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Abstract—Technology improvements have benefited the 

medical industry, especially in the area of diabetes prediction. In 

order to find patterns and risk factors related to diabetes, 

machine learning and Artificial Intelligence (AI) are vital in the 

analysis of enormous volumes of data, including medical records, 

lifestyle variables, and biomarkers. This makes it possible for 

tailored management and early discovery, which might 

revolutionize healthcare. This study examines how machine 

learning algorithms may be used to identify diseases, with an 

emphasis on diabetes prediction. The Proposed Diabetes 

Prediction Empowered with Mutli-level Data Fusion and 

Machine Learning (DPEMDFML) model combines two distinct 

types of models—the Artificial Neural Network (ANN) and the 

Support Vector Machine (SVM)—to create a fused machine 

learning technique. Two separate datasets were utilized for 

training and testing the model in order to assess its performance. 

To ensure a thorough evaluation of the model's prediction ability, 

the datasets were split in two experiments in proportions of 70:30 

and 75:25, respectively. The study's findings were encouraging, 

with the ANN algorithm obtaining a remarkable accuracy of 

97.43%. This indicates that the model accurately identified 

instances of diabetes, indicating a high degree of accuracy. A 

more thorough knowledge of the model's prediction ability would 

result from further assessment and validation of its performance 

using various measures. 

Keywords—Disease prediction; machine learning (ML); fused 

approach; artificial neural network (ANN); support vector machine 

(SVM); disease diagnosis; healthcare 

I. INTRODUCTION 

The chronic metabolic condition known as diabetes affects 
millions of people worldwide. The World Health Organization 
projects that by 2030, 643 million people worldwide will have 
diabetes, up from an expected 537 million in 2021 [1]. 
Diabetes is brought on by abnormalities in insulin synthesis or 
function, which hinder the body from effectively managing 
blood sugar levels. All ages are impacted, and if it is not 
treated, it might have detrimental implications on one's health. 
The body's immune system wrongly assaults and destroys 
pancreatic insulin-producing cells in autoimmune type 1 
diabetes [2]. It usually appears during childhood or 
adolescence and necessitates lifelong insulin medication. 
Obesity, inactivity, and poor eating habits are commonly 
linked to the majority of type 2 diabetes cases [3]. Type 2 
diabetes is differentiated by a decrease in the body's ability to 
produce enough insulin to maintain normal blood sugar levels 
or by an increase in insulin resistance [3]. Numerous 

consequences can result from unmanaged diabetes. For 
diabetics, cardiovascular disease, such as heart attacks and 
strokes, is a major worry. Kidney issues, nerve damage 
(neuropathy), retinopathy, and foot issues are some of the 
consequences of diabetes [4]. One's quality of life may be 
significantly impacted by these problems, which need 
continual medical care. Traditional diabetes prediction 
systems confront a number of problems. These techniques 
frequently depend on simplistic statistical models or 
rudimentary machine learning algorithms, which are incapable 
of capturing the intricate interplay of many risk variables. 
Furthermore, these techniques may underutilize the potential 
of accessible data sources such as patient medical records, 
genetic information, lifestyle variables, and environmental 
factors. As a result, the accuracy and reliability of diabetes 
prediction using these traditional methods are inadequate. A 
subset of artificial intelligence called machine learning has 
completely changed several industries, including the 
healthcare industry. It involves developing algorithms and 
models that are able to absorb knowledge from data and act or 
anticipate without being explicitly programmed. The medical 
sector's decision-making processes for disease prediction, 
diagnosis, and treatment have showed great promise when 
using machine learning techniques. Researchers have 
investigated the merging of different ML methods for diabetes 
prediction in order to overcome the limitations of existing 
methodologies (Table I). Fusing several algorithms enables for 
the use of each method's distinct strengths while correcting for 
their particular flaws and improving forecast accuracy. A 
fused machine learning model can give a more thorough and 
holistic view of the condition by merging diverse data sources 
such as electronic health records, medical imaging, genetic 
profiles, and lifestyle data [5]. An ML-based diagnostic 
system can help detect diabetic patients early on which leads 
improve patient outcomes and help lessen the burden of 
diabetes on individuals and healthcare systems. This paper 
presents a unique framework utilizing machine learning fusion 
to achieve early diagnosis of diabetes patients. The system 
goals to increase the accuracy and efficacy of diabetes 
diagnosis by combining various machine learning algorithms 
and diverse datasets. This approach leads to proactive 
healthcare interventions and ultimately improves patient 
outcomes. 

The Proposed Diabetes Prediction Empowered with Mutli-
level Data Fusion and Machine Learning (DPEMDFML) 
model framework is presenting diabetes disease prediction. It 
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is carried out using the ANN and SVM algorithms, while 
using two different datasets. 

The IoMT is necessary for enhancing the accuracy, 
reliability, and efficacy of electronic equipment in the medical 
field. By integrating the existing health care assets and 
medical facilities, experts are advancing a digital medical 
system [6]. The control of infectious disease waves is eased by 
prompt diagnosis and improved ongoing treatment. The 
internet of medical things (IoMT) is a growing area of 
technology that is now being used to assist Point-of-care 
testing (POCT). Using the IoMT, POCT devices may operate 
wirelessly and be connected to health professionals and 
medical facilities [7]. 

Recently has been discovered that developed ANNs may 
perform well in a variety of circumstances due to ANNs' 
universal prediction capabilities and adaptable network 
architectures [8]. The building block of the ANN created to 
mimic the function of a human neuron. Also, one of the 
greatest methods for analyzing data is the use of SVM. To 
control data, they utilize generalization controlling [9]. SVM 
is an artificial intelligence method that assigns labels to things 
by learning from examples [10]. The innovative and 
promising IoMT framework presented in this study represents 
a significant leap forward in the realm of diabetes disease 
prediction. Drawing upon the capabilities of two cutting-edge 
machine learning algorithms, ANN and SVM, this framework 
exemplifies the fusion of advanced technology and healthcare, 
offering a transformative approach to diabetes management 
and patient care. At its core, the IoMT framework capitalizes 
on the vast amount of data generated by interconnected 
medical devices, wearable sensors, and health monitoring 
systems. By harnessing this continuous and diverse stream of 
patient-specific information, healthcare providers gain 
unprecedented insights into the multifaceted aspects of 
diabetes, allowing for more precise, proactive, and 
personalized interventions.  The first pillar of the framework, 
Artificial Neural Networks (ANN), represents a sophisticated 
computational model inspired by the complex 
interconnections of neurons in the human brain. ANN's ability 
to learn from data and recognize intricate patterns and non-
linear relationships makes it an ideal candidate for diabetes 
prediction. The network's architecture is meticulously 
designed, leveraging multiple layers of interconnected neurons 
to extract high-level features from raw input data. The ANN's 
adaptability enables it to adjust its internal parameters during 
the learning process, optimizing the model's performance to 
achieve highly accurate diabetes predictions. In tandem with 
ANN, the IoMT framework also incorporates the renowned 
Support Vector Machine (SVM) algorithm, renowned for its 
prowess in binary classification tasks and its ability to handle 
complex decision boundaries. SVM's kernel-based approach 
allows it to efficiently discover non-linear patterns in the 
feature space, making it invaluable for diabetes prediction 
when the relationship between features and disease occurrence 
is intricate and not easily separable. 

By integrating the capabilities of both ANN and SVM, the 
IoMT framework achieves a powerful ensemble of predictive 
models that complement each other's strengths. The diversity 
of these algorithms enhances the framework's ability to 

capture subtle nuances and intricate interactions within the 
data, ultimately leading to more reliable and accurate diabetes 
predictions. Data privacy and security are of paramount 
concern within the IoMT framework. Stringent measures are 
implemented to anonymize and safeguard patient information, 
and access controls are enforced to protect sensitive data from 
unauthorized disclosure. The framework's design ensures that 
data is utilized solely for model training purposes, mitigating 
the risk of data breaches and preserving patient 
confidentiality. The synergistic integration of ANNs and SVM 
algorithms within the IoMT framework marks a significant 
step towards personalized and data-driven diabetes prediction. 
With the potential to revolutionize healthcare practices, this 
cutting-edge approach empowers clinicians with actionable 
insights, fosters early detection, and facilitates effective 
diabetes management, ultimately enhancing the quality of life 
for patients worldwide. 

The structure of the research paper is as follows: Section II 
represents the related work. In Section III, the contribution is 
presented. The detail of the proposed model is described in 
Section IV. Discussion and analysis of results are discussed in 
Section V. The conclusion of this research is presented in 
Section VI. 

II. RELATED WORK 

The presented findings encompass various studies that 
examined different healthcare databases and utilized diverse 
approaches and strategies to make predictions. Researchers 
have developed and employed a range of prediction models, 
incorporating various data mining techniques, algorithmic 
methods for machine learning, or even a combination of these 
strategies. These studies highlight the wide array of 
approaches utilized in healthcare research to enhance 
prediction accuracy and improve decision-making processes. 

Akkarapol and Jongsawas [11] presented a paper that 
analysed a dataset comprising 50,788 records with 43 
parameters. The research identified significant risk variables, 
including age, BMI, overall revenue, sex, heart attack history, 
marital status, dentist check-up frequency, and diagnosis of 
asthma. Other risk factors such as hypertension and 
cholesterol were also recognized. The study's overall 
reliability was reported as 77.11%, indicating a moderate level 
of consistency in the findings. Furthermore, the true negative 
rate specifically for the Artificial Neural Network (ANN) 
model was noted as 79.45%, indicating its ability to accurately 
identify negative cases. 

Kavakiotis et al.'s paper [12] focused on evaluating data 
mining and machine learning techniques for DM research. 
Through the systematic comparison of three algorithms, 
including Logistic Regression, Naive Bayes, and SVM, using 
10-fold cross-validation, the study concluded that SVM 
achieved the highest accuracy rate of 84%. These findings 
contribute to the understanding of algorithm selection in DM 
research, highlighting the potential benefits of SVM in 
achieving accurate predictions and improving decision-
making processes. 

Xue-Hui Meng et al.'s study [13] focused on comparing 
the performance of decision tree models, ANNs, and logistic 
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regression in diagnosing diabetes or prediabetes based on 
general risk variables. The logistic regression model achieved 
a classification accuracy of 76.13%, indicating its ability to 
correctly classify individuals as having diabetes or prediabetes 
based on the general risk variables considered in the study. 
The decision tree model (C5.0) demonstrated a slightly higher 
classification accuracy of 77.87%. It also showed a relatively 
high sensitivity of 80.68%, meaning it successfully identified 
a large proportion of True Positive (TP) cases, and a 
specificity of 75.13%, indicating its capability to accurately 
identify True Negative (TN) cases. In contrast, the ANN 
model obtained a lower classification accuracy of 73.23%, 
suggesting that it was less effective in predicting the disease 
outcomes using the same set of general risk variables. 

The research work conducted by Md. Faisal Faruque, 
Asaduzzaman, and Iqbal [14] focused on exploring the 
relationship between Diabetes Mellitus and multiple risk 
factors through the analysis of 16 attributes including factors 
such as age, diet, hypertension, vision problems, and genetic 
predisposition. By utilizing four popular machine learning 
algorithms, the researchers examined data from 200 patients. 
The findings of the study indicated that the Decision Tree 
algorithm demonstrated superior predictive performance 
compared to Support Vector Machine (SVM), Naive Bayes 
(NB), and K-Nearest Neighbour (KNN) algorithms in this 
particular study, suggesting its potential efficacy in predicting 
or classifying the disease based on the identified risk factors. 

TABLE I. LIMITATIONS OF THE PREVIOUS WORKS 

Research Study Method Accuracy Limitation 

Akkarapol and 

Jongsawas [11]  
 77.11% - Low 

accuracy 

- Limited to a 

specific region 

Kavakiotis et al. 

[12]  
 84% - Used three 

algorithms but 

the accuracy is 
low. 

Xue-Hui Meng et 

al. [13]  

Logistic Regression 

Model 

Decision Tree 

Model (C5.0) 

Artificial Neural 

Networks (ANN) 
Model 

76.13% 

77.87% 

73.23% 

- Low 

accuracy 

- Limited 

features of the 

dataset used 

Md. Faisal 

Faruque, 
Asaduzzaman, 

and Iqbal [14]  

Decision Tree 

Algorithm 

 Support Vector 
Machine (SVM) 

 Naive Bayes (NB) 

 K-Nearest 

Neighbour (KNN) 

Not specified 

- Small 

sample size 

- Limited 

features 

Dey et al. [15]  ANN Model with 

MMS 
82.35% - Limited 

evaluation 

matrices 

Pradhan et al. 

[16] 

Ensemble Learning 

Approach 
Not specified - Multiple 

algorithms 
without 

mentioning 

accuracies  

The study conducted by Dey et al.  [15] utilized four well-
known supervised machine learning algorithms: SVM, KNN, 
Naive Bayes, and ANN with MMS. These algorithms were 
selected for their ability to learn from labelled data and make 
predictions based on learned patterns and relationships to 
analyse the Pima Indian dataset. The study revealed that the 
ANN model with MMS achieved the highest accuracy rate of 
82.35%, indicating its potential effectiveness in predicting the 
specific outcome compared to the other four algorithms 
examined. 

Pradhan et al. research [16] employed supervised learning, 
which involves training models on labelled data to make 
predictions, to develop models for diabetes diagnosis. 
Additionally, they utilized hybrid learning, which combines 
multiple learning techniques, to further enhance the 
performance of the diagnostic models. Finally, the researchers 
explored ensemble learning, a powerful approach that 
combines the predictions of multiple individual models, to 
create a more robust and accurate diabetes diagnosis model. 
The results of the study demonstrated that the ensemble 
learning approach surpassed both supervised learning and 
hybrid learning in terms of accuracy. 

III. CONTRIBUTION 

In contrast to previous research, this Diabetes Prediction 
Empowered with Multi-level Data Fusion and Machine 
Learning (DPEMDFML) model represents a more 
comprehensive study that explores various commonly used 
techniques for diabetes identification. The primary objective is 
to compare the performance of these techniques and identify 
the most effective one. It has been accomplished by 
employing two distinct algorithms and evaluating them on two 
different datasets, considering all relevant evaluation metrics. 
Furthermore, this study delves into analyzing the significance 
of each attribute in influencing the classification outcome. 
This analysis provides valuable insights for future research to 
adapt and improve the dataset, making it more informative and 
suitable for diabetes diagnosis tasks. 

IV. PROPOSED MODEL 

The Diabetes Prediction Empowered with Multi-level Data 
Fusion and Machine Learning (DPEMDFML) model 
developed here seeks to predict diabetes in a smart healthcare 
system utilizing data from the Internet of Medical Things 
(IoMT) is divided into two stages: training and testing as 
shown in Fig. 1. During the Training Phase, hospitals 
(Hospitals A, B, C, and N) use IoMT devices to gather patient 
data, which is subsequently recorded in their respective local 
databases. This information might include vital indicators, 
blood glucose levels, lifestyle information, and other 
information. The 'Prediction Layer,' which houses multiple 
ML models, with a focus on Support Vector Machines (SVM) 
and Artificial Neural Networks (ANN), is at the core of this 
phase. 
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Fig. 1. Diabetes prediction empowered with multi-level data fusion and machine learning (DPEMDFML).

These models excel at classification tasks and are in 
charge of learning whether a patient has diabetes depending 
on the input data. Following the Prediction Layer, Fig. 1 
shows the Performance Layer assesses the efficiency of the 
ML models by employing measures such as accuracy, miss 
rate, and sensitivity. Models that match the performance 
criteria are saved in the public cloud as the “DPEMDFML 
Generalized Model”, while those that fall short go through 
additional training rounds to enhance accuracy. 

The trained DPEMDFML Generalized Model is used in 
the Testing Phase. When new patients from Hospital N seek 
diabetes diagnosis, the system gathers raw data from IoMT 
devices, which is then processed. Data cleansing, value 
normalization, and missing data management are examples of 
pre-processing operations that ensure the input data is ideal for 
the ML models’ predictions. 

The DPEMDFML Generalized Model is then used to 
predict whether or not the patient has diabetes. This decision-
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making procedure has two results: If diabetes is predicted by 
the model, the patient is directed to a specialist for prompt 
medical intervention. If the model predicts a poor outcome, 
the data is properly deleted, protecting patient confidentiality 
and data privacy. 

Because the system is distributed, various hospitals can 
contribute data, resulting in a broad and complete dataset for 
model training. Furthermore, the cloud-based architecture 
improves accessibility and scalability, allowing the system to 
meet growing data volumes as well as changing healthcare 
demands. The system benefits from the capabilities of SVM 
and ANN as its major ML models in pattern recognition, 
feature extraction, and classification, results in accurate 
diabetes predictions. Furthermore, the system's iterative 
training technique allows for continuous development, 
keeping the models current with medical advances. 

The relevance of this ML-driven approach resides in its 
potential to improve diabetes diagnosis and patient treatment. 
The approach leverages the available information by utilizing 
data from IoMT devices across many hospitals, resulting in 
more reliable and exact predictions. The capacity to detect 
diabetic patients quickly and give early medical treatment 
assures improved disease control and perhaps improves 
patient outcomes. As the system evolves, its influence on the 
healthcare environment is expected to go beyond diabetes 
diagnosis, with the ability to tackle additional medical 
difficulties utilizing a similar distributed, ML-based approach. 

The distributed, cloud-based machine learning system for 
diabetes detection using IoMT data is a potential improvement 
in healthcare technology. Its training and testing phases, which 
are supported by SVM and ANN models, show that it can 
handle complicated medical data and make correct 
predictions. As the system evolves via iterative training and 
embraces an ever-growing dataset, it is positioned to impact 
the future of medical diagnosis, eventually improving patient 
care and contributing to the healthcare industry's continuing 
transformation. 

A. Datasets 

Diabetes Prediction Empowered with Mutli-level Data 
Fusion and Machine Learning (DPEMDFML) Model used 
two different datasets: 

The primary dataset employed in this research is the PIMA 
Indian Diabetes Database, accessible at the University of 
California machine learning repository [14]. The dataset 
encompasses information from 768 individuals, all of whom 
are female, and their ages span from 21 to 81 years. For each 
individual, the dataset consists of nine distinct feature 
characteristics. These feature characteristics include eight 
continuous quantitative variables, namely the number of 
pregnancies, blood sugar level (in mg/dL), diastolic blood 
pressure (in mmHg), skin fold thickness (in mm), body mass 
index (BMI), serum insulin level (in mU/mL), age (in years), 
and a pedigree function associated with diabetes. By utilizing 
this comprehensive dataset, the study aims to explore the 
relationships between these feature characteristics and 
diabetes occurrence, enabling the development of predictive 

models for early detection and assessment of diabetes risk in 
female patients. 

For the second dataset used in this paper, it is called the 
"Diabetes prediction dataset," sourced from Electronic Health 
Records (EHRs) [15]. The dataset encompasses information 
from a substantial sample of 100,000 individuals, which were 
collected from diverse healthcare providers and then 
aggregated into a unified dataset. It is noteworthy that this 
dataset includes both female and male participants. The 
Diabetes prediction dataset consists of eight distinctive feature 
characteristics for each individual. These features include age, 
gender, hypertension, heart disease, smoking history, BMI 
(body mass index), HBA1C level (glycated haemoglobin 
level), and glucose level. By utilizing this comprehensive 
dataset, the study aims to explore the relationships between 
these feature characteristics and diabetes prediction. The 
inclusion of both genders and the diverse range of feature 
characteristics in this dataset facilitate a comprehensive 
analysis, providing valuable insights into predicting diabetes 
and its associated risk factors. 

V. RESULTS AND DISCUSSION 

This section showcases the results of diabetes prediction 
using two different machine learning models: Support Vector 
Machine (SVM) and Artificial Neural Network (ANN). The 
prediction is conducted on two distinct datasets, and each 
dataset is split into two different ratios for training and testing: 
70:30 and 75:25. Then, a range of evaluation metrics are 
calculated, include accuracy, miss-classification rate, 
sensitivity, specificity, precision, False positive (FP) rate, 
False discovery rate, False omission rate, Positive likelihood 
ratio, 

Negative likelihood ratio, Prevalence threshold, critical 
success index, F1 Score, Mathews Correlation coefficient, 
Fowlkes-Mallows Index, informedness, and Diagnostic odds 
ratio. The following equations illustrate the equations used to 
calculate each of these metrics, providing a clear 
understanding of the underlying mathematical formulas for the 
statistical measurements [17-23]. The utilization of this 
diverse set of metrics ensures a comprehensive assessment of 
the models’ performance, accounting for different aspects of 
predictive accuracy and error rates. Python is utilized as the 
simulation tool for implementing both the SVM model and 
ANN model, to obtain the results. 
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A. DPEMDFML - SVM System Model - using Pima Diabetes 

Dataset - 70:30 

Using SVM model with the Pima Diabetes Dataset, the 
dataset is divided as: 30% for testing (n=231) and 70% for 
training (n=537) to assess the model's performance accurately. 
The performance evaluation of the SVM model is depicted in 
Table II and Table III, which illustrate the confusion matrix. 
The confusion matrix provides crucial insights into the 
model's predictive accuracy, enabling a detailed examination 
of how well the SVM algorithm classifies diabetes and non-
diabetes cases in the dataset. 

During the training phase, the SVM model’s predictions 
for diabetes disease are presented in Table II. The training 
dataset consists of 537 samples, which are further categorized 
into 187 real positive samples, indicating the presence of 
diabetes, and 350 real negative samples, indicating the 
absence of diabetes. Among the real positive samples 
(indicating the presence of diabetes), the SVM model 
correctly identifies 117 samples as positive, accurately 
signaling the presence of healthcare issues. However, the 
model misclassifies 70 records as negatives, incorrectly 
suggesting the absence of healthcare issues when there is an 
actual health concern. On the other hand, among the real 
negative samples (indicating the absence of diabetes), the 
SVM model correctly predicts 309 samples as negative, 
appropriately identifying the absence of healthcare conditions. 
However, the model makes errors in 41 samples, wrongly 
classifying them as positive, inaccurately indicating the 
presence of a healthcare issue when there is none. 

During the testing phase, the SVM model's predictions for 
diabetes disease are presented in Table III. The testing dataset 
consists of 231 samples, which are further categorized into 81 
real positive samples, indicating the presence of diabetes, and 
150 real negative samples, indicating the absence of diabetes. 

Among the real positive samples (indicating the presence of 
diabetes), the SVM model correctly identifies 48 samples as 
positive, accurately signaling the presence of healthcare 
issues. However, the model misclassifies 33 records as 
negatives, incorrectly suggesting the absence of healthcare 
issues when there is an actual health concern. However, the 
SVM model successfully predicted 124 samples as negative, 
properly recognizing the lack of medical diseases among the 
genuine negative samples (showing the absence of diabetes). 
But in 26 samples, the model misclassifies them as positive, 
thus implying the existence of a healthcare concern when 
there isn't one. 

Table IV presents a comprehensive overview of the 
performance of the proposed SVM model in terms of various 
evaluation metrics. During the training phase, the SVM model 
achieved the following percentages for each metric: 79.32% 
accuracy, 20.67% miss-classification rate, 62.56% sensitivity, 
88.28% specificity, 74.05% precision, 11.71% False positive 
rate, 25.94% False discovery rate, 18.46% False omission rate, 
534.10% Positive likelihood ratio, 478.00% Negative 
likelihood ratio, 30.20% Prevalence threshold, 51.31% critical 
success index, 67.82% F1 Score, 53.16% Mathews 
Correlation coefficient, 68.06% Fowlkes-Mallows Index, 
50.85% informedness, and 1259.68% Diagnostic odds ratio. 
During the validation phase, the performance of the model is 
evaluated, and the following evaluation metrics are obtained: 
74.46% accuracy, 25.54% miss-classification rate, 59.25% 
sensitivity, 82.66% specificity, 64.86% precision, 17.33% 
False positive rate, 35.13% False discovery rate, 21.01% False 
omission rate, 341.88% Positive likelihood ratio, 393.29% 
Negative likelihood ratio, 35.10% Prevalence threshold, 
44.86% critical success index, 61.93% F1 Score, 42.87% 
Mathews Correlation coefficient, 61.99% Fowlkes-Mallows 
Index, 41.92% informedness, and 693.70% Diagnostic odds 
ratio. 

TABLE II. SVM MODEL'S: PIMA DIABETES DATASET – TRAINING PHASE 

– 70:30 

 

 

Input 

Total number of 

samples 

(537) 

Result (output) 

Expected output Predicted 

positive 

Predicted 

negative 

187(positive) 117(TP) 70(FN) 

350(negative) 41(FP) 309(TN) 

TABLE III. SVM MODEL'S: PIMA DIABETES DATASET – TESTING PHASE – 

70:30 

Input Total number of 

samples 

(231) 

Result (output) 

Expected output Predicted 

positive 

Predicted 

negative 

81(positive) 48(TP) 33(FN) 

150(negative) 26(FP) 124(TN) 
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TABLE IV. SVM MODEL'S (PIMA DIABETES DATASET) EVALUATION METRICS, 70:30 

 Testing Training 

Accuracy 0.7445 

(74.46 %) 

0.7932 

(79.32 %) 

Miss-classification rate 0.2554 

(25.54 %) 

0.2067 

(20.67 %) 

Sensitivity 0.5925 

(59.25 %) 

0.6256 

(62.56 %) 

Specificity 0.8266 

(82.66 %) 

0.8828 

(88.28 %) 

Precision 0.6486 

(64.86 %) 

0.7405 

(74.05 %) 

False positive rate 0.1733 

(17.33 %) 

0.1171 

(11.71 %) 

False discovery rate 0.3513 

(35.13 %) 

0.2594 

(25.94%) 

false omission rate 0.2101 

(21.01 %) 

0.1846 

(18.46 %) 

Positive likelihood ration 3.4188 

(341.88 %) 

5.3410 

(534.10 %) 

Negative likelihood ratio 3.9329 

(393.29 %) 

4.7800 

(478.00 %) 

prevalence threshold 0.3510 

(35.10 %) 

0.3020 

(30.20 %) 

critical success index 0.4485 

(44.859 %) 

0.5131 

(51.31 %) 

F1 Score 0.6193 

(61.93 %) 

0.6782 

(67.82 %) 

Mathews Correlation co-efficient 0.4287 

(42.87 %) 

0.5316 

(53.16 %) 

Fowlkes-Mallows Index 0.6199 

(61.99 %) 

0.6806 

(68.06 %) 

informedness 0.4192 

(41.92 %) 

0.5085 

(50.85 %) 

Diagnostic odds ratio 6.9370 

(693.70 %) 

12.5968 

(1259.68 %) 

B. DPEMDFML - SVM System Model - using Pima Diabetes 

Dataset - 75:25 

Again, using SVM model with the Pima Diabetes Dataset. 
The dataset is divided into 25% for testing (n=192) and 75% 
for training (n=576) to assess the model's performance 
accurately. The performance evaluation of the SVM model is 
depicted in Table V and Table VI, which illustrate the 
confusion matrix. 

Table V demonstrates the performance of the SVM model 
in predicting diabetic illness during the training phase. The 
training dataset comprises 576 samples, with 203 being true 
positive cases, indicating the presence of diabetes, and 373 

being true negative cases, indicating the absence of diabetes. 
For the true positive cases, the SVM algorithm successfully 
identifies and correctly classifies 124 samples as positive, 
meaning that it accurately detects the absence of healthcare 
problems in those cases. However, the algorithm makes 79 
errors by misclassifying some samples as negatives, falsely 
suggesting the absence of healthcare concerns when diabetes 
is actually present. Regarding the true negative cases, the 
SVM model performs well by accurately predicting and 
classifying 330 samples as negative, properly recognizing the 
absence of diabetes and the presence of other medical issues in 
those cases. Nevertheless, the model misclassifies 43 samples 
as positive, falsely indicating the presence of a healthcare 
issue when there is, in fact, no such health concern. 
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TABLE V. SVM MODEL'S - PIMA DIABETES DATASET – TRAINING PHASE 

– 75:25 

 

 

Input 

Total number 

of samples 

(576) 

Result (output) 

Expected output Predicted 

positive 

Predicted 

negative 

203(positive) 124(TP) 79(FN) 

373 (negative) 43(FP) 330(TN) 

During the testing phase, Table VI showcases the SVM 
model's predictions for diabetes disease. The testing dataset 
consists of 192 samples, which are further categorized into 65 
real positive samples, indicating the presence of diabetes, and 
127 real negative samples, indicating the absence of diabetes. 
Among the real positive samples (indicating the presence of 
diabetes), the SVM model correctly identifies 36 samples as 
positive, accurately signaling the absence of healthcare issues. 
However, the model misclassifies 29 records as negatives, 
incorrectly suggesting the presence of healthcare issues when 
there is none. On the other hand, among the real negative 
samples (indicating the absence of diabetes), the SVM model 
correctly predicts 105 samples as negative, appropriately 
identifying the presence of healthcare conditions. However, 
the model makes errors in 22 samples, wrongly classifying 

them as positive, inaccurately indicating the absence of a 
healthcare issue when there is a health concern. 

Table VII presents a comprehensive overview of the 
performance of the proposed SVM model in terms of various 
evaluation metrics. During the training phase, the SVM model 
achieved the following percentages for each metric: 78.81%, 
21.18%, 61.08%, 88.47%, 74.25%, 11.52%, 25.74%, 19.31 %, 
529.86 %, 458.03 %, 30.82%, 50.40%, 67.02%, 52.17%, 
67.34%, 49.55%, 1204.59%, accuracy, miss-classification 
rate, sensitivity, specificity, precision, False positive rate, 
False discovery rate, False omission rate, Positive likelihood 
ratio, Negative likelihood ratio, Prevalence threshold, critical 
success index, F1 Score, Mathews Correlation coefficient, 
Fowlkes-Mallows Index, informedness, and Diagnostic odds 
ratio, respectively.  During the validation phase, the 
performance of the model is evaluated, and the following 
evaluation metrics are obtained: 73.43% accuracy, 26.56 % 
miss-classification rate, 55. 38 % sensitivity, 82.67% 
specificity, 62.06% precision, 17.32% False positive rate, 37. 
93% False discovery rate, 21.64% False omission rate, 
319.72% Positive likelihood ratio, 382.02% Negative 
likelihood ratio, 35.86% Prevalence threshold, 41.37% critical 
success index, 58.53% F1 Score, 39.22% Mathews 
Correlation coefficient, 58.63% Fowlkes-Mallows Index, 
38.06% informedness, and 592.47% Diagnostic odds ratio. 

TABLE VI. SVM MODEL'S - PIMA DIABETES DATASET – TESTING PHASE – 75:25 

 Testing Training 

Accuracy 0.7343  

(73.43 %) 

0.7881  

(78.81 %) 

Miss-classification rate 0.2656  

(26.56 %) 

0.2118  

(21.18 %) 

Sensitivity 0.5538  

(55.38 %) 

0.6108  

(61.08 %) 

Specificity 0.8267  

(82.67 %) 

0.8847  

(88.47 %) 

Precision 0.6206  

(62.06 %)  

0.7425  

(74.25 %) 

False positive rate 0.1732  

(17.32 %) 

0.1152  

(11.52 %) 

False discovery rate 0.3793  

(37. 93 %) 

0.2574  

(25.74%) 

false omission rate 0.2164  

(21.64%) 

0.1931  

(19.31 %) 

Positive likelihood ration 3.1972  

(319.72 %) 

5.2986  

(529.86 %) 

Negative likelihood ratio 3.8202  

(382.02 %) 

4.5803  

(458.03 %) 

prevalence threshold 0.3586  

(35.86 %) 

0.3028  

(30.82 %) 

critical success index 0.4137  

(41.37 %) 

0.5040  

(50.40 %) 
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F1 Score 0.5853  

(58.53 %) 

0.6702  

(67.02 %) 

Mathews Correlation co-efficient 0.3922  

(39.22 %) 

0.5217  

(52.17 %) 

Fowlkes-Mallows Index 0.5863  

(58.63 %) 

0.6734  

(67.34 %) 

informedness 0.3806  

(38.06 %) 

0.4955  

(49.55 %) 

Diagnostic odds ratio 5.9247  

(592.47 %) 

12.0459  

(1204.59 %) 

TABLE VII. SVM MODEL'S (PIMA DIABETES DATASET) EVALUATION METRICS, 75:25

 Testing Training 

Accuracy 0.7343  

(73.43 %) 

0.7881  

(78.81 %) 

Miss-classification rate 0.2656  

(26.56 %) 

0.2118  

(21.18 %) 

Sensitivity 0.5538  

(55.38 %) 

0.6108  

(61.08 %) 

Specificity 0.8267  

(82.67 %) 

0.8847  

(88.47 %) 

Precision 0.6206  

(62.06 %)  

0.7425  

(74.25 %) 

False positive rate 0.1732  

(17.32 %) 

0.1152  

(11.52 %) 

False discovery rate 0.3793  

(37. 93 %) 

0.2574  

(25.74%) 

false omission rate 0.2164  

(21.64%) 

0.1931  

(19.31 %) 

Positive likelihood ration 3.1972  

(319.72 %) 

5.2986  

(529.86 %) 

Negative likelihood ratio 3.8202  

(382.02 %) 

4.5803  

(458.03 %) 

prevalence threshold 0.3586  

(35.86 %) 

0.3028  

(30.82 %) 

critical success index 0.4137  

(41.37 %) 

0.5040  

(50.40 %) 

F1 Score 0.5853  

(58.53 %) 

0.6702  

(67.02 %) 

Mathews Correlation co-efficient 0.3922  

(39.22 %) 

0.5217  

(52.17 %) 

Fowlkes-Mallows Index 0.5863  

(58.63 %) 

0.6734  

(67.34 %) 

informedness 0.3806  

(38.06 %) 

0.4955  

(49.55 %) 

Diagnostic odds ratio 5.9247  

(592.47 %) 

12.0459  

(1204.59 %) 
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C. DPEMDFML - SVM System Model - using EHRs Dataset - 

70:30 

The SVM model was utilized in this study with the EHRs 
Dataset (Electronic Health Records Dataset). To ensure a 
robust evaluation of the model's performance, the dataset was 
divided into 30% for testing (n=30,000) and 70% for training 
(n=70,000). To assess the effectiveness of the SVM model, its 
performance was analysed using two distinct evaluation 
tables: Table VIII and Table IX, both presenting the confusion 
matrix. 

During the training phase, the SVM model's diabetes 
predictions are presented in Table VIII. The training dataset 
consists of an extensive sample of 70,000 records, which are 
further categorized into 5,972 instances as positive cases, 
indicating the presence of diabetes, and 64,028 instances as 
negative cases, indicating the absence of diabetes. Among the 
actual positive cases, the SVM model correctly identifies 
3,621 samples as positive, correctly indicating the absence of 
healthcare issues. However, the model misclassifies 2,351 
records as negative, falsely signalling the presence of 
healthcare issues where there are none. On the other hand, 
among the actual negative cases, the SVM model accurately 
predicts 63,602 samples as negative, correctly identifying the 
presence of healthcare conditions. However, the model makes 
errors in 426 samples, incorrectly classifying them as positive, 
falsely indicating the absence of a healthcare issue. 

During the testing phase, the SVM model's predictions for 
diabetes disease are displayed in Table IX. The testing dataset 
comprises 30,000 samples, which are further categorized into 
2,528 true positive cases, indicating the presence of diabetes, 
and 27,472 true negative cases, indicating the absence of 
diabetes. Among the true positive cases, the SVM model 
correctly classifies 1,515 samples as positive, accurately 
indicating the absence of any healthcare issues. However, the 
model misclassifies 1,013 records as negative, falsely 
indicating the presence of healthcare issues when there are 
none. Conversely, among the true negative cases, the SVM 
model accurately predicts 27,298 samples as negative, 
correctly identifying the presence of healthcare conditions. 
Nevertheless, the model makes errors in 174 samples, 
incorrectly classifying them as positive, falsely indicating the 
absence of a healthcare issue. 

Table X presents a comprehensive overview of the 
performance of the proposed SVM model in terms of various 
evaluation metrics. During the training phase, the SVM model 
achieved the following percentages for each metric: 96.03%, 
3.96%, 60.63%, 99.33%, 89.47%, 0.66%, 10.52%, 3.56%, 
9113.16%, 2786.65%, 9.48%, 56.59%, 72.28%, 71.77%, 
73.65%, 59.96%, 22995.19%, accuracy, miss-classification 
rate, sensitivity, specificity, precision, False positive rate, 
False discovery rate, False omission rate, Positive likelihood 
ratio, Negative likelihood ratio, Prevalence threshold, critical 
success index, F1 Score, Mathews Correlation coefficient, 
Fowlkes-Mallows Index, informedness, and Diagnostic odds 
ratio, respectively. During the validation phase, the 
performance of the model is evaluated, and the following 
evaluation metrics are obtained: 96.04%, 3.95%, 59.92%, 

99.36%, 89.69%, 0.63%, 10.3%, 3.57%, 9461.86%, 
2777.06%, 9.32%, 56.06%, 71.85%, 71.45%, 73.31%, 
59.29%, 23463.06%, accuracy, miss-classification rate, 
sensitivity, specificity, precision, False positive rate, False 
discovery rate, False omission rate, Positive likelihood ratio, 
Negative likelihood ratio, Prevalence threshold, critical 
success index, F1 Score, Mathews Correlation coefficient, 
Fowlkes-Mallows Index, informedness, and Diagnostic odds 
ratio, respectively. 

D. DPEMDFML - SVM System Model - using EHRs Dataset 

– 75:25 

Here, the SVM model with the EHRs Dataset (Electronic 
Health Records Dataset) is employed. To ensure a robust 
assessment of the model's performance, the dataset was split 
into 25% for testing (n=25,000) and 75% for training 
(n=75,000). To evaluate the SVM model's effectiveness, two 
different evaluation tables was used to analyse its 
performance: Table XI and Table XII, which present the 
confusion matrix. 

During the training phase, the SVM model's diabetes 
predictions are presented in Table XI. The training dataset 
consists of 75,000 samples, which are further categorized into 
6,409 true positive cases, indicating the presence of diabetes, 
and 68,591 true negative cases, indicating the absence of 
diabetes. Among the true positive cases, the SVM model 
correctly identifies 3,876 samples as positive, accurately 
indicating the absence of healthcare issues. However, the 
model misclassifies 2,533 records as negative, falsely 
signalling the presence of healthcare issues where there are 
none. On the other hand, among the true negative cases, the 
SVM model accurately predicts 68,111 samples as negative, 
correctly identifying the presence of healthcare conditions. 
However, the model makes errors in 480 samples, incorrectly 
classifying them as positive, falsely indicating the absence of a 
healthcare issue. 

TABLE VIII. SVM MODEL'S - EHRS DIABETES DATASET – TRAINING 

PHASE – 70:30 

 
 

Input 

Total number 

of samples 

(70000) 

Result (output) 

Expected output Predicted 
positive 

Predicted 
negative 

5972(positive) 3621(TP) 2351(FN) 

64028(negative) 426(FP) 63602(TN) 

TABLE IX. SVM MODEL'S - EHRS DIABETES DATASET – TESTING PHASE 

– 70:30 

 

 
Input 

Total number 

of samples 

(30000) 

Result (output) 

Expected output Predicted 

positive 

Predicted 

negative 

2528(positive) 1515(TP) 1013(FN) 

27472(negative) 174(FP) 27298(TN) 
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TABLE X. SVM MODEL'S (EHRS DIABETES DATASET) EVALUATION METRICS, 70:30 

 Testing Training 

Accuracy 
0.9604 

(96.04 %) 

0.9603 

(96.03 %) 

Miss-classification rate 
0.0395 
(3. 95 %) 

0.0396 
(3.96 %) 

Sensitivity 
0.5992 

(59.92 %) 

0.6063 

(60.63 %) 

Specificity 
0.9936 
(99.36 %) 

0.9933 
(99.33 %) 

Precision 
0.8969 

(89.69 %) 

0.8947 

(89.47 %) 

False positive rate 
0.0063 

(0.63 %) 

0.0066 

(0.66 %) 

False discovery rate 
0.1030 
(10. 3 %) 

0.1052 
(10.52%) 

false omission rate 
0.0357 

(3.57 %) 

0.0356 

(3.56 %) 

Positive likelihood ration 
94.6186 
(9461.86 %) 

91.1316 
(9113.16 %) 

Negative likelihood ratio 
27.7706 

(2777.06 %) 

27.8665 

(2786.65 %) 

prevalence threshold 
0.0932 

(9.32%) 

0.0948 

(9.48 %) 

critical success index 
0.5606 

(56.06 %) 

0.5659 

(56.59 %) 

F1 Score 
0.7185 

(71.85 %) 

0.7228 

(72.28 %) 

Mathews Correlation co-efficient 
0.7145 
(71.45 %) 

0.7177 
(71.77 %) 

Fowlkes-Mallows Index 
0.7331 

(73.31 %) 

0.7365 

(73.65 %) 

informedness 
0.5929 
(59.29 %) 

0.5996 
(59.96 %) 

Diagnostic odds ratio 
234.6306 

(23463.06 %) 

229.9519 

(22995.19 %) 

During the testing stage, Table XII showcases the SVM 
model's diabetes predictions. The test dataset comprises 
25,000 samples, split into 2,091 true positive cases (indicating 
the presence of diabetes) and 22,909 true negative cases 
(indicating the absence of diabetes). Among the true positive 
cases, the SVM model accurately identifies 1,266 samples as 
positive, correctly indicating the absence of healthcare issues. 
However, the model misclassifies 825 records as negative, 
erroneously suggesting the presence of healthcare issues. 
Conversely, among the true negative cases, the SVM model 
precisely predicts 22,758 samples as negative, correctly 
recognizing the presence of healthcare conditions. However, 
the model makes 151 errors, incorrectly classifying them as 
positive, falsely indicating the absence of healthcare issues. 

Table XIII presents a comprehensive overview of the 
performance of the proposed SVM model in terms of various 
evaluation metrics. During the training phase, the SVM model 
achieved the following percentages for each metric: 95.98%, 
4.01%, 60.47%, 99.30%, 88.98%, 0.69%, 11.01%, 3.58%, 
8642.10%, 2769.42%, 9.71%, 56.26%, 72.01%, 71.44%, 
73.35%, 59.77%, 21713.23%, accuracy, miss-classification 
rate, sensitivity, specificity, precision, False positive rate, 
False discovery rate, False omission rate, Positive likelihood 
ratio, Negative likelihood ratio, Prevalence threshold, critical 

success index, F1 Score, Mathews Correlation coefficient, 
Fowlkes-Mallows Index, informedness, and Diagnostic odds 
ratio, respectively. During the validation phase, the 
performance of the model is evaluated, and the following 
evaluation metrics are obtained: 96.09%, 3.90%, 60.54%, 
99.34%, 89.34%, 0.65%, 10.65%, 3.49%, 9185.62%, 
2839.70%, 9.44%, 56.46%, 72.17%, 71.70%, 73.54%, 
59.88%, 23127.93%, accuracy, miss-classification rate, 
sensitivity, specificity, precision, False positive rate, False 
discovery rate, False omission rate, Positive likelihood ratio, 
Negative likelihood ratio, Prevalence threshold, critical 
success index, F1 Score, Mathews Correlation coefficient, 
Fowlkes-Mallows Index, informedness, and Diagnostic odds 
ratio, respectively. 

TABLE XI. SVM MODEL'S - EHRS DIABETES DATASET – TRAINING 

PHASE – 75:25 

 
 

Input 

Total number 

of samples 

(75000) 

Result (output) 

Expected output Predicted 
positive 

Predicted 
negative 

6409(positive) 3876(TP) 2533(FN) 

68591(negative) 480(FP) 68111(TN) 
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TABLE XII. SVM MODEL'S - EHRS DIABETES DATASET – TESTING PHASE – 75:25 

 

 

Input 

Total number of samples (25000) Result (output) 

Expected output Predicted positive Predicted negative 

2091(positive) 1266(TP) 825(FN) 

22909(negative) 151(FP) 22758(TN) 

TABLE XIII. SVM MODEL'S (EHRS DIABETES DATASET) EVALUATION METRICS, 75:25 

 Testing Training 

Accuracy 
0.9609 

(96.09 %) 

0.9598 

(95.98 %) 

Miss-classification rate 
0.0390 

(3.90 %) 

0.0401 

(4.01 %) 

Sensitivity 
0.6054 
(60.54 %) 

0.6047 
(60.47 %) 

Specificity 
0.9934 

(99.34 %) 

0.9930 

(99.30 %) 

Precision 
0.8934 

(89.34 %) 

0.8898 

(88.98 %) 

False positive rate 
0.0065 

(0.65 %) 

0.0069 

(0.69 %) 

False discovery rate 
0.1065 

(10. 65 %) 

0.1101 

(11.01%) 

false omission rate 
0.0349 
(3.49%) 

0.0358 
(3.58 %) 

Positive likelihood ration 
91.8562 

(9185.62 %) 

86.4210 

(8642.10 %) 

Negative likelihood ratio 
28.3970 
(2839.70 %) 

27.6942 
(2769.42 %) 

prevalence threshold 
0.0944 

(9.44 %) 

0.0971 

(9.71 %) 

critical success index 
0.5646 

(56.46 %) 

0.5626 

(56.26 %) 

F1 Score 
0.7217 

(72.17 %) 

0.7201 

(72.01 %) 

Mathews Correlation co-efficient 
0.7170 

(71.70 %) 

0.7144 

(71.44 %) 

Fowlkes-Mallows Index 
0.7354 
(73.54 %) 

0.7335 
(73.35 %) 

informedness 
0.5988 

(59.88 %) 

0.5977 

(59.77 %) 

Diagnostic odds ratio 
231.2793 
(23127.93 %) 

217.1323 
(21713.23 %) 

E. DPEMDFML - ANN System Model - using Pima Diabetes 

Dataset - 70:30 

Shifting our focus to the second algorithm used in this 
research, the Artificial Neural Network (ANN) model was 
employed, and the Pima Diabetes Dataset was utilized for 
evaluation. To ensure a robust assessment of the model's 
effectiveness, the dataset was split into two sets: 20% for 
testing (n=231) and 70% for training (n=537). To gauge the 
performance of the ANN model, a detailed analysis was 
conducted using two distinct evaluation tables: Table XIV and 
Table XV. These tables present the confusion matrix, 
providing valuable insights into the model's ability to deliver 
accurate predictions during both the testing and training 
phases. 

During the training stage, Table XIV illustrates the ANN 
model’s predictions for diabetes disease. The training dataset 

consists of 537 samples, further divided into 188 true positive 
cases, indicating the presence of diabetes, and 349 true 
negative cases, indicating the absence of diabetes. Among the 
true positive cases, the ANN model correctly identifies 157 
samples as positive, accurately indicating the absence of 
healthcare issues. However, the model misclassifies 31 
records as negative, falsely indicating the presence of 
healthcare issues. Conversely, among the true negative cases, 
the ANN model accurately predicts 327 samples as negative, 
correctly identifying the presence of healthcare conditions. 
However, the model makes 22 errors, incorrectly classifying 
them as positive, falsely indicating the absence of a healthcare 
issue. 

During the testing phase, the ANN model's predictions for 
diabetes disease are shown in Table XV. The testing dataset 
consists of 231 samples, further divided into 80 true positive 
cases, indicating the presence of diabetes, and 151 true 
negative cases, indicating the absence of diabetes. Among the 
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true positive cases, the ANN model correctly identifies 47 
samples as positive, accurately indicating the absence of 
healthcare issues. However, the model misclassifies 33 
records as negative, falsely signalling the presence of 
healthcare issues where there are none. On the other hand, 
among the true negative cases, the ANN model accurately 
predicts 116 samples as negative, correctly identifying the 
presence of healthcare conditions. However, the model makes 
35 errors, incorrectly classifying them as positive, falsely 
indicating the absence of a healthcare issue. 

Table XVI provides a comprehensive summary of the 
proposed ANN model's performance during the training 
phase, showcasing various evaluation metrics. The 
percentages for each metric achieved by the ANN model are 
as follows: 90.13% accuracy, 9.86% miss-classification rate, 
83.51% sensitivity, 93.69% specificity, 87.70% precision, 
6.30% false positive rate, 12.29% false discovery rate, 6.30% 
false omission rate, 1324.78% positive likelihood ratio, 
17.59% negative likelihood ratio, 44.90% prevalence 
threshold, 77.20% critical success index, 85.55% F1 Score, 
78.12% Mathews Correlation coefficient, 83.78% Fowlkes-
Mallows Index, 77.20% informedness, and 7527.71% 
diagnostic odds ratio. During the validation phase, the 
performance of the model is evaluated, and the following 
evaluation metrics are obtained: 70.56%, 29.43%, 58.75%, 

76.82%, 57.31%, 23.17%, 42.68%, 23.17%, 253.46%, 
53.69%, 40.96%, 35.57%, 58.02%, 35.36%, 61.55%, 35.57%, 
472.03%, accuracy, miss-classification rate, sensitivity, 
specificity, precision, False positive rate, False discovery rate, 
False omission rate, Positive likelihood ratio, Negative 
likelihood ratio, Prevalence threshold, critical success index, 
F1 Score, Mathews Correlation coefficient, Fowlkes-Mallows 
Index, informedness, and Diagnostic odds ratio, respectively. 

TABLE XIV. ANN MODEL'S - PIMA DIABETES DATASET – TRAINING PHASE 

– 70:30 

Input 

Total number of 

samples (537) 
Result (output) 

Expected output Predicted positive 
Predicted 
negative 

188(positive) 157(TP) 31(FN) 

349 (negative) 22(FP) 327 (TN) 

TABLE XV. ANN MODEL'S - PIMA DIABETES DATASET – TESTING PHASE – 

70:30 

 

 
Input 

Total number of 

samples (231) 
Result (output) 

Expected output Predicted positive 
Predicted 

negative 

80(positive) 47(TP) 33(FN) 

151(negative) 35(FP) 116(TN) 

TABLE XVI. ANN MODEL'S (PIMA DIABETES DATASET) EVALUATION METRICS, 70:30 

 Testing Training 

Accuracy 
0.7056 
(70.56 %) 

0.9013 
(90.13%) 

Miss-classification rate 
0.2943 
(29.43 %) 

0.0986 
(9.86 %) 

Sensitivity 
0.5875 
(58.75 %) 

0.8351 
(83.51%) 

Specificity 
0.7682 
(76.82 %) 

0.9369 
(93.69 %) 

Precision 
0.5731 
(57.31 %) 

0.8770 
(87.70%) 

False positive rate 
0.2317 
(23.17 %) 

0.0630 
(6.30 %) 

False discovery rate 
0.4268 
(42. 68 %) 

0.1229 
(12.29 %) 

false omission rate 
0.2317 
(23.17%) 

0.06303 
(6.30 %) 

Positive likelihood ration 
2.5346 
(253.46 %) 

13.2478 
(1324.78 %) 

Negative likelihood ratio 
0.5369 
(53.69 %) 

0.1759 
(17.59 %) 

prevalence threshold 
0.4096 
(40.96 %) 

0.4490 
(44.90 %) 

critical success index 
0.3557 

(35.57 %) 

0.7720 

(77.20 %) 

F1 Score 
0.5802 
(58.02 %) 

0.8555 
(85.55 %) 

Mathews Correlation co-efficient 
0.3536 
(35.36 %) 

0.7812 
(78.12 %) 

Fowlkes-Mallows Index 
0.6155 
(61.55 %) 

0.8378 
(83.78 %) 

Informedness 
0.3557 
(35.57 %) 

0.7720 
(77.20 %) 

Diagnostic odds ratio 
4.7203 
(472.03 %) 

75.2771 
(7527.71 %) 
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F. DPEMDFML - ANN System Model - using Pima Diabetes 

Dataset - 75:25 

Once more, the ANN model was utilized with the Pima 
Diabetes Dataset. The dataset here was split into 25% for 
testing (n=192) and 75% for training (n=576) to ensure a 
thorough evaluation of the model's performance. The 
performance metrics of the ANN model are presented in 
Table XVII and Table XVIII, displaying the confusion matrix 
results. 

During the training phase, Table XVII showcases the ANN 
model's predictions for diabetes disease. Out of the 576 
samples used for training, 199 are identified as real positive 
cases, and 377 as real negative cases. Among these, 172 are 
correctly identified as positive, meaning no healthcare issues 
have been observed, while 27 are incorrectly projected as 
negatives, indicating a healthcare issue is present. Regarding 
the 377 samples with negative results, indicating the presence 
of a healthcare condition, 352 samples are correctly forecasted 
as negative, and 25 samples are wrongly forecasted as 
positive, indicating the absence of a healthcare issue. 

During the testing phase, Table XVIII displays the ANN 
model's predictions for diabetes disease. The dataset consists 
of 192 samples, divided into 69 real positive cases and 123 
real negative cases. Among these, the model correctly 
identifies 45 samples as positive, indicating no healthcare 
issues observed, while 24 samples are incorrectly projected as 
negatives, suggesting a healthcare issue. For the 123 samples 
with negative results, indicating the presence of a healthcare 
condition, the model appropriately forecasts 92 as negative, 
and 31 samples are wrongly forecasted as positive, indicating 
the absence of a healthcare issue. 

Table XIX provides a comprehensive summary of the 
proposed ANN model's performance during the training 
phase, showcasing various evaluation metrics. The 
percentages for each metric achieved by the ANN model are 
as follows: 90.97%, 9.02%, 86.43%, 93.36%, 87.30%, 6.63%, 
12.96%, 5.88%, 1303.39%, 14.53%, 46.53%, 79.80%, 
86.86%, 79.99%, 84.98%, 79.80%, 8969.48%, accuracy, miss-
classification rate, sensitivity, specificity, precision, False 
positive rate, False discovery rate, False omission rate, 
Positive likelihood ratio, Negative likelihood ratio, Prevalence 
threshold, critical success index, F1 Score, Mathews 
Correlation coefficient, Fowlkes-Mallows Index, 
informedness, and Diagnostic odds ratio, respectively. During 
the validation phase, the performance of the model is 
evaluated, and the following evaluation metrics are obtained: 
71.35%, 28.64%, 65.21%, 74.79%, 59.21%, 25.20%, 40.78%, 
20.68%, 258.76%, 46.50%, 45.21%, 40.01%, 62.06%, 
39.26%, 61.10%, 40.01%, 556.45%, accuracy, miss-
classification rate, sensitivity, specificity, precision, False 
positive rate, False discovery rate, False omission rate, 
Positive likelihood ratio, Negative likelihood ratio, Prevalence 
threshold, critical success index, F1 Score, Mathews 

Correlation coefficient, Fowlkes-Mallows Index, 
informedness, and Diagnostic odds ratio, respectively. 

G. DPEMDFML - ANN System Model - using EHRs Dataset - 

70:30 

Utilizing the same algorithm, the ANN model applied to 
the second dataset, referred to as the EHRs Dataset (Electronic 
Health Records Dataset). To achieve a comprehensive 
evaluation of the model's performance, the data set was split 
as: 30% for testing (n = 30,000) and 70% for training (n = 
70,000). The effectiveness of the ANN model was assessed 
through a thorough analysis of its performance using two 
separate evaluation tables: Table XX and Table XXI. These 
tables present detailed information from the confusion matrix, 
offering insights into the model's performance during both the 
testing and training phases. 

During the training phase, Table XX displays the 
outcomes of the ANN model's predictions for diabetes disease. 
In this phase, the model uses a dataset consisting of 70,000 
samples, which are further divided into 5,972 real positive 
cases and 64,028 real negative cases. Among the real positive 
cases, 4,265 samples are correctly identified as positive, 
indicating the absence of healthcare issues. However, 1,707 
samples are incorrectly classified as negatives, implying 
potential healthcare concerns. Regarding the real negative 
cases, which represent the presence of a healthcare condition, 
the model accurately predicts 63,938 samples as negative, 
indicating the presence of healthcare issues. However, 90 
samples are falsely predicted as positive, suggesting the 
absence of healthcare issues, when in fact, they should have 
been classified as negative. 

TABLE XVII. ANN MODEL'S - PIMA DIABETES DATASET – TRAINING PHASE 

– 75:25 

 
 

Input 

Total number 

of samples 

(576) 

Result (output) 

Expected output Predicted 
positive 

Predicted 
negative 

199(positive) 172(TP) 27(FN) 

377 (negative) 25(FP) 352(TN) 

TABLE XVIII. ANN MODEL'S - PIMA DIABETES DATASET – TESTING PHASE – 

75:25 

 
 

Input 

Total number 

of samples 

(192) 

Result (output) 

Expected output Predicted 

positive 

Predicted 

negative 

69(positive) 45(TP) 24(FN) 

123(negative) 31(FP) 92(TN) 
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TABLE XIX. ANN MODEL'S (PIMA DIABETES DATASET) EVALUATION METRICS, 75:25 

 Testing Training 

Accuracy 0.7135  

(71.35 %) 

0.9097  

(90.97%) 

Miss-classification rate 0.2864  
(28.64 %) 

0.0902  
(9.02 %) 

Sensitivity 0.6521  

(65.21 %) 

0.8643  

(86.43%) 

Specificity 0.7479  

(74.79 %) 

0.9336  

(93.36 %) 

Precision 0.5921  
(59.21 %)  

0.8730  
(87.30%) 

False positive rate 0.2520  

(25.20 %) 

0.0663  

(6.63 %) 

False discovery rate 0.4078 
(40.78 %) 

0.1269  
(12.96 %) 

false omission rate 0.2068  

(20.68 %) 

0.0588  

(5.88 %) 

Positive likelihood ration 2.5876  

(258.76 %) 

13.0339  

(1303.39 %) 

Negative likelihood ratio 0.4650  
(46.50 %) 

0.1453  
(14.53 %) 

prevalence threshold 0.4521  

(45.21 %) 

0.4653  

(46.53 %) 

critical success index 0.4001  
(40.01 %) 

0.7980  
(79.80 %) 

F1 Score 0.6206  

(62.06 %) 

0.8686  

(86.86 %) 

Mathews Correlation co-efficient 0.3926  
(39.26 %) 

0.7999  
(79.99 %) 

Fowlkes-Mallows Index 0.6110  

(61.10 %) 

0.8498  

(84.98 %) 

informedness 0.4001  

(40.01 %) 

0.7980  

(79.80 %) 

Diagnostic odds ratio 5.5645  

(556.45 %) 

89.6948  

(8969.48 %) 

During the testing phase, Table XXI demonstrates the 
ANN model's performance in predicting diabetes disease. The 
dataset used for testing consists of 30,000 samples, which are 
further divided into 2,528 actual positive cases and 27,472 
actual negative cases. The model correctly identifies 1,754 
positive cases, indicating the absence of healthcare issues. 
However, it mistakenly classifies 774 positive cases as 
negative, suggesting possible healthcare concerns. For the 
actual negative cases, which indicate the presence of 
healthcare conditions, the model accurately predicts 27,368 
samples as negative. This demonstrates its ability to identify 
the presence of healthcare issues correctly. Nevertheless, there 
are 104 false positive predictions, where the model incorrectly 
identifies cases as negative, indicating the absence of 
healthcare issues when they should have been classified as 
positive. 

Table XXII provides a comprehensive summary of the 
proposed ANN model's performance during the training 
phase, showcasing various evaluation metrics. The 
percentages for each metric achieved by the ANN model are 
as follows: 97.43% accuracy, 2.56% miss-classification rate, 
71.41% sensitivity, 99.85% specificity, 97.93% precision, 
0.14% false positive rate, 2.06% false discovery rate, 2.60% 
false omission rate, 50807.36% positive likelihood ratio, 
28.62% negative likelihood ratio, 35.77% prevalence 

threshold, 71.27% critical success index, 82.59% F1 Score, 
82.43% Mathews Correlation coefficient, 97.12% Fowlkes-
Mallows Index, and 177501.51% diagnostic odds ratio. 
During the validation phase, the performance of the model is 
evaluated, and the following evaluation metrics are obtained: 
97.07% accuracy, 2.92% miss-classification rate, 69.38% 
sensitivity, 99.62% specificity, 94.40% precision, 0.37% false 
positive rate, 5.59% false discovery rate, 2.75 % false 
omission rate, 18327.76% positive likelihood ratio, 30.733% 
negative likelihood ratio, 34.88% prevalence threshold, 
69.00% critical success index, 79.98% F1 Score, 79.52% 
Mathews Correlation coefficient, 96.73% Fowlkes-Mallows 
Index, and 59634.60% diagnostic odds ratio. 

TABLE XX. ANN MODEL'S - EHRS DIABETES DATASET – TRAINING 

PHASE – 70:30 

 
 

Input 

Total number 

of samples 

(70000) 

Result (output) 

Expected output Predicted 

positive 

Predicted 

negative 

5972(positive) 4265 (TP) 1707 (FN) 

64028 (negative) 90 (FP) 63938(TN) 
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TABLE XXI. ANN MODEL'S - EHRS DIABETES DATASET – TESTING PHASE – 70:30 

 

 
Input 

Total number of samples (30000) Result (output) 

Expected output Predicted positive Predicted negative 

2528(positive) 1754 (TP) 774 (FN) 

27472(negative) 104 (FP) 27368 (TN) 

TABLE XXII. ANN MODEL'S (EHRS DIABETES DATASET) EVALUATION METRICS, 70:30 

 Testing Training 

Accuracy 0.9707  

(97.07 %) 

0.9743  

(97.43 %) 

Miss-classification rate 0.0292  

(2.92 %) 

0.0256  

(2.56 %) 

Sensitivity 0.6938  

(69.38 %) 

0.7141  

(71.41 %) 

Specificity 0.9962  

(99.62 %) 

0.9985  

(99.85 %) 

Precision 0.9440 

(94.40 %)  

0.9793  

(97.93 %) 

False positive rate 0.0037  

(0.37 %) 

0.0014  

(0.14 %) 

False discovery rate 0.0559  

(5.59 %) 

0.0206  

(2.06 %) 

false omission rate 0.0275 
(2.75 %) 

0.0260 
(2.60 %) 

Positive likelihood ration 183.2776  

(18327.76 %) 

508.0736  

(50807.36 %) 

Negative likelihood ratio 0.30733  
(30.733 %) 

0.2862  
(28.62 %) 

prevalence threshold 0.3488  

(34.88 %) 

0.3577  

(35.77 %) 

critical success index 0.6900  
(69.00 %) 

0.7127 
(71.27 %) 

F1 Score 0.7998  

(79.98 %) 

0.8259  

(82.59 %) 

Mathews Correlation co-efficient 0.7952  
(79.52 %) 

0.8243  
(82.43 %) 

Fowlkes-Mallows Index 0.9673  

(96.73 %) 

0.9712  

97.12 %) 

Informedness 0.6900  
(69.00 %) 

0.7127  
(71.27 %) 

Diagnostic odds ratio 596.3460  

(59634.60 %) 

1775.0151  

(177501.51 %) 

H. DPEMDFML - ANN System Model - using EHRs Dataset - 

75:25 

In this study, the Artificial Neural Network (ANN) model 
was utilized to analyse the Electronic Health Records Dataset 
(EHRs Dataset). To ensure a rigorous evaluation of the 
model's capabilities, the dataset was split into 25% for testing, 
comprising 25,000 samples, and 75% for training, with 75,000 
samples. The effectiveness of the ANN model was thoroughly 
assessed using two distinct evaluation tables: Table XXIII and 
Table XXIV, which offer a detailed view of the confusion 
matrix and facilitate an in-depth analysis of the model's 
performance. 

During the training phase, Table XXIII depicts the 
predictions made by the ANN model for diabetes disease. The 
dataset used for training consists of 75,000 samples, which are 
further categorized into 6,409 real positive cases and 68,591 
real negative cases. The model accurately identified 4,582 
samples as truly positive, indicating the absence of healthcare 
issues. However, it misclassified 1,827 records as negatives, 

falsely signalling the presence of a healthcare condition. Out 
of the 68,591 negative results, which indicate the presence of a 
healthcare condition, the model correctly forecasted 68,472 
samples as negative, demonstrating its effectiveness in 
correctly identifying such cases. However, there were 119 
samples that were inaccurately forecasted as positive, 
indicating the absence of a healthcare issue when it was 
present. 

During the testing phase, Table XXIV presents the 
predictions made by the ANN model for diabetes disease. The 
dataset used for testing comprises 25,000 samples, which are 
further divided into 2,091 real positive cases and 22,909 real 
negative cases. The model accurately identified 1,461 samples 
as truly positive, indicating the absence of healthcare issues. 
However, it misclassified 630 records as negatives, falsely 
signaling the presence of a healthcare condition. Out of the 
22,909 negative results, which indicate the presence of a 
healthcare condition, the model correctly forecasted 22,827 
samples as negative, demonstrating its effectiveness in 
correctly identifying such cases. However, there were 82 
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samples that were inaccurately forecasted as positive, 
indicating the absence of a healthcare issue when it was 
present. 

Table XXV provides a comprehensive summary of the 
ANN model's performance during the training phase, 
displaying various evaluation metrics. The ANN model 
achieved the following percentages for each metric: 97.40% 
for accuracy, 2.59% for miss-classification rate, 71.49% for 
sensitivity, 99.82% for specificity, 97.96% for precision, 
0.17% for the False positive rate, 2.53% for the False 
discovery rate, 28.50% for the False omission rate, 41208.32% 
for the Positive likelihood ratio, 28.55% for the Negative 
likelihood ratio, 35.83% for the Prevalence threshold, 71.31% 
for the critical success index, 82.48% for the F1 Score, 
82.25% for the Mathews Correlation coefficient, 97.09% for 
the Fowlkes-Mallows Index, 71.31% for informedness, and 
144305.40% for the Diagnostic odds ratio. During the testing 
phase, the ANN model achieved the following percentages for 
each evaluation metric: 97.51% for accuracy, 2.84% for miss-
classification rate, 69.87% for sensitivity, 99.64% for 
specificity, 94.68% for precision, 0.35% for the False positive 
rate, 5.51% for the False discovery rate, 30.12% for the False 
omission rate, 19520.38% for the Positive likelihood ratio, 
30.23% for the Negative likelihood ratio, 35.11% for the 
Prevalence threshold, 69.51% for the critical success index, 

80.40% for the F1 Score, 79.96% for the Mathews Correlation 
coefficient, 96.82% for the Fowlkes-Mallows Index, 69.51% 
for informedness, and 64557.19% for the Diagnostic odds 
ratio. 

TABLE XXIII. ANN MODEL'S - EHRS DIABETES DATASET – TRAINING 

PHASE – 75:25 

 

 
Input 

Total number 

of samples 

(75000) 

Result (output) 

Expected output Predicted 

positive 

Predicted 

negative 

6409(positive) 4582 (TP) 1827 (FN) 

68591 (negative) 119 (FP) 68472(TN) 

TABLE XXIV. ANN MODEL'S - EHRS DIABETES DATASET – TESTING 

PHASE – 75:25 

 

 

Input 

Total number 

of samples 

(25000) 

Result (output) 

Expected output Predicted 

positive 

Predicted 

negative 

2091(positive) 1461 (TP) 630 (FN) 

22909(negative) 82 (FP) 22827 (TN) 

 

TABLE XXV. ANN MODEL'S (EHRS DIABETES DATASET) EVALUATION METRICS, 75:25 

 Testing Training 

Accuracy 0.9715  
(97.51 %) 

0.9740  
(97.40 %) 

Miss-classification rate 0.0284  

(2.84 %) 

0.0259  

(2.59 %) 

Sensitivity 0.6987  

(69.87 %) 

0.7149  

(71.49 %) 

Specificity 0.9964  

(99.64 %) 

0.9982  

(99.82 %) 

Precision 0.9468 
(94.68 %)  

0.9746  
(97.96 %) 

False positive rate 0.0035  

(0.35 %) 

0.0017 

 (0.17 %) 

False discovery rate 0.0531  
(5.51 %) 

0.0253  
(2.53 %) 

false omission rate 0.3012  

(30.12 %) 

0.2850  

(28.50 %) 

Positive likelihood ration 195.2038  
(19520.38 %) 

412.0832  
(41208.32 %) 

Negative likelihood ratio 0.3023  

(30.23 %) 

0.2855  

(28.55 %) 

prevalence threshold 0.3511  
(35.11 %) 

0.3583  
(35.83 %) 

critical success index 0.6951  

(69.51 %) 

0.7131  

(71.31 %) 

F1 Score 0.8040 
(80.40 %) 

0.8248  
(82.48 %) 

Mathews Correlation co-efficient 0.7996  

(79.96 %) 

0.8225  

(82.25 %) 

Fowlkes-Mallows Index 0.9682  
(96.82 %) 

0.9709 
97.09 %) 

Informedness 0.6951  

(69.51 %) 

0.7131  

(71.31 %) 

Diagnostic odds ratio 645.5719  

(64557.19 %) 

1443.0540  

(144305.40 %) 



IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 10, 2023 

595 | P a g e  

www.ijacsa.thesai.org 

The results of DPEMDFML model on the EHRs diabetes 
dataset indicate that the ANN model outperformed other 
algorithms in both the 70:30 and 75:25 ratio splits. With the 
70:30 split, the ANN model achieved an impressive accuracy 
of 97.43%, showcasing its robustness in correctly classifying 
diabetes cases. 

Similarly, in the 75:25 split, the ANN model maintained a 
high accuracy of 97.40%, further validating its effectiveness in 
handling the dataset.  On the other hand, the SVM model also 
showcased commendable results on the same EHRs diabetes 
dataset. In the 70:30 split, the SVM model achieved an 
accuracy of 96.03%, demonstrating its potential to effectively 
classify diabetes cases. 

In the 75:25 split, the SVM model maintained a high 
accuracy of 95.98%, further highlighting its capability to 
handle varying data proportions. Table XXVI show the 
accuracies reached in this study. 

TABLE XXVI. PERFORMANCE OF PROPOSED DPEMDFML MODEL W.R.T 

PIMA DATASET AND EHRS DATASET 

 
PIMA 

dataset 

70:30 

EHRs 

dataset 

70:30 

PIMA dataset 

75:25 

EHRs 

dataset 

75:25 

SVM 74.46 % 96.03% 78.81% 95.98% 

ANN 90.13% 97.43% 90.97%, 97.40% 

Table XXVII presented provides an overall comparison of 
the proposed DPEMDFML model with the previous works 
mentioned. The results clearly demonstrate that the accuracy 
of the proposed model has outperformed all the other 
accuracies reported in the mentioned works, using both of the 
employed algorithms. 

TABLE XXVII.  COMPARISON OF PROPOSED DPEMDFML MODEL WITH 

PREVIOUS WORKS MENTIONED 

Research Study Method Accuracy 

Akkarapol and 

Jongsawas [11] 
 77.11% 

Kavakiotis et al. [12]  84% 

Xue-Hui Meng et al. 
[13] 

 Logistic Regression 
Model 

 Decision Tree Model 
(C5.0) 

 Artificial Neural 
Networks (ANN) 

Model 

76.13% 
 

77.87% 

 
73.23% 

Dey et al. [15]  ANN Model with 
MMS 

82.35% 

Proposed DPEMDFML 

model 
 ANN 

 SVM 

97.43% 

96.03% 

VI. CONCLUSION 

In summary, this research offers a distinctive and thorough 
investigation of the application of machine learning 
approaches for diabetes detection. The proposed DPEMDFML 
model shows improved accuracy in predicting diabetes disease 
compared to earlier efforts by using two separate algorithms 
and two different datasets. The comprehensive assessment 

tables show that the SVM and ANN models performed well 
during both the testing and training periods. The suggested 
framework's use of machine learning fusion has the potential 
to diagnose diabetes earlier, resulting in proactive healthcare 
treatments and better patient outcomes. This work advances 
the field of diabetes diagnostic research by offering insightful 
information on the efficacy of various algorithms and datasets. 
The findings open the way for further study and model 
enhancement, with the goal of facilitating improved and more 
accurate diabetes detection in clinical situations. In future, we 
will incorporate more recent datasets to enhance the study's 
relevance and accuracy. 
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