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Abstract—This research presents a novel approach for 

detecting the highly perilous RPL version number attack in IoT 

networks using deep learning models, specifically Long Short-

Term Memory (LSTM) and Deep Neural Networks (DNN). The 
study employs the Cooja simulator to create a comprehensive 

dataset for simulating the attack. By training LSTM and DNN 

models on this dataset, intricate attack patterns are learned for 

effective detection. The urgency of this work is underscored by 

the critical need to bolster IoT network security. IoT networks 
have become increasingly integral in various domains, including 

healthcare, smart cities, and industrial automation. Any 

compromise in their security could result in severe consequences, 

including data breaches and potential harm. Traditional 

intrusion detection systems often struggle to counter advanced 
attacks like the RPL version number attack, which could lead to 

unauthorized access and disruption of essential services. 

Experimental results in this research showcase outstanding 

accuracy rates, surpassing traditional machine learning 

algorithms used in IoT network intrusion detection. This not only 
safeguards current IoT infrastructure but also provides a solid 

foundation for future research in countering this critical threat, 

ensuring the continued functionality and reliability of IoT 

networks in these crucial applications. 
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I. INTRODUCTION 

The Internet of Things (IoT) refers to a network of  
physical and virtual objects and the associated services they 

provide [1]. The sensors and actuators at the heart of the 

Internet of Things are responsible for data collect ion and 
action. Bluetooth, Wi-Fi, LoRa, IEEE802.15.4, etc. are only  

some of the various methods of connection used by these 
devices [2]. The Internet of Things (IoT) is a broad category 

that encompasses a wide range of technologies. In addition, 
the Internet of Things (IoT) is widely regarded as the 

networking parad igm of the future, with a vast array of objects 

predicted to become Internet-enabled [2]. 

     Most networks of such limited-capacity devices depend 

on having a router installed on the direct connection between 
nodes [3]. To  accommodate the limited resources of 

embedded devices, the Internet Engineering Task Force 
(IETF) developed the Routing Protocol for Low-power Lossy 

Networks (RPL) [4]. In addition to creating routing topologies 

that are devoid of loops, RPL also optimizes them in order to  
achieve application-specific objectives, such as reducing 

energy consumption [4]. Malicious nodes may  pose a threat to 

the network by abusing the same capabilities that make RPL 

so adaptable [5]. 

The impacts of RPL version number attacks are examined  

in this article. Only the DODAG's root node has access to the 

version number parameter, which is utilized as  a global repair 
operation indication in RPL. Nevertheless, this variable is not 

safeguarded in any way  to prevent unauthorized changes. 
Malicious version number changes have the potential to  

substantially impact network performance by using limited  
node resources. The distinguishing features of this research 

include the following : The ability to analyze power 
consumption, packet  delivery rat io, delay, and control packet  

overhead in relat ion to topology characteristics, and an 

artificial neural network (ANN) detection model are all 
necessary components of a realistic heterogeneous topology 

with both stationary and mobile nodes and node densities. 

This paper stands out by addressing the pressing necessity 

for effective defense against the highly dangerous RPL 
version number attack. While several studies have delved into 

IoT network security, this research offers a distinct value 

proposition through its innovative approach. It not only 
highlights the urgency of the issue but also introduces a 

pioneering method that utilizes deep learning models, 
specifically Long Short-Term Memory  (LSTM) and Deep  

Neural Networks (DNN), to tackle this critical threat. The 
uniqueness of our work lies in its comprehensive integration 

of simulated attack data generated via the Cooja simulator, 

which allows for the train ing of models to identify intricate 
attack patterns. By achieving exceptional accuracy rates, this 

paper surpasses traditional machine learn ing methods 
commonly  employed in IoT network intrusion detection. Our 

contribution is twofold: first, it addresses a critical need to 
fortify IoT network security, and second, it introduces an 

innovative approach that not only safeguards existing IoT 
infrastructure but also serves as a steppingstone for future 

research in mit igating this formidable threat. Th is introduction 

sets the stage for the distinctiveness and significance of our 
research in enhancing IoT network security. 

The paper will proceed as indicated below. Section II  
provides a review of relevant research, while Section III 

describes the RPL protocol. Sect ion IV describes proposed 
solution in depth. Section V provides the experimental results 

analysis. Section VI concludes the paper. 

II. RELATED WORKS 
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In [6], the authors addressed security issues in the Routing 
Protocol for Low Power and Lossy Networks (RPL) used in 

IoT devices. They proposed a new method called Secure RPL 
Routing Protocol (SRPL-RP) to detect, mit igate, and isolate 

rank and version number attacks in RPL networks. The 

protocol was designed to support various network topologies 
and was evaluated against existing solutions. The results 

showed significant improvements in packet  delivery rat io, 
control message efficiency, and energy consumption. SRPL-

RP achieved a high accuracy rate in detecting attacks. 

The research work in [7] addresses the security challenges 

in the Routing Protocol for Low Power and Lossy Networks 

(RPL) used in the Internet of Things (IoT). Specifically, the 
focus is on the Version Number Attack during the 

construction of the Destination Oriented Direct Acyclic Graph  
(DODAG), which leads to increased control traffic and 

performance degradation. The authors propose a new attack 
detection mechanism called  VeNADet, implemented in the 

Cooja Simulator. The outcomes show that VeNADet achieves 

a high True Positive rate in  detecting Version Number Attacks 
with a minimal false alarm rate. 

The research work in [8] aims to enhance the security of 
RPL networks by effectively identifying and mitigating such 

attacks. 

This research work delves into the analysis  of RPL version  

number attacks, considering various perspectives. The authors 

examine a realistic network topology comprising static and 
mobile nodes with different cardinalit ies, based on IETF 

routing requirement documents. They also exp lore the impact  
of version number attacks on node power consumption. By  

incorporating a probabilistic attacking model with different  
attack probabilit ies (e.g., 0, 0.3, 0.5, 0.7, 1), they assess the 

performance of the network. The research provides valuable 
insights into the consequences of version number attacks and 

their influence on network performance metrics. 

This research [9] focuses on the security of the Routing  
Protocol for Low power and Lossy Networks (RPL) in the 

context of IoT deployments. The authors propose a distributed 
monitoring arch itecture with dedicated algorithms to detect 

and mit igate attacks on the DODAG versioning  system in  
RPL-based environments. Extensive experiments evaluate the 

performance and scalability of the proposed solution. Overall, 

the research aims to enhance the security of RPL-based IoT 
networks by effectively identifying and countering malicious 

nodes. 

This research [10] addresses the vulnerability of the 

Routing Protocol for Low Power and Lossy Networks (RPL) 
to DODAG Version Number (DVN) attacks. The authors 

propose a method based on Linear Temporal Logic (LTL) and 

Discrete-Event System (DES) to detect DVN attacks. The 
approach improves correctness through formal verification  

and demonstrates effectiveness in simulations using the 
Contiki Cooja simulator. The proposed technique min imizes 

memory requirements and offers a higher level of security 
against stealthy attacks. 

This research [11] focuses on the vulnerability o f the 
Routing Protocol for Low Power and Lossy Networks (RPL) 

to control message tampering attacks in resource-constrained 
networks. The authors propose and analyze a modified version 

number attack that floods the network with falsified  

incremented version numbers. The results show a significant 
increase in overhead, energy consumption, and latency, while 

causing a degradation in the Packet Delivery Rat io (PDR). 
The study highlights the need for robust security measures to 

protect RPL-based networks and ensure reliab le and efficient  
operation. 

The identified gaps in existing research within the field of 

intrusion detection primarily revolve around the prevalent 
reliance on conventional machine learn ing models, which, 

although effective to some extent, may not harness the full 
potential of advanced techniques. Moreover, one noticeable 

limitat ion lies in the insufficient utilization of comprehensive 
simulated data, which is crucial for build ing and training  

precise intrusion detection systems. In order to address these 

critical shortcomings, our research presents an innovative and 
forward-looking approach. We leverage state-of-the-art deep 

learning models, specifically Long Short-Term Memory  
(LSTM) and Deep Neural Networks (DNN), to significantly  

enhance the accuracy and efficacy of intrusion detection. 
Additionally, to tackle the issue of limited comprehensive 

datasets, we have incorporated the Cooja simulator, which  

enables the creation of a rich and diverse dataset. This dataset, 
generated through simulation, plays a pivotal role in training  

our models effectively, as it better mimics real-world  
scenarios. These strategic adjustments in our research strategy 

serve to bridge the existing gaps by providing a more 
advanced and robust approach to securing IoT networks. By  

integrating LSTM and DNN into our intrusion detection 
framework and introducing the comprehensive dataset 

generated through simulation, our work distinguishes itself 

and stands out as a significant and impactful contribution in  
comparison to related research in the domain. 

III. RPL PROTOCOL 

A. RPL Overview 

Destination oriented directed acyclic graphs (DODAGs) 

are sequence topologies formed using RPL [12]. They arrange 
nodes in a forest hierarchy with a root node and branches that 

extend from it [12]. To achieve these objectives, RPL applies 
objective functions such as energy efficiency, hop count, and 

connection quality [13] (Fig. 1). 

It is possible to operate several RPL instances in a 

network, each of which is an execution of RPL with its own 

DODAGs and its own goal function [14]. A node may belong 
to numerous instances, but only one DODAG inside that 

instance at any one moment. DODAG Informat ion Solicitation  
(DIS), DODAG Informat ion Object (DIO), and Destination 

Advertisement Object (DAO) are the control messages used to 
establish and update an RPL DODAG (DAO) [14]. 
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Fig. 1. RPL control messages. 

A node that wants to join a network will first forward DIS  

messages. Informat ion regarding the DODAG, such as node 
ID and objective code point is requested in DIO messages 

[15]. 

As DIO messages are also broadcast at regular intervals, a  

node may choose to do nothing and instead wait unt il it gets 
one from a neighbor. 

The trickling algorithm [15] controls the frequency of 

these DIO broadcasts. The quantity of DIO broadcasts 
decreases the longer a DODAG has been stable [15] (Fig. 2). 

 
Fig. 2. RPL DODAG graph. 

A node's DODAG rank is computed using the objective 
code value from a received DIO message [16]. If more than 

one DIO communication is received from a neighbor, the 
neighbor with the highest ranking is selected as the parent 

[16]. 

The paths formed  by this method are d irected upward,  

toward the source [17]. All routable prefixes are included in  

the DAO message that is delivered up the tree to establish 
downward routes [17]. 

Each node that receives the DAO message then aggregates 
the prefixes and forwards it upwards, g iving parents , access to 

routes that go downwards. 

Messages sent downward from a descendant are ignored to 

prevent infinite loops [18]. In addition, nodes may often only  

switch their parents if doing so would increase their rank [18] . 
Only during loop avoidance or when the root generates a new 

version is it  permissible for the topology to change in a way  
those results in lower rankings [19]. 

It is still possible for a loop or rank inconsistency to 

develop, even when using built-in ways to prevent them. RPL 
offers a range of solutions meant to fix exactly these kinds of 

problems. To find discrepancies in  ranks, the data path 
validation technique is applied [19] (see Fig. 3). 

 

Fig. 3. RPL DODAGs formation with two instances. 

B. RPL Attacks 

The RPL protocol is vulnerab le to a wide range of security  
concerns [20]. Lack of infrastructure, inadequate physical 

security, a changeable topology, and unstable connectivity all 

contribute to LLN networks' susceptibility to and difficulty in  
shielding attacks [20]. 

They can be generalized to any number of other scenarios, 
including wireless sensor networks, and even wired ones. 

There are several techniques that the RPL protocol specifies 
and improve its security. RPL protocol is vulnerable a wide 

range of routing attacks. We classify attacks that aim to  
deplete a network's resources as its first kind (energy, 

memory, and power). 

To exhaust a target's resources, resource attacks often 
include overwhelming legitimate nodes into performing  

unnecessary work. Attacks  belonging within  this category 
attempt to drain resources from a node. 

Since this might cause a congestion in the network's  
available connections [21], it may reduce the network's 

availability and, ultimately, its lifespan [21]. Two types of 

resource attacks are distinguished. In direct  attacks, a  
malicious node deliberately  causes network degradation by 

generating excess traffic [22]. 

In the second kind of attack, the attackers operate in the 

background to generate high volumes of traffic from other 
nodes. For instance, a loop might be constructed in the RPL 

network to force other nodes to generate more traffic because 

of the indirect attack [23] (Fig. 4). 
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Fig. 4. RPL attack taxonomy. 

C. Version Number Attack 

The RPL network architecture is vulnerable to a version  

number attack, in which  a malicious node fraudulently 
increases the root node's DODAG version number before 

forwarding the DIO message to its neighbors [24] (Fig. 5). 
When the DODAG tree receives the DIO message with the 

new version number, the neighbor nodes start a new 
formulat ion, and the trickle timer is reset [25]. The DIO 

messages will then be broadcast by the neighboring nodes, 
who are constantly updating them [26]. Significant effects 

result from the version number attack, including (1) damage to  

network operation; (2) an unnecessary increase in network 
control overhead; (3) routing loops in data routing; (4) an  

increase in network energy consumption; and (5) problems  
with the availability of communication channels between 

nodes. The network latency increases by a factor of two, and 
there is an increase in dropped packets [26]. 

 
Fig. 5. RPL version number attack. 

IV. PROPOSED DEEP LEARNING BASED SOLUTION 

A. Machine and Deep Learning 

Machine and deep learning are two rapidly growing fields 

of artificial intelligence that have the potential to revolutionize 

various industries [27]. Machine learn ing involves training 
algorithms to recognize patterns in data and make predictions 

based on those patterns [27]. This can be useful in a wide 
range of applications, from forecasting consumer behavior to  

identifying fraud in financial transactions and detecting cyber-
attacks [28-31]. 

Deep learning is a subset of machine learning that involves 

training artificial neural networks with multip le layers to learn  
hierarchical representations of data [28]. As the amount of 

data generated by modern technology continues to increase, 
the importance of machine and deep learning is likely to grow 

even further [29]. 

Fig. 6 illustrates a standard model of a neural network. 

 
Fig. 6. ANN neural networks graph. 

Artificial neural networks are recognized as information  

processing systems that emulate the functions of the human 
brain's nervous system [30]. The data provided as input can be 

analyzed to estimate the output through classifications or 

predictions [30]. The behavior o f ANN deviates from 
conventional classification techniques due to its ability to  

dynamically generate relationships by acquiring knowledge 
from training inputs [32]. Art ificial neural networks (ANNs) 

offer several benefits when utilized in the implementation of 
an intrusion detection system. These advantages include 

enhanced flexib ility and speed, which can be helpful in  
mitigating the extent of damage incurred upon detection of an 

attack. However, humans have the capacity to acquire 

knowledge regarding the attributes of typical behavior and 
readily  identify anomalous activity  despite the presence of 

data originating from numerous origins [32]. Moreover, the 
utilizat ion of neural networks facilitates the computation of 

outputs with accuracy, thus providing them with a 
commendable capacity for generalization and the ability to 

examine and interpret non-linear data [33]. 

Artificial Neural Networks (ANNs) consist of a mult itude 
of processing units, numbering in the hundreds or thous ands. 

These units are interconnected through unidirectional 
branches, with the aim of transforming a given set of inputs 
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into a corresponding set of desired outputs [33] (refer to  
Fig. 6). The informat ion processing mechanism involves the 

transmission of signals to neurons in the input layer, where it  
undergoes processing. The outcome of the transformation  

process is contingent upon the attributes of the constituent 

components and the magnitudes assigned to the connections 
that exist between them [33]. The process mentioned earlier 

involves the reception of one or multiple inputs denoted as ' Xi 
', which are subsequently utilized to generate an output in the 

form of a weighted sum of the inputs referred to as ' Wi '. Th is 
output is produced through the utilizat ion of an activation 

function denoted as 'f' [32]. Eq . (1) presents the mathematical 

expression for the Neural Network formula [33]. 

α = f (∑ Wi Xi + b)  (1) 

In a neural network, the number of inputs available for a 

neuron is denoted by 'n', while 'b' represents the bias that is 
added to the weighted inputs to generate the subsequent 

inputs. 

The Multilayer Perceptron (MLP) is a widely ut ilized  

function classifier within the field of neural networks [34]. 
The structure consists of three distinct layers and multip le 

individual neurons. The input layer serves as a set of neurons 

that receive input signals without any computation and 
function as a means of conveying these signals to the model 

[34]. The synapses weight (Wi) determines their weighting 

[34]. The intermediate layer that lies between the input and 

output layers is commonly  referred  to as the hidden layer. The 
hidden layer conducts the necessary computations on the input 

layer's data and subsequently transmits the outcome to the 
output layer [35]. The output layer is responsible for 

delivering the processed data to external ent ities. The 

activation function utilized by each neuron involves a 
weighted sum to determine the input of the subsequent layer. 

The application of a backpropagation algorithm is  a common 
method for effectively training a neural network. During the 

training phase, the backpropagation algorithm engages in an 
iterative p rocess that involves the nonlinear mapping of inputs 

and outputs. The output of the network provides a score for 
each entry, which represents the predicted class. 

B. Solution Description 

Our proposed approach in Fig. 7 relies on a combination of 

simulated version number attacks and simulated node 

behavior predictions to acquire both malicious and benign 
data. Cooja, an open-source simulator [36], was utilized  

together with its PCAP analyzer to convert the data into a 
PCAP file. The PCAP file was converted to a CSV file using 

the simulator in  Wireshark. Before loading the data into a 
machine or deep learning model, it was checked and pre -

processed using the Python tools NumPy and pandas. When 
the data has been coded, labeled, and split into train ing and 

testing sets, it is input to a neural network-based models for 

identifying version number attacks. We'll examine these levels 
in further depth in the next sections. 

 
Fig. 7. Deep learning version number attack detection solution diagram. 

C. Simulations and Analysis 

1) Normal simulation phase: The information gathered in 

this phase will be used to train our machine and Deep learning  

models fo r detection in later stages. To test the impact of the 

version number attack on the IoT network, we used the open 

source Cooja simulator (see Fig. 8). To get an accurate data 

collection, we simulated and examined the intended routing 

attack in real time using several different scenarios. We 

created a packet capture file, or .PCAP file, at the end of the 

simulation, which will be converted to a.CSV file by the 

widely used traffic analyzer Wireshark. 

 
Fig. 8. Normal simulation map in Cooja simulator. 
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2) Normal Simulation & Results: We constructed an 

accurate training dataset using the normal simulat ion's 

baseline data and compared it to the Version number attack's 

experiments in terms of energy consumption, traffic volume, 

and lost packets, see Table I. 

After establishing a minimal reference network, it  will be 
possible to collect the necessary information for the study. The 

goal of this investigation is to understand how a malicious 
node in a normal topology may carry out a version number 

attack and what effects it can have. 

TABLE I. SIMULATIONS CONFIGURATIONS 

Parameters Values 

Node type SKY Mote 

OS Version Contiki2.7 

Routing Protocol RPL 

Radio Medium Unit Disk Graph 
Medium: distance loss 

OF MRHOF 

Tx Range 50m/100m 

Interface Range 50m/100m 

Simulation Area 100mX100m 

MTU Size 1280Byte 

Simulation Duration 60 minutes 

No. of Sender Nodes 20 

No. of Sink Node1 1 

No. of repetitions 3 

The data presented in Fig. 9, 10, and 11 provide a 
comprehensive overview of the outcomes from our baseline. 

 
Fig. 9. Power consumption graph during normal simulation.  

As can be seen in the graph in Fig. 11, both the radio 

listening and radio transmitting consumption are stable, the 
rates are regular simulat ions. These figures summarize the 

results of five one-hour simulat ion runs, serving as a 
benchmark for our reference point. 

Fig. 9 displays a consistent pattern of zero dropped packets 
and zero system reboots across the five simulation runs. This 

visual representation underscores the reliability of our system 
during extended operation. 

Fig. 10 depicts the average power consumption of 

approximately 1.074 milliwatts (mw) across all nodes. This 
steady power usage highlights the efficiency of our power 

management algorithm. 

Fig. 11 combines the informat ion from the previous 

figures to emphasize the reliability and efficiency achieved in  
the baseline simulations. These results will serve as the 

foundation for our future work and improvements. 

 
Fig. 10. Lost packet graph during normal simulat ion. 

 
Fig. 11. Radio consumption graph during normal simulation.  

The average radio  duty cycle graph provided us with  

insights into the network's overall communication efficiency. 

By manipulating the version numbers, we expected to  
observe variations in the duty cycle, the results showed a 

significant increase in the duty cycle compared to the control 
scenario. 

This suggests that the version number attack increased the 
frequency of message exchanges, potentially leading  to higher 

energy consumption and reduced network efficiency. Fig. 12 

shows a higher average radio consumption. 
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Fig. 12. Radio consumption graph during attack simulation. 

The average power consumption graph in Fig. 13 helped  
us gauge the impact of the version number attack on energy 

usage. Surprisingly, the results indicated a substantial increase 
in power consumption when compared to the baseline 

scenario. This finding suggests that the attack led to increased 

computational and communication activ ity, resulting  in  higher 
power requirements for the IoT devices . 

 
Fig. 13. Power consumption graph during attack simulation.  

The lost packets graph in Fig. 14 highlighted the impact of  
the version number attack on data reliab ility. In this case, we 

observed the loss of four packets during the simulat ion. Th is 
indicates that the attack interfered with the proper 

transmission and reception of data packets, potentially  
compromising the network's integrity and reliability. 

 
Fig. 14. Lost packet graph during attack simulation. 

V. RESULTS AND DISCUSSION 

A. DNN Model 

The results of our study demonstrate the effectiveness of 

utilizing a deep neural network (DNN) model for detecting 

RPL version number attacks. The evaluation metrics, 
including the loss graph, accuracy graph, and confusion 

matrix, co llect ively indicate the superior performance of our 
approach [37]. 

The accuracy graph in Fig. 15 depicts a steady increase, 
reaching a h igh level of accuracy, indicating the DNN model's 

ability to distinguish between normal and attack instances with 

precision. 

 

Fig. 15. DNN accuracy convergence graph. 

The loss graph in  Fig. 16 showcases the gradual decline in  

the model’s loss function over the training iterations, 

signifying successful convergence and effective learning. 

 
Fig. 16. DNN model loss over training iterations. 

Additionally, the DNN confusion matrix in Fig. 17  

provides valuable insights into the model's performance, with  
high values along the diagonal, indicating accurate 

classification of both attack and normal instances. These 
results highlight the robustness and efficacy of our proposed 

approach in accurately detecting RPL version number attacks, 
underscoring its potential as a valuable tool in enhancing 

network security: 
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Fig. 17. DNN classification confusion matrix. 

B. LSTM Model 

For the LSTM model also, the outcomes of our 

investigation demonstrate the efficacy of emp loying an LSTM 
(Long Short-Term Memory) model fo r the detection of RPL 

version number attacks. 

Our approach yields promising results, as evidenced by the 

analysis of key evaluation metrics, including the loss graph, 
accuracy graph, and confusion matrix. 

The LSTM accuracy graph in  Fig. 18 exh ibits a significant  

upward trend, culminating in a high level of accuracy, which  
attests to the model's ability to effectively discriminate 

between normal and attack instances. 

 

Fig. 18. LSTM accuracy convergence graph. 

The LSTM loss graph in Fig. 18 illustrates the steady 
decrease in the model's loss function throughout the training 

process, indicating the successful learning and convergence of 
the LSTM model: 

 
Fig. 19. LSTM model loss over training iterations. 

Moreover, the LSTM confusion matrix in Fig. 19 provides 
valuable insights into the model's performance, with notable 

values along the diagonal, indicating accurate classification of 
both attack and normal instances. These outcomes underscore 

the robustness and proficiency of our LSTM-based approach 

in detecting RPL version number attacks, positioning it  as an 
asset in fortifying network security. 

 
Fig. 20. LSTM classification confusion matrix. 

C. Comparison of Results 

Our research endeavors involved an extensive commitment  

of time and computational resources towards the training of 

deep learning models, part icularly the Long Short-Term 
Memory (LSTM) and Deep Neural Network (DNN). Th is 

rigorous approach was undertaken with the intention of 
achieving the highest possible accuracy in our predictive 

models. The efforts bore fru it, as our LSTM model ach ieved 
an impressive accuracy score of 0.963605, while the DNN 

model was not far behind, with an accuracy of 0.963106. 

These results underscore the capacity of deep learning models 
to excel in predict ive tasks, outperforming other traditional 

approaches. To draw a sharp contrast, we also considered the 
performance of a classical machine learning model, the 

Support Vector Machine (SVM). The SVM, while a well-
established method, could only deliver an accuracy of 

0.924119 in our experiments. This clear difference in accuracy  
metrics emphasizes the advantage of adopting deep learning 
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models for the specific task at  hand. In addit ion to accuracy, 
our deep learning models exhib ited superior performance 

across multip le evaluation metrics. These included R square, 
Root Mean Squared Error (RMSE), Mean Squared Error 

(MSE), and Mean Absolute Error (MAE). In each of these 

crucial metrics, our LSTM and DNN models consistently 
outperformed the SVM model, further confirming their 

superior pred ictive capabilit ies. For a v isual representation of 
these findings, please consult Fig. 20 within this paper. 

Fig. 21 serves as a visual confirmat ion of the numerical  
results presented, offering a graphical depict ion of the 

performance disparities among the models. This 
comprehensive analysis serves to highlight the tangible 

advantages of embracing deep learning techniques, 

showcasing their ability to not only achieve superior accuracy 
but also to excel across a range of crit ical evaluation criteria, 

making them a pivotal component of our research's success. 

 
Fig. 21. Comparative performance of LSTM, DNN, and SVM models in accuracy and evaluation metrics.

VI. CONCLUSION 

In conclusion, the detection of RPL version number  

attacks in IoT networks is critical to ensuring the security and 
integrity of the network. Trad itional signature-based detection 

methods are ineffective due to the constantly evolving nature 
of attacks. This research paper proposes a deep learn ing-based 

approach to detect RPL version number attacks in IoT 

networks. The results demonstrate the effectiveness of the 
proposed approach in accurately  detecting attacks with high  

precision and recall rates. The proposed approach can be 
integrated into existing IoT network security frameworks to  

enhance their capabilities and improve the overall security 
posture of IoT networks. In  further research, we will exp lore 

the application of this approach to other types of attacks in IoT 

networks and investigate methods to improve the efficiency 
and scalability of the proposed approach. 

REFERENCES 

[1] Nitti, Pilloni, Colistra, & Atzori. (2016). The Virtual Object as a Major 
Element of the Internet of Things: A Survey. 2015 IEEE 20th 
Conference on Emerging Technologies & Factory Automation (ETFA), 
18(2), 1228–1240. https://doi.org/10.1109/COMST.2015.2498304 

[2] Abir, Anwar, Choi, & Kayes. (2021). IoT-Enabled Smart Energy Grid: 
Applications and Challenges. IEEE Access, 9, 50961–50981. 
https://doi.org/10.1109/ACCESS.2021.3067331. 

[3] Galán-Jiménez, Berrocal, Garcia-Alonso , & Jesús Azabal. (2019). A 
Novel Routing Scheme for Creating Opportunistic Context-Virtual 
Networks in IoT Scenarios. Sensors. https://doi.org/10.3390/s19081875. 

[4] Sobral, Rodrigues, Rabêlo, Al-Muhtadi, & Korotaev . (2019). Routing 
Protocols for Low Power and Lossy Networks in Internet of Things 
Applications. Sensors. https://doi.org/10.3390/s19092144. 

[5] Krari, Hajami, & Jarmouni. (2021). STUDY AND ANALYSIS OF RPL 
PERFORMANCE ROUTING PROTOCOL UNDER VARIOUS 
ATTACKS. International Journal on Technical and Physical Problems 
of Engineering, 4, 152–161. Retrieved from 
http://www.iotpe.com/IJTPE/IJTPE-2021/IJTPE-Issue49-Vol13-No4-
Dec2021/24-IJTPE-Issue49-Vol13-No4-Dec2021-pp152-161.pdf. 

[6] Almusaylim, Jhanjhi, & Alhumam. (2020). Detection and Mitigation of 
RPL Rank and Version Number Attacks in the Internet of Things: 
SRPL-RP. Sensors (Basel). Retrieved from 
https://doi.org/10.3390/s20215997. 

[7] Anitha, & Arockiam. (2021). VeNADet: Version Number Attack 
Detection for RPL based Internet of Things. Solid State Technology, 
64(2). Retrieved from 
http://solidstatetechnology.us/index.php/JSST/article/view/9572. 

[8] Aris, Oktug, & Yalcin. (2016). RPL version number attacks: In-depth 
study. IEEE Symposium on Network Operations and Management. 
https://doi.org/10.1109/NOMS.2016.7502897. 

[9] Mayzaud, Badonnel, & Chrisment. (2017). Detecting version number 
attacks in RPL-based networks using a distributed monitoring 
architecture. International Conference on Network and Service 
Management. https://doi.org/10.1109/CNSM.2016.7818408. 

[10] Seth, Biswas, & Dhar . (2023). LDES: detector design for version 
number attack detection using linear temporal logic based on discrete 
event system. International Journal of Information Security, 961–985. 
https://doi.org/10.1007/s10207-023-00665-3. 

[11] Rouissat, Belkheir, & Sid Ahmed Belkhira. (2022). A potential flooding 
version number attack against RPL based IOT networks. Journal of 
Electrical Engineering, 267–275. https://doi.org/10.2478/jee-2022-0035. 

https://doi.org/10.1109/ACCESS.2021.3067331
https://doi.org/10.3390/s19092144
http://www.iotpe.com/IJTPE/IJTPE-2021/IJTPE-Issue49-Vol13-No4-Dec2021/24-IJTPE-Issue49-Vol13-No4-Dec2021-pp152-161.pdf
http://www.iotpe.com/IJTPE/IJTPE-2021/IJTPE-Issue49-Vol13-No4-Dec2021/24-IJTPE-Issue49-Vol13-No4-Dec2021-pp152-161.pdf
http://solidstatetechnology.us/index.php/JSST/article/view/9572
https://doi.org/10.1109/NOMS.2016.7502897
https://doi.org/10.1109/CNSM.2016.7818408
https://doi.org/10.1007/s10207-023-00665-3
https://doi.org/10.2478/jee-2022-0035


(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 10, 2023 

623 | P a g e  

www.ijacsa.thesai.org 

[12] Innocent Uzougbo, Shukor Abd, & Ismail Fauzi. (2020). Control 
Messages Overhead Impact on Destination Oriented Directed Acyclic 
Graph—A Wireless Sensor Networks Objective Functions Performance 
Comparison. Journal of Computational and Theoretical Nanoscience, 17, 
1227–1235. https://doi.org/10.1166/jctn.2020.8794. 

[13] Sennan, Somula, Luhach, Deverajan, Alnumay, Jhanjhi, . . . Sharma. 
(2020). Energy efficient optimal parent selection-based routing protocol 
for Internet of Things using firefly optimization algorithm. Transactions 
on Emerging Telecommunications Technologies. 
https://doi.org/10.1002/ett.4171. 

[14] Bouzebiba , & Lehsaini. (2020). FreeBW-RPL: A New RPL Protocol 
Objective Function for Internet of Multimedia Things. Wireless Personal 
Communications, 1003–1023. https://doi.org/10.1007/s11277-020-
07088-6. 

[15] Medjek, Tandjaoui, Djedjig, & Romdhani. (2021). Multicast DIS attack 
mitigation in RPL-based IoT-LLNs. Journal of Information Security and 
Applications, 61. https://doi.org/10.1016/j.jisa.2021.102939. 

[16] Verma, & Ranga. (2020). CoSec-RPL: detection of copycat attacks in 
RPL based 6LoWPANs using outlier analysis. Telecommunication 
Systems, 43–61. https://doi.org/10.1007/s11235-020-00674-w. 

[17] Darabkh, Al-Akhras, Zomot , & Atiquzzaman . (2022). RPL routing 
protocol over IoT: A comprehensive survey, recent advances, insights, 
bibliometric analysis, recommendations, and future directions. Journal 
of Network and Computer Applications, (207). 
https://doi.org/10.1016/j.jnca.2022.103476. 

[18] Kim, Paek, Culler, & Bahk. (2020). PC-RPL: Joint Control of Routing 
Topology and Transmission Power in Real Low-Power and Lossy 
Networks. ACM Transactions on Sensor Networks, 16(2), 1–32. 
https://doi.org/10.1145/3372026. 

[19] Mayzaud, Badonnel, & Chrisment. (2015). A Taxonomy of Attacks in 
RPL-based Internet of Things. International Journal of Network 
Security, 18(3). Retrieved from https://inria.hal.science/hal-01207859. 

[20] Al-Qaisi, Hassan, & Zakaria. (2022). Secure Routing Protocol for Low 
Power and Lossy Networks Against Rank Attack: A Systematic Review. 
(IJACSA) International Journal of Advanced Computer Science and 
Applications, 13(5). https://doi.org/10.14569/IJACSA.2022.0130539. 

[21] Butun, Österberg, & Song. (2020). Security of the Internet of Things: 
Vulnerabilities, Attacks, and Countermeasures. IEEE Communications 
Surveys & Tutorials, 22(1), 616–644. 
https://doi.org/10.1109/COMST.2019.2953364. 

[22] Verma, A., & Ranga, V. (2020). Security of RPL Based 6LoWPAN 
Networks in the Internet of Things: A Review. IEEE Sensors Journal, 
20(11), 5666–5690. https://doi.org/10.1109/jsen.2020.2973677 

[23] Boudouaia, M. A., Ali-Pacha, A., Abouaissa, A., & Lorenz, P. (2020). 
Security Against Rank Attack in RPL Protocol. IEEE Network, 34(4), 
133–139. https://doi.org/10.1109/mnet.011.1900651. 

[24] Al-Amiedy, T. A., Anbar, M., Belaton, B., Bahashwan, A. A., 
Hasbullah, I. H., Aladaileh, M. A., & Mukhaini, G. A. (2023). A 
systematic literature review on attacks defense mechanisms in RPL-
based 6LoWPAN of Internet of Things. Internet of Things, 22, 100741. 
https://doi.org/10.1016/j.iot.2023.100741. 

[25] Seyfollahi, A., & Ghaffari, A. (2021). A Review of Intrusion Detection 
Systems in RPL Routing Protocol Based on Machine Learning for 
Internet of Things Applications. Wireless Communications and Mobile 
Computing, 2021, 1–32. https://doi.org/10.1155/2021/8414503. 

[26] Mayzaud, A., Badonnel, R., & Chrisment, I. (2017). A Distributed 
Monitoring Strategy for Detecting Version Number Attacks in RPL-
Based Networks. IEEE Transactions on Network and Service 
Management, 14(2), 472–486. 
https://doi.org/10.1109/tnsm.2017.2705290. 

[27] Sharifani, & Amini. (2023). Machine Learning and Deep Learning: A 
Review of Methods and Applications. World Information Technology 
and Engineering Journal, 10(7), 3897–3904. Retrieved from 
https://ssrn.com/abstract=4458723. 

[28] Shrestha, A., Mahmood, A., 2019. Review of Deep Learning Algorithms 
and Architectures. Browse Journals & Magazines 7, 53040–53065. doi: 
https://doi.org/10.1109/ACCESS.2019.2912200. 

[29] Jayatilake, S.M.D.A.C., Ganegoda, G.U., 2021. Involvement of Machine 
Learning Tools in Healthcare Decision Making. Journal of Healthcare 
Engineering 2021, 1–20. doi:10.1155/2021/6679512. 

[30] Yang, J., Wang, R., Ren, Y., Mao, J., Wang, Z., Zhou, Y., Han, S., 2020. 
Neuromorphic Engineering: From Biological to Spike‐Based Hardware 
Nervous Systems. Advanced Materials 32 52, 2003610. 
doi:10.1002/adma.202003610. 

[31] Chalapathy, R., Chawla, S., 2019. Deep Learning for Anomaly 
Detection: A Survey. arXiv. doi: 
https://doi.org/10.48550/arXiv.1901.03407. 

[32] Huo, D., & Meckl, P. (2022, August 7). Power Management of a Plug-in 
Hybrid Electric Vehicle Using Neural Networks with Comparison to 
Other Approaches. Energies, 15(15), 5735. 
https://doi.org/10.3390/en15155735. 

[33] Kattenborn, T., Leitloff, J., Schiefer, F., & Hinz, S. (2021, March). 
Review on Convolutional Neural Networks (CNN) in vegetation remote 
sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 173, 
24–49. https://doi.org/10.1016/j.isprsjprs.2020.12.010. 

[34] OuYang, L., Jin, N., & Ren, W. (2022, November). A new deep neural 
network framework with multivariate time series for two-phase flow 
pattern identification. Expert Systems with Applications, 205, 117704. 
https://doi.org/10.1016/j.eswa.2022.117704. 

[35] Abdullah, S., Almagrabi, A. O., & Ali, N. (2023, July 3). A New 
Method for Commercial-Scale Water Purification Selection Using 
Linguistic Neural Networks. Mathematics, 11(13), 2972. 
https://doi.org/10.3390/math11132972. 

[36] Oikonomou, G., Duquennoy, S., Elsts, A., Eriksson, J., Tanaka, Y., & 
Tsiftes, N. (2022, June). The Contiki-NG open-source operating system 
for next generation IoT devices. SoftwareX, 18, 101089. 
https://doi.org/10.1016/j.softx.2022.101089. 

[37] Zhu, Z., Fan, X., Chu, X., & Bi, J. (2020, August 20). HGCN: A 
Heterogeneous Graph Convolutional Network-Based Deep Learning 
Model Toward Collective Classification. Proceedings of the 26th ACM 
SIGKDD International Conference on Knowledge Discovery & Data 
Mining. https://doi.org/10.1145/3394486.3403169. 

 

https://doi.org/10.1166/jctn.2020.8794
https://doi.org/10.1002/ett.4171
https://doi.org/10.1007/s11277-020-07088-6
https://doi.org/10.1007/s11277-020-07088-6
https://doi.org/10.1016/j.jisa.2021.102939
https://doi.org/10.1007/s11235-020-00674-w
https://doi.org/10.1016/j.jnca.2022.103476
https://doi.org/10.1145/3372026
https://inria.hal.science/hal-01207859
https://doi.org/10.14569/IJACSA.2022.0130539
https://doi.org/10.1109/COMST.2019.2953364
https://doi.org/10.1109/jsen.2020.2973677
https://doi.org/10.1109/mnet.011.1900651
https://doi.org/10.1016/j.iot.2023.100741
https://doi.org/10.1155/2021/8414503
https://doi.org/10.1109/tnsm.2017.2705290
https://doi.org/10.3390/en15155735
https://doi.org/10.1016/j.isprsjprs.2020.12.010
https://doi.org/10.1016/j.eswa.2022.117704
https://doi.org/10.3390/math11132972
https://doi.org/10.1145/3394486.3403169

