 

attribute is adjusted to have a zero mean and a unit standard 

deviation. This becomes particularly crucial when dealing 

with features in disparate units or varying in scale. To 

standardize a given feature  , a commonly used mathematical 

EQU (22) is typically employed. 

                 
          

       
 (22) 

2) Normalization: In normalization, the features are 

typically scaled to lie in a given range      . This is often 

beneficial when the algorithm involves distance metrics or 

when the feature has a skewed distribution. Normalization of a 

feature   is generally achieved by Eq. (23): 

 Normalized     
        

             
 (23) 

The normalized feature set is the foundation for the 
subsequent feature selection process in the DCRRF model. 
For each tree    in the ensemble, a distinct bootstrap sample 
  

  is chosen from this processed feature set. A correlation 
matrix         

   is then computed for each of these samples, 
expressed as in Eq. (24). 

         

(

                                  

                                  
    

                                  

) (24) 

Using the CFS criterion   , a tailored feature subset    is 
dynamically selected for each tree   . The     The criterion 
is calculated as Eq. (25). 

    
       

 

√                 
 

,  (25) 

where,    is the number of features in        
 is the 

average correlation between features and the class label for 
  

 , and     
 is the average inter-feature correlation for   

 . 

This criterion     is used to select an optimal subset of 
features    for each   . After this dynamic FS, each tree    
is trained using its respective selected feature subset   . The 
training process adopts the regularized objective function 
which is shown in Eq. (26). 

(     
)           (     

)              (     
) (26) 

Importantly, this objective function is indexed with    to 
signify the dynamically chosen features for that specific tree.  
The optimal feature set    is then determined by an 
intersection operation over all the dynamically selected feature 
subsets   . This can be formally expressed as in Eq. (27). 

              (27) 

The dynamic FS introduces diversity among the individual 
trees, making the ensemble model more resilient and 
adaptable. It also enables optimized FS, thereby potentially 
improving both performance and interpretability. The 
following Algorithm 4 presents the steps involved in the 
proposed FSM. 

D. Algorithm 4 for DCRRF for Feature selection 

Input: 

 Reduced Feature set    

 Number of trees   

 Regularization parameter   
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Output 

 Optimal set of features    

o Data Preprocessing 

o Normalize or standardize the Feature set 

  . 

 Initialize Feature Set 

 Initialize feature set       . 

Ensemble Training and FS 

 For     to   do the following: 

 Bootstrap Sample 

 Draw a bootstrap sample   
  from   . 

 Calculate Correlation Matrix 

 Compute         
   for the bootstrap sample   

 . 

 FS with CFS 

 Compute the CFS criterion     using         
  . 

 Select the optimal feature subset    based on    . 

 Train Regularized RF Tree 

 Use    and   
  to train a tree    with the objective 

function: 

         (     
)

         (     
)

            (     
) 

 Update Feature Aggregation 

 Update    based on    using an intersection operation: 

        . 

 Determine the Optimal Feature Set 

 Return    as the optimal feature set that captures the 

most important features across the ensemble. 

D. Data Analysis 

The data analysis phase serves as the final phase of the 
FSM's pipeline. This phase is significant because it provides 
the final validation of the feature sets that have been carefully 
reduced and selected through the preceding stages. The focus 
here is on evaluating these feature sets within the specific 
context of the problem, be it classification, clustering, or some 
other form of ML task. For the purpose of this paper, the 
efficacy of the proposed FR and FS model is examined using a 
SVM classifier. The reason for choosing SVM for analysis is 
twofold. First, SVMs are known for their effectiveness in 
high-dimensional spaces, making them a suitable choice for 
testing the quality of the FS. Second, SVMs are robust to 
overfitting, especially in cases where the number of 
dimensions is greater than the number of samples, further 
validating the quality of the FS. The features that have passed 
through the BFS-RST Adaptive Algorithm and the DCRRF 
are fed into the SVM model. Performance metrics such as 
accuracy, precision, recall, and F1-score are computed to 

evaluate the classifier's performance on the selected feature 
sets.  

V. EXPERIMENTAL ANALYSIS 

A. Dataset and Implementation 

In the current research, experiments were conducted on 
four gene expression datasets analyzed by [59], namely: i) 
Prostate [60], ii) Brain [61], iii) NCI60 [62] and iv) 
Adenocarcinoma [63]. The specifics regarding the number of 
instances and attributes for each dataset are detailed in Table. 
I. All methods and experimental procedures were executed in 
a Jupyter Notebook environment, utilizing the Python 3.6 
language. Computations and tests were carried out on a system 
equipped with a Windows 10 operating system, powered by a 
2.8GHz AMD Ryzen 5 processor, and supplemented by 8GB 
RAM. Various stages of data processing, feature selection, 
and machine learning implementations leveraged pre-existing 
software libraries. 

The datasets mentioned above are partitioned into an 80:20 
ratio for the purposes of training and evaluation. The SVM 
model is calibrated using specific hyperparameter settings, as 
shown in Table II, for optimal performance. 

The regularization parameter C is set to 1 to maintain a 
compromise between maximizing the margin and minimizing 
the classification error. The Radial Basis Function (RBF) 
kernel is chosen for its ability to handle both linear and 
nonlinear patterns in the data [64-73]. The model undergoes 
100 iterations during training to ensure convergence and 
optimal performance. The performance of the proposed 
feature selection model is compared with RF-based baseline 
models such as i) Boruta, ii) RRF, iii) VSURF and iv) GRRF. 
The effectiveness of the SVM, when employing each feature 
mentioned above, FSM, is assessed through metrics such as 
accuracy, sensitivity, specificity, precision, and F-score. The 
results achieved by all the models for the listed performance 
metrics are shown in Table III. 

TABLE I. DATASET DESCRIPTION 

Dataset Instance Attribute Class 

Prostate 102 6033 2 

Brain 42 5597 5 

nci60 61 5244 8 

Adenocarcinoma 76 9868 2 

TABLE II. SVM LEARNING PARAMETERS 

Hyperparameter Specific Value 

Regularization C 1 

Kernel Type RBF 

Number of Iterations 100 
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TABLE III. PERFORMANCE COMPARISON FOR DIFFERENT BASELINES AGAINST FOUR DATASETS 

Models FS Accuracy Sensitivity Specificity Precision F1-score 

Prostate Dataset (No. of Features: 6033) 
   

Boruta 96 0.9306 0.9242 0.9558 0.9579 0.9407 

RRF 88 0.9479 0.9413 0.9558 0.9581 0.9496 

VSURF 78 0.9385 0.9356 0.9421 0.9466 0.9411 

GRRF 18 0.9488 0.9518 0.9557 0.9572 0.9497 

DCRRF 29 0.9514 0.9582 0.9559 0.9582 0.9534 

BFSRST+ DCRRF 12 0.9544 0.9589 0.9593 0.9625 0.9562 

Brain Dataset (No. of Features: 5597) 
   

Boruta 83 0.8761 0.8464 0.8990 0.8464 0.8464 

RRF 97 0.8861 0.8236 0.9342 0.8797 0.8507 

VSURF 56 0.9060 0.8693 0.9342 0.8882 0.8787 

GRRF 22 0.8960 0.8693 0.9166 0.8693 0.8693 

DCRRF 28 0.9073 0.8802 0.9292 0.8986 0.8894 

BFSRST+ DCRRF 19 0.9126 0.9096 0.9114 0.8910 0.9003 

NCI60 Dataset (No. of Features: 5244) 
   

Boruta 93 0.8794 0.9004 0.9257 0.9660 0.8408 

RRF 197 0.9157 0.8823 0.9414 0.8823 0.8823 

VSURF 83 0.8878 0.7351 0.9549 0.9485 0.8283 

GRRF 63 0.9233 0.8598 0.9680 0.9075 0.8830 

DCRRF 58 0.9283 0.8765 0.9405 0.9008 0.8885 

BFSRST+ DCRRF 53 0.9317 0.8960 0.9317 0.8960 0.8960 

Adenocarcinoma Dataset (No. of Features: 9868) 
 

Boruta 143 0.8757 0.8027 0.9532 0.9485 0.8695 

RRF 86 0.9098 0.8933 0.9274 0.9290 0.9108 

VSURF 106 0.8784 0.7844 0.9781 0.9712 0.8679 

GRRF 20 0.9057 0.9268 0.9785 0.9768 0.9030 

DCRRF 36 0.9101 0.8977 0.9367 0.9274 0.8992 

BFSRST+ DCRRF 14 0.9249 0.9130 0.9387 0.9405 0.9179 

In both the Prostate and Brain datasets, as shown in Fig. 2 
and Fig. 3, DCRRF demonstrates superior performance across 
multiple metrics. For the Prostate dataset, DCRRF achieves an 
accuracy of 0.9514, edging out the second-best model, RRF, 
by 0.37%. It also excels in sensitivity with a score of 0.9582, 
which is notably higher than RRF's 0.9413. Regarding 
specificity and precision, DCRRF performs on par with RRF 
and GRRF, highlighting its balanced efficiency in identifying 
True Negatives (TN) and minimizing False Positives (FP). 
The F1-score for DCRRF is the highest at 0.9534, and it 
further improves to 0.9562 when augmented with BFS-RST, 
all while requiring only 12 selected features. For the Brain 
dataset, DCRRF again leads in accuracy and sensitivity, with 
scores of 0.9073 and 0.8802, respectively. While its specificity 
score of 0.9292 is not the highest, it still indicates a balanced 

performance compared to RRF's higher specificity but lower 
sensitivity. In the precision metric, DCRRF is slightly edged 
out by VSURF but still performs strongly with a score of 
0.8986. Its F1-score stands at 0.8894, and when combined 
with BFS-RST, it further improves to 0.9003, again achieving 
this with fewer features. These metrics collectively indicate 
that DCRRF, particularly when enhanced with BFS-RST, 
offers balanced, efficient, and robust performance across both 
datasets in FS and classification tasks. 

In the NCI60 dataset, as shown in Fig. 4, DCRRF stands 
out with an accuracy of 0.9283, outperforming the next-best 
model, RRF, which scores 0.9157. While its sensitivity score 
of 0.8765 isn't the highest, it's balanced by a strong specificity 
of 0.9405. The model's F1-score is 0.8885, which is superior 
to both Boruta's 0.8408 and RRF's 0.8823. Its precision score 
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of 0.9008 is commendable, though it is slightly eclipsed by 
Boruta's 0.9660. Notably, when integrated with BFS-RST, the 
model's F1-score rises to 0.8960 with a reduced feature count 
of 53. In the Adenocarcinoma dataset, as shown in Fig. 5, 
DCRRF maintains its strong performance with an accuracy of 
0.9101, closely followed by RRF at 0.9098. DCRRF shines in 
sensitivity with a score of 0.8977, substantially better than 
Boruta's 0.8027 and slightly edging out RRF's 0.8933. With 
well-rounded scores in specificity (0.9367) and precision 
(0.9274), it also maintains a balanced F1-score of 0.8992. 
When enhanced by BFS-RST, the F-score improves to 0.9179 
with just 14 FS, demonstrating the model's efficiency and 
efficacy in FS and classification. 

In a comprehensive review of the results for OOB error, 
time consumption and AUC efficiently, as shown in Fig. 6 to 
Fig. 8, BFSRST+DCRRF consistently delivers outstanding 
performance across all datasets, excelling in AUC and 
minimizing OOB errors. For instance, in the Prostate dataset, 
this model achieves the highest AUC of 0.893, using the 
fewest features (12) and an OOB error of just 0.11. The 
computational time, although slightly higher than its DCRRF 
counterpart, remains modest at 0.06 minutes. Similarly, in the 
Brain and NCI60 datasets, BFSRST+DCRRF again tops the 
chart in AUC, recording 0.911 and 0.914, respectively, while 
maintaining low OOB errors and computational times. On the 
Adenocarcinoma dataset, it achieves an AUC of 0.902, 
leading the pack. VSURF performs well but is 
computationally expensive, particularly noticeable in the 
Prostate and Adenocarcinoma datasets, where the 
computational times are 0.08 and 0.1 minutes, respectively. 
DCRRF alone also shows promise, particularly in the NCI60 
and Adenocarcinoma datasets, where it nearly matches the 
performance of its BFSRST-enhanced version but with more 
features. Boruta and RRF, although competent, generally lag 
in AUC and OOB error metrics. Notably, GRRF consistently 
demands fewer features but doesn't offer a compelling trade-
off regarding AUC or OOB error. The BFSRST+DCRRF 
model demonstrates superior, balanced performance across all 
four datasets. 

 

Fig. 2. Performance comparison for prostate dataset. 

 

Fig. 3. Performance comparison for brain dataset. 

 

Fig. 4. Performance comparison for NCI60 dataset. 

 

Fig. 5. Performance comparison for adenocarcinoma dataset. 

 

Fig. 6. OOB error comparison. 
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Fig. 7. FS-time comparison. 

 

Fig. 8. AUC comparison. 

VI. CONCLUSION 

Handling big data with high dimensions presents unique 
challenges, particularly regarding computational resources and 
predictive accuracy. To address these issues, an all-
encompassing Feature Selection Model (FSM) has been 
developed. This system incorporates initial data cleaning and 
feature reduction through Best-first Search and Rough Set 
Theory (BFS-RST). It culminates in deploying a specialized 
Random Forest (RF) algorithm called Dynamic Correlated 
Regularized Random Forest (DCRRF). Each stage of this 
four-tiered architecture serves a specific function, from initial 
data refinement to advanced FSM. The final assessment phase 
employs a Support Vector Machine (SVM) classifier to 
evaluate the quality and utility of the selected features 
rigorously. When tested against existing RF-based FSM on 
four gene expression datasets, this innovative approach 
improved computational efficiency and classification 
accuracy. The system's enhanced performance indicates its 
potential as a scalable solution for tackling the unique 
challenges presented by high-dimensional big data across 
various applications. 
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