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Abstract—The user’s demands in the system supported by the 

Internet of Things are frequently controlled effectively using the 

pervasive computing system. Pervasive computing is a term used 

to describe a system that integrates several communication and 

distributed network technologies. Even so, it properly 

accommodates user needs. It is quite difficult to be inventive in 

the pervasive computing system when it comes to the delivery of 

information, handling standards, and extending heterogeneous 

aid for scattered clients. In this view, our paper intends to utilize 

a Dispersed and Elastic Computing Model (DECM) to enable 

proper and reliable communication for people who are using 

IoT-based wearable healthcare devices. Recurrent 

Reinforcement Learning (RRL) is used in the suggested model 

and the system that is connected to analyze resource allocation in 

response to requirements and other allocative factors. To provide 

effective data transmission over wearable medical devices, the 

built system gives managing mobility additional consideration to 

resource allocation and distribution. The results show that the 

pervasive computing system provides services to the user with 

reduced latency and an increased rate of communication for 

healthcare wearable devices based on the determined demands of 

the resources. This is an important aspect of sustainable 

healthcare. We employ the assessment metrics consisting of 

request failure, response time, managed and backlogged 

requests, bandwidth, and storage to capture the consistency of 

the proposed model. 
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I. INTRODUCTION 

The world has been modernized and changed into a 
pervasive computing system environment because of recent 
advancements in many applications that are capable of sensing 
and interacting everywhere. The devices that can work 
wirelessly and are enhanced with sensing, processing, and 
decision-making capabilities are integrated with real-world 
items to generate the correct service delivery for the Internet of 
Things. This kind of service is in high demand among 
businesses in the healthcare, IT, communication, and 
multimedia sectors. The needs of the user are met through 
rapid service delivery and improved "querying requests." 

Integrating a wide range of devices, from sensors to 
intelligent machines, is necessary to access the network and all 
its resources. Consumers were granted unrestricted, global 
freedom to use resources anywhere in the world through 
increasing communication through the end users' devices. The 

device allowed a wide range of applications by connecting to 
the clients through external networks and services and 
employing adaptive conveyance mechanisms. 

To provide pervasive services, it is crucial for users to 
concentrate on the service and receive reliable services that 
meet their needs. The ability to employ heterogeneous devices 
as a form of service is enabled by a pervasive computing 
environment. The services are delivered through networks that 
integrate the communication interface of various service 
systems and the fundamental systems to expand 
communication. 

In a distributed system, pervasive computing has the 
authority to employ several computing paradigms to meet user 
expectations. It offers a variety of services, including 
simultaneous user access, service configuration, computer-
related inquiries, resource allocation, and resource distribution. 
The data were scattered throughout numerous healthcare 
sectors, and the Internet of Things’ flexible sensor network was 
used to combine a variety of sensors to facilitate data 
conveyance. The software-defined network (SDN), mobile 
networks, medical sensor data centers, distributed servers, and 
edge processing networks were all included to achieve a 
resilient service for edge users. 

Extending trustworthy and adaptable communication is 
crucial but difficult and complex in the case of the large-scale 
pervasive computing environment. A novel dispersed and 
elastic computing model (DECM) has been created by previous 
researchers at [1] for the IoT-based wearable healthcare device 
in the pervasive computing environment. The developed 
system uses Recurrent Reinforcement Learning (RRL) to 
analyze how resources are distributed in accordance with 
demands and other allocative factors. 

The pervasive computing system delivers services to the 
user in the end with a reduced amount of latency and an 
increased rate of communication for the medical wearable 
devices based on the calculated resource requirements. The 
designed system places additional attention on managing 
mobility in addition to resource distribution and distribution for 
proper data transmission over the wearable healthcare device. 

By balancing the flow of requests across the network, the 
planned layout accelerates the processing of requests. The RRL 
is used in the request balancing process. As a result, the 
volume of requests handled increases while the response time 
decreases. By employing RRL to optimize the storage, the 
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bandwidth rate is increased. Additionally, this paper analyses 
the design empirically and compares the results to existing 
methods. 

This paper is organized as follows. Section II explains 
related works done by the previous research. Section III 
discusses the computing model used in our study. Section IV 
highlights the results and discussion of our experiments. 
Section V is the conclusion and a brief of future works. 

II. RELATED WORKS 

Azariadi et al. [2] have suggested a method for deciphering 
the heartbeat from the ECG and further implemented the 
method to a wearable medical device that does continuous 
24x7 monitoring. The review of WHCD is presented by Haghi 
et al. [3] in both academic publications and for-profit 
endeavors. The method was developed to get around the 
challenges in device data mapping and matching using the 
enhanced petri net service model, according to Lomotey, et 
al.'s [4] presentation of an IoT architecture for data streaming 
delivering traceability of data route from the originating source 
to the Health data center." 

Al-Makhadmeh, et al. [5] use the deep learning method to 
learn from past analyses and predict the course of cardiac 
disease. Higher-order Boltzmann deep belief neural networks 
were used by the system. A "Systematic Review of Wearable 
Sensors and IoT-Based Monitoring Applications for Older 
Adults-a Focus on Ageing Population and Independent Living" 
is presented by Baig et al. in their paper [6]. 

Yang et al.'s [7] "introduced a new method for ECG 
monitoring based on IOT techniques, in which ECG data are 
gathered using the wearable monitoring node and are directly 
transferred to the IOT cloud using Wi-Fi. In the IOT cloud, 
both HTTP and MQTTP are utilized to provide consumers 
with timely and illustrative ECG data. The "Smart wearable 
system for safety-related medical IoT application: Case of 
epileptic patient working in an industrial environment" was 
carried out by Hayek, et al. [5]. The remote care-taking 
applications Silva, et al. [8] "designed could be implemented 
for patients. This system is used as a waist belt and shoe with 
embedded sensors. 

The Compact Wearable Meta Materials Antennas for 
Energy Harvesting Systems, Medical, and IoT Systems are 
done by Sabban, Albert, et al. Dey, Nilanjan, and colleagues 
[9,10] described the difficulties and potential uses of 
implantable and wearable medical devices. The IoT-Based 
Noninvasive Wearable and Remote Intelligent Pervasive 
Healthcare Monitoring Systems for the Elderly People were 
presented by Balasubramaniam, et al. Greco, Luca, and 
colleagues in [11] presented Trends in IoT-based solutions for 
health care: moving AI to the Edge. Big Data Business 
Analytics as a Strategic Asset for the Health Care Industry was 
explored by Smys, S., et al. The Cloud based Internet of Things 
for smart connected objects"was presented by Duraipandian et 
al. The "Effective Fragmentation Minimization by Cloud 
Enabled Back up Storage" was carried out by Pandian, A. 
Pasumpon, et al. The Special Section on Innovative 
Engineering Solutions for Future Health Care Informatics" has 
been discussed by Joy Iong-Zong Chen et al. [12]. Recurrent 

Neural Networks and Nonlinear Prediction in Support Vector 
Machines were presented by Raj, Jennifer S. et al. [13]. 

These previous works have highlighted the need for more 
experiments, especially for people who are using IoT-based 
wearable healthcare devices or employ heterogeneous devices 
as a form of service. 

Our study is narrower in scope and restricted to IoT devices 
utilized in healthcare, as opposed to earlier research. The 
figures are provided by a startup business that works on 
Internet of Things devices in one of Malaysia's cities, and they 
receive 600 inquiries on average. With our method, we aim to 
outperform the existing system while maintaining the same 
configuration environment. 

III. COMPUTING MODEL FOR PERVASIVE COMPUTING: IOT 

HEALTHCARE 

The pervasive computing’s flexibility and elasticity are 
inherent qualities that enable the operation of heterogeneous 
devices and encourage interoperability. DECM is utilized to 
provide service help to many users at once. By computing the 
requests and optimizing the storage with RLL, the delivery rate 
of the service is increased. 

The cloud, device, substructure, and ubiquitous layer are 
significant planes that make up the laid-out design. Numerous 
users and mobile IoT wearable devices that request resources 
from the cloud plane augment the ubiquitous layer. The aircraft 
accepts mixed-applications usage and conveyance 
methodologies that assess user requirements in accordance 
with information storage standards. Additionally prevalent on 
this level are computing and data analytics. 

The proposed framework is presented in a block diagram in 
Fig. 1. 

As in SDN, the device plane makes up the control plane 
and performs the crucial computation of requests and storage 
optimization to increase the communication rate. The 
substructure plane is equipped with access points, gateways, 
and BS that support heterogeneous communication by 
integrating a variety of data conveyance technologies based on 
Internet of Things-related sensor technology. The potential of 
the substructure plane to cover a wide geographic region and 
provide users with ubiquitous communication is what makes it 
significant. The information that has been gathered is stored on 
the cloud plane for later use. The committed cloud services 
handled the clients' requests for access to the information that 
was stored and oversaw computation and resource allocation. 
Even though the cloud offers authenticated customers the 
anytime, anywhere right to use, it still only functions as a third 
party. 

 

Fig. 1. Proposed workflow. 
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The proposed system analyses the request and optimizes 
the storage using RRL to increase the rate of conveyance. 
Utilizing a personal device that uses Wi-Fi or Zig-Bee to 
upload the requests, the processing of the request enables one 
to organize the requests and transport them to the cloud plane. 

This reduces the amount of time needed to process 
requests, eliminates blocking scenarios, and ensures a constant 
flow of data into the pervasive computing environment.  Eq. 
(1) provides an approximation of the request processing rate. 

                           
                                  

                  
 

Eq. (2) and Eq. (3) use the two parameters of device 
connectivity probability and the rate of request arrival to 
achieve the scalability function. 

                                           
 

     
                      

where,   = normalization factor 𝜏 = exponent for 
connectivity. 
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Eq. (4), which is based on the above equations, is used to 
balance the rate at which requests enter and exit the network to 
reduce delivery delays. 
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Recurrent learning is used to manage the discrepancies in 
the conveyance. By controlling the defects in the hidden layers, 
the learning process for request processing, and storage 
optimization are used to obtain the desired outcome, as shown 
in Fig. 2. 

Eq. (5) illustrates how the learning process is used to 
estimate the prerequisite storage for the request. 
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Fig. 2. Recurrent Learning for request processing (left) and storage (right). 

IV. RESULTS AND DISCUSSION 

In a network simulator, we conducted the experiment using 
200 IoT devices, and the settings used are listed in the table. 
The evaluation of the established model consistency utilizes 
metrics like request failure, response time managed and 
backlogged requests, bandwidth, and storage. The results are 
compared to those from other approaches to show how robust 
the intended DECM model is. The parameters and 
configurations of the experiments are depicted in the Table I. 

TABLE I.  PARAMETERS AND CONFIGURATION 

Parameters Configuration 

Wearable Healthcare Devices 200 

Flow of request 50 

Pause Time 5ms 

Bandwidth 2MBps 

Maximum Time 20s 

Storage size 60 requests/second 

Number of requests 600 requests/second 

A time-based map of how long it took to produce the 
response is shown in Fig. 3.  The backlog is decreased, and the 
process is sped up as the request is computed, lowering the 
amount of time that must elapse between requests and the 
required average response time. 

 
Fig. 3. Response time. 

To minimize the time it takes to respond, the balancing rate 
makes sure that the greatest number of requests may be 
handled within the allotted service period. The requests are 
given the appropriate resources with the aid of the storage 
optimization procedure, which considers the storage units and 
modifies the succeeding requests. 

The resource allocation process is improved, the dormancy 
in managing the requests is improved, and the count of requests 
handled and computed by the system is increased, which is 
used to reduce errors in the requests received and to optimize 
storage. The table compares the resources handled, the 
backlogs created, and the failures associated with the current 
and suggested in Table II. 

The resource allocation process is enhanced by the RRL 
process, which is used to reduce errors in received requests and 
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to optimize storage. It also improves dormancy in managing 
requests and increases the count of requests handled and 
computed by the system's architecture. Table II compares the 
number of resources handled, the number of backlogs, and the 
failures suffered in the current and planned designs. 

TABLE II.  HANDLED REQUESTS, BACKLOGS, AND ERRORS 

Request Handled 
Existing Proposed 

Failures Backlogs Failure Backlogs 

5000 0.30 400.00 0.13 166.67 

7000 0.34 526.32 0.15 169.49 

9000 0.38 555.56 0.17 172.41 

11000 0.43 588.24 0.19 175.44 

13000 0.49 909.09 0.21 178.57 

15000 0.55 1,000.00 0.24 181.82 

17000 0.62 1,111.11 0.27 192.31 

19000 0.71 1,250.00 0.31 196.08 

21000 0.80 1,428.57 0.35 199.20 

23000 0.90 2,000.00 0.39 198.81 

V. CONCLUSION 

The delivery robustness of pervasive computing systems 
for the Internet of Things wearable devices has been increased 
because of the DECM introduced in this research in response 
to earlier work. The approach used computes the requests, 
optimizes the storage, and helps the flow of requests by 
removing bottlenecks in their transportation. Additionally, 
optimized storage distributes the storage for a variety of 
requests with different densities, preventing bottlenecks in 
resource allocation. The experiment's findings demonstrate 
how consistently the suggested architecture works better than 
the existing one. The future focus of this paper is to create a 
system with other improvements to help multiple 
heterogeneous applications run simultaneously. 
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