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Abstract—Melanoma, a prevalent and formidable skin 

cancer, necessitates early detection for improved survival rates. 

The rising incidence of melanoma poses significant challenges to 

healthcare systems worldwide. While deep neural networks offer 

the potential for precise melanoma classification, the 

optimization of hyperparameters remains a major obstacle. This 

paper introduces a groundbreaking approach that harnesses the 

Manta Rays Foraging Optimizer (MRFO) to empower melanoma 

classification. MRFO efficiently fine-tunes hyperparameters for a 

Convolutional Neural Network (CNN) using the ISIC 2019 

dataset, which comprises 776 images (438 melanoma, 338 non-

melanoma). The proposed cost-effective DenseNet121 model 

surpasses other optimization methods in various metrics during 

training, testing, and validation. It achieves an impressive 

accuracy of 99.26%, an AUC of 99.56%, an F1 score of 0.9091, a 

precision of 94.06%, and a recall of 87.96%. Comparative 

analysis with EfficientB1, EfficientB7, EfficientNetV2B0, 

NesNetLarge, ResNet50, VGG16, and VGG19 models 

demonstrates its superiority. These findings underscore the 

potential of the novel MRFO-based approach in achieving 

superior accuracy for melanoma classification. The proposed 

method has the potential to be a valuable tool for early detection 

and improved patient outcomes. 

Keywords—Deep learning; machine learning; classification; 

metaheuristic algorithm; CNN 

I. INTRODUCTION 

Skin cancer is characterized by the uncontrolled growth of 
abnormal cells in the skin's outermost layer (epidermis) due to 
DNA damage and mutations. Melanoma, a highly aggressive 
form of skin cancer, is on the rise, posing significant 
challenges for healthcare systems in terms of early detection 
and intervention [1]. The precise cause of all melanomas 
remains unclear, but exposure to ultraviolet (UV) radiation 
from sunlight or tanning lamps and beds significantly 
heightens the risk of developing this form of skin cancer [2]. 
In the United States, the American Cancer Society's 
estimations predict that approximately 97,610 new cases of 
melanoma will be diagnosed in the year 2023 [3]. This 
contrasts with the year 2020, during which a total of 324,635 
individuals tested positive for melanoma, with an unfortunate 
outcome in 57,043 cases, resulting in fatalities [4]. The five-
year relative survival rate for melanoma is 93%, with a range 
of 99% for cases diagnosed at a localized stage (83% of cases) 
to 27% for cases diagnosed at a faraway stage (4%) [5]. 

Nevertheless, due to the inherent challenges associated with 
early detection, both by professionals and patients, there is a 
pressing need to develop an effective method for the early 
detection of melanoma and skin cancer. To ensure precise and 
timely diagnosis, accurate equipment is essential, even in the 
hands of highly skilled professionals. Dermatologists typically 
initiate the diagnostic process by employing non-invasive 
dermoscopy techniques on suspicious areas. However, this 
conventional method primarily relies on visual examination by 
the naked eye for preliminary diagnosis. This reliance on 
visual assessment can introduce challenges, as it can be 
cumbersome, susceptible to inaccuracies, and dependent on 
subjective interpretation in a clinical environment [6]. Given 
these inherent limitations, there is an urgent need to integrate 
advanced diagnostic tools and technologies to improve the 
accuracy and efficiency of early melanoma detection. 

Deep learning (DL), with its multi-layered artificial neural 
networks, has ushered in a transformative era in image 
classification [7]. At the forefront of this revolution are 
Convolutional Neural Networks (CNNs), renowned for their 
unparalleled ability to autonomously discern intricate features 
from raw pixel data [8]. Through iterative training on 
extensive datasets, DL models refine their parameters to excel 
in identifying objects and patterns, finding application in 
diverse domains such as medical imaging [9], autonomous 
driving [10]. Moreover, in the realm of natural language 
processing [11]. The exceptional precision and effectiveness 
of CNNs, particularly in analyzing complex medical images, 
continue to inspire researchers to leverage them in addressing 
intricate challenges across various fields. 

CNNs have emerged as powerful tools, and researchers 
often leverage predefined CNN models such as VGG16, 
VGG19, ResNet, DenseNet, Inception, etc., which come pre-
trained on extensive image datasets. These pre-trained models 
serve as valuable starting points for various image-related 
tasks, as they have already learned a rich set of features from 
massive amounts of data. Achieving optimal performance with 
these models requires careful consideration of 
hyperparameters, and proper selection of these 
hyperparameters has a direct impact on the performance of the 
model [12]. Effective hyperparameter selection stands as a 
critical endeavor for optimizing a CNN's performance in 
various applications [13], particularly in the realm of medical 
imaging, where precise and accurate results are paramount 
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[14].  Unlocking the full potential of CNNs in this critical 
domain hinges on the careful process of hyperparameter 
optimization. To address this challenge, metaheuristic 
algorithms have emerged as invaluable tools for efficiently 
searching for optimal hyperparameter values [15]. In contrast 
to traditional gradient-based optimization methods, such as 
stochastic gradient descent (SGD), which may struggle with 
the complex and non-convex landscapes [16] often 
encountered in medical image analysis, metaheuristics excel. 
These algorithms, which encompass a range of techniques, 
including genetic algorithms, particle swarm optimization, 
simulated annealing, and ant colony optimization, among 
others, have demonstrated their adaptability and efficiency in 
exploring and exploiting intricate parameter spaces [17]. In 
medical imaging, where accuracy and speed are paramount, 
metaheuristic algorithms offer a promising approach to 
enhance the capabilities of DL models, ultimately contributing 
to more accurate disease diagnosis and treatment planning 
[18]. 

This study centers on hyperparameter optimization for 
melanoma classification, employing the DenseNet-121 
transfer learning model in tandem with the MRFO 
metaheuristic algorithm. The principal objective is to elevate 
melanoma detection accuracy, a pivotal factor in enabling 
early diagnosis and ultimately improving patient outcomes. 

In this study, we make the following significant 
contributions: 

• Novel CNN-Based Framework: A novel CNN 
framework, developed for reliable classification of 
Melanoma using the ISIC2019 dataset. 

• Transfer Learning Utilization: We utilize ten pre-
trained models for transfer learning, benefiting from 
their knowledge learned on extensive datasets to 
enhance melanoma classification performance. 

• Hyperparameter Optimization: To boost classification 
performance, we fine-tune hyperparameters for both 
the CNN model and pre-trained models using the 
Manta Rays Foraging Optimizer (MRFO) algorithm. 
This process identifies optimal configurations for each 
pre-trained model, enhancing melanoma detection 
performance. 

The subsequent sections of this paper are structured as 
follows: 

Section II provides a comprehensive literature review on 
melanoma classification, offering insights into existing 
research and methodologies. Section III, a detailed overview 
of our proposed methodology, outlining the approach to 
melanoma classification using the CNN framework and the 
MRFO algorithm. Section IV delves into the experimental 
results and discussions, shedding light on findings and their 
implications. Finally, Section V presents conclusions and 
outlines potential avenues for future research in the field of 
melanoma classification. 

II. LITERATURE REVIEW 

In recent years, there has been a significant surge in the 
development of algorithms designed for the automated 
detection of melanoma using dermoscopy images. In the early 
2000s, most automated melanoma classification solutions 
primarily relied on the utilization of manually crafted, low-
level features such as shape, color, and texture [19]. However, 
recent studies, exemplified by [20], have signaled a shift in 
melanoma identification and recognition methodologies. This 
transition signifies a departure from the heavy reliance on 
manual feature engineering, marking a substantial evolution in 
the field. Presently, there is a noticeable uptick in the adoption 
of DL approaches for automated skin image analysis [21]. 
This paradigm shift reflects a move away from manual feature 
engineering towards methods that harness the capabilities of 
neural networks to autonomously learn and extract pertinent 
features from dermoscopy images. This transformation 
underscores the changing landscape in melanoma 
classification. 

Daghrir et al. [22] introduced an innovative melanoma 
identification approach by combining three techniques using a 
majority voting method. Their method incorporates CNN 
along with two traditional ML approaches, SVM and KNN. 
These models were trained to recognize specific skin cancer 
features, including edges, texture, and color characteristics. 
While this ensemble approach improved overall performance, 
the combination of results from three different techniques can 
introduce computational complexity and potentially result in 
slower processing times. Nevertheless, the results 
demonstrated that CNN achieved the highest accuracy at 
85.5%, followed by SVM with 71.8% accuracy and KNN with 
57.3% accuracy.  

To address the critical challenge of accurately classifying 
early Melanoma detection, Golnoori et al. in [23]  introduced a 
novel approach by tackling the persistent complexity of 
selecting optimal neural network architectures and 
hyperparameters by employing metaheuristic optimization 
algorithms to fine-tune both pre-trained and scratch-trained 
CNN models. These optimized models' deep features were 
effectively combined and utilized to train a K-nearest 
neighbors (KNN) classifier. The results of their method 
demonstrated exceptional performance, achieving an accuracy 
of 81.6% with an F1-score of 80.9% on the ISIC 2017 dataset 
and 90.1% accuracy with an 89.8% F1-score on the ISIC 2018 
dataset. 

Segmentation plays a pivotal role in ML. In their study 
[24], the authors introduced a technique involving image 
segmentation. This technique utilizes anisotropic diffusion 
filtering and a rapid bounding box approach, followed by 
feature extraction through a hybrid feature extractor (HFE) 
and a feature extractor based on CNNs. The fusion of these 
extracted features facilitated the development of a highly 
accurate classification model capable of distinguishing 
between melanoma and non-melanoma images. The 
evaluation, conducted on two datasets, yielded outstanding 
results, including an accuracy rate of 99.85%, sensitivity of 
91.65%, and specificity of 95.70%. These outcomes 
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underscore the remarkable effectiveness of this approach, 
surpassing the performance of previous ML algorithms. 

To tackle the issue of automated segmentation of 
melanoma regions, the authors in [25] proposed a DL method 
based on a deep region-based Convolutional Neural Network 
(RCNN). This method comprises three main steps: skin 
refinement, melanoma region localization, and segmentation. 
The research was evaluated using a dataset consisting of 900 
training images and 376 testing images from ISIC 2016 
melanoma images. The results highlight the superiority of this 
approach compared to state-of-the-art techniques, achieving 
exceptional performance across various evaluation metrics: 
accuracy (0.94), specificity (0.94), sensitivity (0.97), F1 score 
(0.96), dice score (0.94), and Jaccard coefficient (0.93). 

Ian their study [21], the authors comprehensively analyze 
the use of pre-trained CNN architectures for melanoma 
classification. They address a gap in previous research by 
investigating the specific features extracted by different CNN 
models. To enhance feature extraction, they introduce 
boundary localization to preserve critical skin lesion regions. 
They assess the effectiveness of eight pre-trained CNN models 
for deep feature extraction from these regions and employ 
various classifiers for melanoma detection. Across datasets 
like Ph2, ISIC 2016, ISIC 2017, and HAM10000, their 
approach achieves high accuracies of 98.33%, 80.47%, 
81.16%, and 81%, outperforming state-of-the-art CNN 
methods. 

The authors in [26] introduced a comprehensive three-
phase framework for melanoma diagnosis, incorporating data 
segmentation via an extended Chan-Vese method, data 
augmentation, and CNN training facilitated by an active 
learning mini-batch process. To gauge its performance, they 
conducted an evaluation comparing it with established models 
such as DenseNet, InceptionV3, MobileNet, NASNet, and 
Xception. The assessment leveraged Standard Deviation 
(STD) as a metric to gauge model robustness and stability. 
The proposed active learning query strategy outperformed 
baseline methods in both performance and convergence across 
sixteen image datasets, underscoring the framework's 
effectiveness in accurate melanoma diagnosis. Nevertheless, 
the reliance on the active learning mini-batch process may not 
be universally applicable and may exhibit reduced 
effectiveness when dealing with imbalanced or noisy datasets. 

Adepu et al. [27] present a novel approach for melanoma 
classification using a lightweight Deep-CNN-based 
framework. Their methodology incorporates knowledge 
distillation, Cost-Sensitive Learning with Focal Loss, and in-
painting algorithms to enhance classification performance. To 
improve the model's performance, they introduce new CutOut 
variations and utilize test time augmentation as regularizers. 
On the ISIC-2020 dataset, the authors achieve a state-of-the-
art result with a sensitivity of 81%, an AUC of 93, and a 
specificity of 90%. However, as the model processes a larger 
number of augmented images during each epoch, the use of 
CutOut may significantly increase the computational cost of 
training. 

The authors in [28] introduce a CAD system utilizing the 
Online Region-based Active Contour Model (ORACM) to 

extract the Region of Interest (ROI) from skin lesions. The 
system demonstrates remarkable performance with an 
accuracy of 92.24% and perfect specificity and sensitivity 
(100%). However, it exhibits limitations, such as a heavy 
reliance on handcrafted features, sensitivity to the initial 
contour location and manual parameter selection, and the 
potential for the Non-dominated Sorting Genetic Algorithm 
(NSGA II) to find local instead of global optimum solutions, 
resulting in increased computational complexity. 

In the realm of lightweight transfer learning models 
suitable for mobile devices, the study by the authors in [29] 
introduced the utilization of MobileNetV2 for the 
classification of melanoma images into benign and malignant 
categories. Their experiments conducted on multiple 
melanoma datasets yielded promising results, demonstrating 
the effectiveness of the proposed method with accuracy rates 
reaching as high as 85%, outperforming other network 
architectures. Additionally, the suggested architectural design 
of the head model, featuring a global average pooling layer 
followed by two fully-connected layers, not only contributed 
to high accuracy but also preserved the network's efficiency 

The diagnosis of cancer during surgical treatment 
primarily relies on cancer stage or tumor thickness. In their 
study[30], the authors introduced two distinct methods aimed 
at classifying melanoma into two stages: the first stage 
includes stage 1 and stage 2, while the second encompasses 
stage 1, stage 2, or stage 3 melanoma. The proposed system 
employs a CNN, utilizing the Similarity Measure for Text 
Processing (SMTP) as the loss function. The experimental 
results include a comparison of various loss functions against 
the proposed SMTP loss function, demonstrating the superior 
efficiency of the proposed algorithm when contrasted with 
several other loss functions tailored for classification tasks. 

The authors in [31] introduces a hybrid learning approach 
for melanoma detection, employing image processing 
techniques to enhance detection by addressing common issues 
such as hair, air bubbles, and image noise in dermoscopic 
images. The study presents an innovative hybrid model, 
merging DL and machine learning (ML), in its debut for 
melanoma detection. Performance evaluation on the Hamm 
1000 (ISIC 2018) and ISIC 2020 datasets achieves exceptional 
accuracy scores, reaching 99.44% and 100%, respectively. 
Notably, the effectiveness of the saturation masking and 
wavelet transform techniques used may be sensitive to image 
quality, especially in cases of low resolution, artifacts, or 
variations in lighting, potentially impacting their noise 
reduction and lesion prominence enhancement capabilities. 

In the study conducted by Nancy [32] presents a two-tier 
hybrid dual CNN (2-HDCNN) feature fusion approach for 
malignant melanoma prediction. It first identifies challenging 
samples, generates a Baseline Segregated Dataset (BSD), and 
preprocesses it. The second-tier CNN produces bottleneck 
features, combined with ABCD rule-derived features. These 
hybrid features are used with various classifiers, resulting in 
high accuracy (92.15%), precision (96.96%), specificity 
(96.8%), sensitivity (86.48%), and an AUC of 0.96 for 
diagnosing malignant melanoma on the ISIC 2018 dataset. 
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In conclusion, our review of the existing literature in 
melanoma classification reveals a significant gap in research 
focused on the optimization of hyperparameters and network 
structures. While numerous studies have explored ML and DL 
models for melanoma detection, very few have delved into the 
critical area of hyperparameter optimization using 
metaheuristic algorithms. Notably, none of the studies have 
investigated the potential of the MRFO algorithm in this 
context. This identified research gap highlights the unexplored 
potential of MRFO and other metaheuristic algorithms for 
enhancing the accuracy and efficiency of melanoma 
classification models. 

III. METHODOLOGY 

A. Introduction 

This study introduces a comprehensive framework for 
melanoma classification Exploiting CNNs alongside transfer 
learning techniques and MRFO for hyperparameter 
optimization. The workflow consisting of  data acquisition, 
pre-processing, splitting, classification, and optimization. 
These phases collectively enable accurate and reliable 
melanoma classification. 

B. Dataset Description 

The ISIC-2019 dataset [33], comprising 25,331 
dermoscopy images, is used to evaluate the proposed 
technique. These images, categorized into eight distinct 
classes representing different types of skin lesions, exhibit 
varying dimensions, ranging from 600x450 to 1024x1024 
pixels. In our evaluation, a total of 776 images are employed, 
including 438 melanoma and 338 non-melanoma cases. 

C. DenseNet-121 Architecture 

DenseNet121, a CNN architecture renowned for its 
effectiveness in visual object recognition, achieves state-of-
the-art results with reduced parameters by intricately 
connecting each layer to both preceding and subsequent layers 
[34]. 

 

Fig. 1. DenseNet121 architecture. 

DenseNet-121, one of several variants within the 
DenseNet family, is characterized by five convolution and 
pooling layers, three transition layers (at depths 6, 12, and 24), 
one classification layer (at depth 16), and two dense blocks 
employing 1x1 and 3x3 convolutions. Fig. 1 shows 
DenseNet121 architecture. 

Total Layers = 5 + (6 + 12 + 24 + 16) × 2 = 121 

In total, DenseNet-121 comprises 121 layers, making it a 
versatile choice for various computer vision tasks. This study 
specifically employs DenseNet-121 due to its compelling 
advantages, such as mitigating the vanishing-gradient 
problem, enhancing feature propagation, promoting feature 
reuse, and notably reducing the overall model parameter count 
[35] 

D. Hyperparameter Selection 

The study focuses on optimizing several critical 
hyperparameters to enhance model performance: 

• Loss Function: Defines the loss metric used for model 
optimization. 

• Training Batch Size: Determines the number of 
samples used in each training iteration. 

• Model Dropout Ratio: Regulates the extent of 
regularization during training. 

• Transfer Learning Ratio: Controls the extent of pre-
trained weight utilization. 

• Optimizer: Selects the optimization algorithm. 

• Rotation Angle: Diversifies training data by simulating 
different lesion orientations. 

• Shifts (Width and Height): Handles variations in lesion 
position and image composition. 

• Zoom Level: Allows the model to learn features at 
various scales within images. 

• Shear Transformation: Introduces controlled 
deformations to enhance the model's adaptability. 

• Flipping: Simulates mirrored images (Horizontal and 
Vertical). 

These hyperparameters collectively contribute to the 
adaptability, generalization, and optimization of the model for 
melanoma classification. Next steps involve leveraging the 
MRFO [36]. Metaheuristic Algorithm to fine-tune these 
hyperparameters systematically, ensuring that the model 
achieves the best possible results in the challenging task of 
classifying melanoma. 

E. Manta Ray Foraging Metaheuristic Algorithm 

The MRFO [36] algorithm incorporates three foraging 
behaviors: chain foraging, cyclone foraging, and somersault 
foraging. These behaviors are mathematically modeled as 
follows: 

• Chain foraging: - In the MRFO [36] Chain foraging: 
Manta rays use their ability to detect plankton 
concentration to navigate towards better positions. The 
algorithm assumes the highest plankton concentration 
represents the best solution found so far. Manta rays 
form a foraging chain, moving towards both the food 
and the individual in front of them. 
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• Cyclone foraging: - Manta rays display a distinctive 
foraging behavior in which they form a long chain and 
spiral toward plankton patches in deep waters. This 
spiral foraging strategy resembles that seen in WOA 
[37]. In the case of cyclone foraging, manta ray 
swarms spiral towards food while also moving toward 
the ray in front, forming a line that takes on a spiral 
shape. Fig. 3 illustrates this cyclone foraging behavior 
in a 2-dimensional context. Swarm members follow the 
leader, traversing a spiral path toward food. The 
mathematical equation for modeling this two-
dimensional spiral movement of manta rays is as 
follows: 
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mathematical model for cyclone foraging is defined as 
follows: 
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In the cyclone foraging strategy, individuals perform 
random searches relative to the food source as their reference 
point, promoting both exploitation and exploration. To 
encourage exploration, each individual is directed to seek a 
new position in the search space, away from the current best 
position, using a new random reference point. This approach 

enhances exploration, enabling the MRFO [36] algorithm to 
perform a broad global search. The mathematical equation is 
as follows: 

  is the weight coefficient, T is the maximum number of 
iterations, and  1 is a random number in [0, 1]. 
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where,      
   is a random position randomly produced in 

the search space,         are the upper and lower limits of 
the 𝑑th

 dimension respectively. 

 

Fig. 2. MRFO (1) Chain (2) Cyclone (3) Somersault behavior in a 3-D 

space. 

• Cyclone foraging: - This behavior treats the food 
source position as a pivot, causing individuals to swim 
in a back-and-forth manner while somersaulting to new 
positions. This results in continuous position updates 
around the current best solution. The mathematical 
equation below models this behavior. 

  
         

        (         
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The somersault factor (S = 2) determines the range of 
somersaulting for manta rays using random numbers (r1 and 
r2) in [0, 1]. Eq. (8) allows each individual to move within a 
new search domain, symmetrically positioned around the best 
solution found so far. As an individual approaches the optimal 
solution, the somersault range decreases, guiding all 
individuals toward convergence. This adaptive reduction 
occurs as iterations increase. Fig. 4 visually illustrates 
somersault foraging behavior in MRFO [36]. 

Like other metaheuristic optimizers, MRFO [36] begins 
with a random population. In each iteration, individuals update 
positions relative to neighbors and a reference point. The 
exploration-exploitation balance is controlled by t/T, 
decreasing from 1 to t/T. When t/T < rand, the best solution is 
used for exploitation; otherwise, a random position aids 
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exploration. Chain and cyclone foraging alternate randomly, 
while somersault foraging adapts positions to the best 
solution. This iterative process continues until the stopping 
criterion is met, yielding the best individual's position and 
fitness value. 

Three individuals undergo 100 iterations in the search 
space using Eq. (8). Randomly sampled points distribute 
between current positions and their symmetrical positions 
around xbest. As distance to xbest decreases, the number of 
sampled points reduces. Dense points around xbest aid 
exploitation, while sparse ones promote exploration. 

F. Hyperparameter Optimization Process 

1) Data preprocessing: After acquiring the dataset, it 

underwent a series of preprocessing steps involving four key 

techniques: image resizing, dimensional scaling, data 

balancing, and data augmentation. In the image processing 

phase, a two-step approach was utilized to standardize the 

various image dimensions. Initially, the color space 

conversion from BGR to RGB was executed to ensure 

consistent color representation. Subsequently, bicubic 

interpolation [38] resizing was applied to all images, 

harmonizing them to a uniform size of (32x32x3) pixels. This 

process established consistency, laying a solid foundation for 

subsequent analysis. Addressing the issue of data imbalance 

[39], the study employed data augmentation techniques 

encompassing width and height shifting, shearing, rotation, 

horizontal and vertical flipping, and zooming. These 

techniques help diversify the dataset and mitigate potential 

misclassification or overfitting during training and 

optimization phases [40]. Additionally, the dataset was 

partitioned into an 80% training subset and a 20% validation 

subset to facilitate model training and evaluation. This 

division ensures a robust assessment of model performance 

and generalizability. 

2) Classification and optimization: The optimization 

process commences with the creation of an initial solution 

population represented as vectors. Each vector element 

corresponds to a specific hyperparameter, such as dropout 

ratio, optimizers, batch size, etc. In this study, 12 well-defined 

hyperparameters are targeted for optimization, as outlined in 

Table I. The dimensionality of solution vectors depends on the 

application of data augmentation. 

a) Fitness Function and Hyperparameter Mapping: At 

the core of the optimization process, the fitness function is 

utilized to assess the quality of each population solution. This 

function encompasses three crucial steps: 

• Hyperparameter Mapping: To effectively configure the 
pre-trained transfer learning model, solution elements 
are mapped to their corresponding actual 
hyperparameters. 

• Top of Form 

• Model Creation and Preparation: With mapped 
hyperparameters, the pre-trained transfer learning CNN 
model is created and compiled. A diverse set of pre-

trained models, including DenseNet121, EfficientB1, 
EfficientB7, EfficientV2B0, MobileNet, NesNetLarge, 
ResNet50, VGG16, and VGG19, are harnessed in this 
study.  

• Model Training and Evaluation: Following model 
creation, the training phase commences, allowing the 
model to learn from the data. Training progresses for a 
predetermined number of epochs typically set to 1000 
in this study. 

b) Balancing Exploration and Exploitation: This 

approach dynamically traverses the hyperparameter space, 

striving for a harmonious balance between exploration and 

exploitation. This equilibrium proves pivotal in uncovering 

globally optimal solutions. The process iteratively refines the 

population, gradually converging towards configurations that 

yield superior model performance. 

Fig. 3 depicts the model architecture employed in our 
optimization process, offering a visual representation of the 
complex interplay between hyperparameters, fitness 
evaluation, and model creation. 

TABLE I. HYPERPARAMETER SETTINGS 

Hyperparameters Settings 

S/noo Hyperparameter Values 

1 Loss Function Binary Crossentropy 

2 Training batch size [8, 16,32,64] 

3 Model dropout ratio [0- 0.5] 

4 Transfer learning  ratio 0-26 (step = 1) 

5 optimizer 
[Adam(), Nadam(), RMSprop(),  
Adadelta(), Adagrad(), SGD()] 

6 Rotation Range 0 - 40 (step = 1) 

7 width shift value. [0 - 0.2] 

8 Hight shift value. [0 - 0.2] 

9 Shear [0 - 0.2] 

10 Zoom [0 - 0.2] 

11 Horizontal Flipping  [Yes, No] 

12 Vertical flipping [Yes, No] 

 

Fig. 3. Proposed model architecture. 
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G. Evaluation Metrics 

The proposed model will undergo evaluation using 
standard assessment metrics, including Accuracy, Precision, 
Recall, and F-Score, as mentioned in [38]–[41]. 

H. Software and Tools 

The experiments were conducted in Python, utilizing 
popular libraries including Keras, Scikit-learn, and OpenCV. 
The computational environment employed a Dell system 
equipped with an Intel Xeon CPU, boasting up to 128GB of 
memory, and a spacious 1TB SSD. 

IV. RESULT AND DISCUSSION 

In this section, the proposed model was assessed through a 
comparison with four nature-inspired techniques (GA, WOA, 
GWO, WHO) and benchmarked against eight state-of-the-art 
deep learning architectures (EfficientB1, EfficientB7, 
EfficientV2B0, MobileNet, NesNetLarge, ResNet50, VGG16, 
and VGG19) on the ISIC 2019 dataset. This dataset comprises 
776 skin lesion images encompassing melanoma and non-
melanoma classes. 

Data preprocessing was undertaken, including 
augmentation to expand the dataset to 8000 images, and an 
80%-20% random split was applied for training and validation 
purposes. For image resizing, bilinear interpolation was 
utilized. The experiments were conducted using the Keras 
library with the hyperparameters detailed in Table I. 

The model is comprised of 7.2 million parameters, which 
includes 121 convolutional layers and three fully connected 
layers. Training was executed over 1000 epochs, involving 12 
distinct hyperparameter configurations and the incorporation 
of early stopping with a patience of 15. 

Proposed model performance across top 10 epochs 

Top of Form 

In Table II, we observed that the model's performance 
across the top 10 epochs consistently exhibited high accuracy, 
ranging from 0.9908 to 0.9926, and AUC, ranging from 
0.9898 to 0.9974. Additionally, precision, recall, and the F1-
Score consistently demonstrated strong values, indicating 
proficient classification capabilities with minimal 
discrepancies. These results underscore the model's robust and 
stable performance, making it well-suited for accurate for 
melanoma classification. 

TABLE II. PERFORMANCE OF PROPOSED MODEL ACROSS TOP 10 

EPOCHS 

Epoch Accuracy AUC Precision Recall F1-Score Loss 

38 0.9926 0.9956 0.9406 0.8796 0.9091 0.0217 

37 0.9924 0.9974 0.9447 0.8704 0.906 0.0216 

34 0.9916 0.9952 0.9529 0.8426 0.8943 0.0241 

35 0.9916 0.9951 0.9261 0.8704 0.8974 0.0244 

40 0.9914 0.9937 0.9343 0.8565 0.8937 0.0224 

33 0.9912 0.9974 0.9430 0.8426 0.89 0.0237 

25 0.9910 0.9900 0.9381 0.8426 0.8878 0.0331 

32 0.9908 0.9942 0.9378 0.8380 0.8851 0.0259 

36 0.9908 0.9898 0.9163 0.8611 0.8878 0.0283 

Model Validation Performance Across Top 10 Epochs 

In correspondence to Table III, the model consistently 
demonstrates strong validation performance, with accuracy 
ranging from 0.9586 to 0.9734 and AUC values between 
0.8164 and 0.8588. Validation loss falls in the range of 0.1458 
to 0.2014, indicating close alignment with the ground truth. 
Precision values consistently exceed 0.5, indicating minimal 
false positives, while recall values vary, indicating the model's 
ability to correctly identify positive samples. These findings 
highlight the model's robust and consistent validation 
performance, ideal for tasks demanding accurate 
classification. 

TABLE III. VALIDATION PERFORMANCE ACROSS TOP 10 EPOCHS 
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38 0.9680 0.8179 0.6857 0.4444 0.5393 0.1980 

37 0.9688 0.8519 0.7059 0.4444 0.5455 0.1521 

34 0.9711 0.8164 0.8148 0.4074 0.5432 0.1652 

35 0.9586 0.8588 0.5085 0.5556 0.531 0.1660 

40 0.9688 0.8258 0.7333 0.4074 0.5238 0.2014 

33 0.9695 0.8353 0.7419 0.4259 0.5412 0.1774 

25 0.9734 0.8502 0.8333 0.4630 0.5952 0.1458 

32 0.9719 0.8396 0.8462 0.4074 0.55 0.1692 

36 0.9664 0.8288 0.6774 0.3889 0.4941 0.1653 

From Fig. 4, the performance of DenseNet121 model was 
evaluated under three different scenarios: 100 epochs with a 
5000-sample dataset, 500 epochs with an 8000-sample dataset, 
and 1000 epochs with an 8000-sample dataset. The model 
with 1000 epochs on the larger dataset demonstrated the 
highest accuracy (99.26%), AUC (99.56%), and F1-Score 
(0.9091), indicating its superior ability to classify positive and 
negative instances. It also achieved the lowest loss (0.0217) 
and high precision (94.06%) and recall (87.96%) values. It is 
observed that increasing the number of training epochs and 
dataset size consistently leads to better model performance 
across various metrics. 

 

Fig. 4. Comparison with different configuration. 
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TABLE IV. COMPARATIVE ANALYSIS OF MODEL PERFORMANCE 

Model Accuracy AUC F1-Score Precision Recall Loss 

Proposed Model 0.9926 0.9956 0.9091 0.9406 0.8796 0.0217 

EfficientB1 0.9580 0.4972 0.0092 1.0000 0.0046 0.1815 

EfficientB7 0.9232 0.4824 0.1495 0.5000 0.0879 0.6742 

EfficientNetV2B0 0.9304 0.5135 0.1946 0.6098 0.1157 0.6694 

MobileNet 0.9910 0.9980 0.9012 0.9397 0.8657 0.0221 

NesNetLarge 0.6911 0.7096 0.5127 0.6547 0.4213 0.6968 

ResNet50 0.9656 0.9134 0.4013 0.7564 0.2731 0.1076 

VGG16 0.9865 0.9937 0.8244 0.9152 0.7500 0.0369 

VGG19 0.9797 0.9675 0.7263 0.8415 0.6389 0.0628 

The presented data showcases the performance evaluation 
of the proposed model (see Table IV) in comparison to several 
established DL architectures across various metrics. The 
proposed model outperforms all other models with an 
impressive accuracy of 99.26%, an AUC of 99.56%, and a 
commendable F1-Score of 0.9091. Furthermore, it exhibits a 
high precision of 94.06% and recall of 87.96%, indicating its 
robustness in correctly classifying positive instances while 
minimizing false positives. In contrast, models like 
EfficientB1, EfficientB7, EfficientNetV2B0, NesNetLarge, 
ResNet50, VGG16, and VGG19 show lower accuracy and F1-
Scores, reflecting their limitations in effectively handling the 
given task. MobileNet, while achieving a high accuracy and 
AUC, falls slightly behind the proposed model in F1-Score, 
precision, and recall. These results underscore the superior 
performance of the proposed model in comparison to 
established architectures, demonstrating its potential for 
melanoma classification. Additionally, the low loss value of 
0.0217 for the proposed model further confirms its proficiency 
in minimizing prediction errors during training. 

 

Fig. 5. Comparison with other architectures. 

Table V shows the In-Depth Analysis of Proposed 
DensNet121 Model in Comparison with Prior Literature. 
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In comparison with other literature, the proposed 
DensNet121-based model optimized with MRFO exhibits 
superior performance. Fig. 5 shows the comparison with other 
architectures. It achieves an accuracy of 99.26%, surpassing 
previous models utilizing different metaheuristics such as 
GWO (98.3%) and WHO (96%). Moreover, the proposed 
model's precision (0.9406) and recall (0.8796) outperform an 
AlexNet model optimized with GA (accuracy: 81.66%, 
precision: 81.18%, recall: 81.67%). Additionally, the F1-Score 
of the proposed model (0.9091) exceeds that of a CNN 
optimized with PSO (accuracy: 90.01%, F1-Score: 0.897). 
These findings highlight the effectiveness of the proposed 
model in achieving superior accuracy and a balanced 
precision-recall trade-off when compared to existing literature. 

V. CONCLUSION 

In conclusion, the manual classification of melanoma from 
dermoscopic images presents significant challenges, even for 
experts, highlighting the pressing need for efficient 
automation solutions. This paper introduces an automated and 
cost-effective model built upon the DenseNet121 architecture, 
harnessed by the MRFO metaheuristic algorithm for 
melanoma classification. Through careful optimization of 
critical CNN hyperparameters, this model significantly 
enhances the architecture's ability to tackle melanoma 
classification effectively. 

The study employs data preprocessing techniques, 
including bilinear interpolation-based image resizing, and 
adeptly encodes CNN hyperparameters to facilitate 
optimization. To validate the model's efficacy, a 
comprehensive evaluation was conducted, comparing it with 
hyperparameter optimization techniques GA, PSO, GWO and 
WHO on the ISIC skin cancer dataset. Additionally, the model 
was benchmarked against eight state-of-the-art deep learning 
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architectures (EfficientB1, EfficientB7, EfficientV2B0, 
MobileNet, NesNetLarge, ResNet50, VGG16, and VGG19). 

The final results demonstrated the superiority of our 
proposed model in terms of accuracy, AUC, precision, F1 
Score and loss rates during training, testing, and validation 
phases, surpassing the performance of other optimization 
methods explored in this experiment. 

As a direction for future research, further refinement and 
exploration of this model can lead to even more robust and 
accurate melanoma classification systems, potentially 
contributing to early diagnosis and improved patient outcomes 
in the field of dermatology. 
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