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Abstract—The registration of the point cloud plays a critical 

and fundamental role in the computer vision domain.  Although 

quite good registration results have been obtained by using the 

global, local, and learning-based registration strategies, there are 

still many problems to solve. For example, the local methods that 

are based on geometric features are very sensitive to attitude 

deviation, the global shapes-based methods are easy to result in 

inconsistency when the distribution differences are obvious and 

the learning-based registration methods have highly relied on the 

huge label data. A novel and effective registration method for the 

point cloud data integrating the coarse-to-fine strategy and the 

improved PointNet network is proposed to overcome the above-

mentioned drawbacks and improve registration accuracy. The 

improved Random Sample Consensus (RANSAC) algorithm is 

developed to effectively deal with the initial attitude deviation 

problem in the coarse registration procedure and the improved 

Lucas and Kanade (LK) algorithm is proposed based on the 

classical PointNet framework to reduce the errors of the refine 

registration, and the whole registration procedure is 

implemented under a trainable recurrent deep learning 

architecture. Compared with the state-of-the-art point cloud 

registration methods, experimental results fully prove that the 

proposed method can effectively handle the significant attitude 

deviation and partial overlap problem and achieves stronger 

robustness and higher accuracy. 

Keywords—Point cloud registration; PointNet; coarse-fine 

registration; random sample consensus (RANSAC) algorithm; 

Lucas and Kanade (LK) algorithm 

I. INTRODUCTION  

As one of the most faithful and convenient data formats, 
the datasets of point clouds have been popularly applied in the 
domain of 3D reconstruction [1, 2], virtual reality [3], 
augmented reality [4], etc. Due to environmental and other 
influence factors, the registration of point cloud is an essential 
step before various tasks of computer vision and robotics 
applications. For example, in the auto-drive domain, the auto-
drive system unifies the point clouds collected from different 
positions by the laser radar to the same coordinate system to 
build the three-dimensional high-precision map, and then it 
matches the real-time collected data to the high-precision map 
through the point cloud registration [5]. Other typical 
examples include the three-dimensional location for robotics 
[6] and the pose estimation from different point cloud data [7]. 

From a mathematical perspective, the registration 

procedure of the point cloud is usually treated to be an 
optimization problem, which searches the space 
correspondence parameters by minimizing the transformation 
estimation error under some objective metrics [8]. Once the 
best correspondences are found, the search stops. Many 
typical work has been reported in this domain. As a typical 
example, the famous Iterative Closest Point (ICP) registration 
firstly iteratively assigns the point to the nearest point in a 
different space of point cloud and then calculates the least 
squares distances of point pairs to be the objective function. 
Because only spatial coordinates are used to guide the search, 
the ICP is very easy to initialize. However, the traditional ICP 
algorithm usually requires a large overlap area between two 
frames of the point clouds [9]. In addition, the robustness is 
not good enough since only the point features are used but the 
other important features information is lost. Therefore, some 
registration methods based on the extracted structural features 
are proposed to improve the registration accuracy, such as the 
histograms and adjacent points [10], the Euclidean distance 
[11], the normal vector difference [12], and the surface 
curvature [13]. Another classical registration scheme based on 
the Random Sample Consensus (RANSAC) has been also 
popularly applied in coarse registration. Among them, the 4-
Point Congruent Sets (4PCS) is the respective one, which 
determines the correspondence by comparing the intersection 
diagonal ratios of four-point sets [14]. The 4PCS algorithm 
can handle point cloud registration tasks in complex scenes, 
and a series of improved versions have been developed. For 
example, to deal with the registration task in the large-scale 
scene, the computational complexity can be reduced from 
O(n

2
) to O(n) by the Super 4PCS [15], which uses the 

intelligent strategy to index; the k-4PCS algorithm [16] 
improves the registration precision by replacing the randomly 
sampled points with the sparse key points; the Generalized 
4PCS [14] effectively reduce the time cost by no longer 
strictly restricting the coexistence of four points of the  4PCS 
in a plane; the V4PCS [17] algorithm incorporates the concept 
of volume consistency to reduce the time cost and the 2PNS 
[18] is proposed to deal with the registration problem under 
the smaller overlapping scenes (with a minimum of only 5% 
overlap). All of these methods produce good registration 
results but the deep features have not been carefully 
considered. 

Very recently, with the breakthrough of the theory of deep 
learning, the learning-based registration methods become the 
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research spots in this domain. Charles et al. constructs the 
famous PointNet network [19], in which each point through 
maximum pooling can extract features without conversion, 
and it solves the problems of permutation invariance and 
disorder of the point cloud. Inspired by this work, many deep 
learning-based registration models have been constructed [20-
23]. For example, Wang et al. proposed the DCP algorithm 
based on the dynamic graph convolution network [24, 25]. It 
combines the local context information and the 
communication by using the attention mechanism [26] to get 
the soft mapping relationship between the point clouds. The 
registration matrixes (including the translation and rotation) 
are computed according to both of the smooth mapping 
relationship and differentiable decomposition of the singular 
values. The performance of the time efficiency and accuracy is 
good but it is very sensitive to rigid transformations since it 
heavily relies on the local geometric features. Therefore, its 
performance is not satisfying when handling significant initial 
attitude differences [27]. Zi et al. proposed the feature 
extraction network RPM-Net [28] to reduce the initialization 
sensitivity. It calculates the mixed features from the spatial 
location and the geometric characteristics, and then obtains the 
soft assignment by using the Sinkhorn layer [29]. Zan et al. 
constructs a deep learning architecture named 
“3DSmoothNet” to implement the 3D point cloud registration, 
and its convolutional layers is represented by using the 
smoothed density value [30]. Huang et al. proposes the fast 
registration framework that based on the feature-metric 
strategy, which considers the registration procedure to 
minimize the error of the feature-metric projection without 
correspondences. As reported, it is a semi-supervised model 
and is very robust to the density difference in point cloud data 
[31]. For all of these methods, the global shape information 
can be well used to maintain the robustness, however, the 
registration results are still not good enough when faced with 
the distribution differences of the point cloud that caused by 
the partial overlap. 

To overcome the above-mentioned drawbacks and 
improve registration accuracy, an effective and novel point 
cloud registration framework based on the improved PointNet 
network is constructed. To deal with the high sensitivity of the 
initial attitude differences and the partial overlap, the coarse-
to-fine registration strategy is developed. The improved 
RANSAC algorithm is employed as the coarse-grained 
registration to reduce the attitude difference and make the 
input point cloud roughly aligned. The LK alignment method 
is further improved to enhance the inaccurate alignment 
caused by the distribution differences and partial overlap. 
Unlike the classical ICP method or the improved version, the 
proposed method does not require expensive point-to-point 
calculations. In addition, due to the excellent learning and 
extracting ability of deep features, it has better generalization 
for invisible objects and shape changes.  

In summary, the major contributions of this research work 
are described as follows:  

 Firstly, a novel registration framework based on the 
coarse-to-fine strategy is developed. The coarse 
registration is used to obtain an excellent initial 

transformation position and the fine-grained registration 
is used to implement the further optimization to 
improve the accuracy. For the coarse registration, the 
improved RANSAC algorithm is proposed to 
effectively overcome the default that caused by the 
initial attitude difference. 

 Secondly, the Lucas and Kanade (LK) algorithm is 
improved to avoid the inherent defect that the feature 
representations that directly extract from the PointNet 
cannot adapt to compute the gradient estimation in 
convolution steps so that it can be used to deal with the 
small registration errors that caused by the partial 
overlap. 

 Finally, this study is based on the two above improved 
algorithms, the registration procedure and the coarse-to-
fine strategy are carefully implemented under the deep 
learning architecture of PointNet, and four state-of-the-
art registration methods are employed to improve the 
accuracy and superiority.  

This work is divided into four parts. Section 1 introduces 
some background of the point cloud registration. Section 2 
presents all the details of the proposed method. Section 3 tests 
the method and makes a careful discussion. Section 4 
summarizes the conclusions and provides the future plan. 

II. THE WHOLE METHOD 

The PointNet provides a learnable structured 
representation and is usually applied for tasks of point cloud 
classification and segmentation. To successfully makes it 
applicable to point cloud registration, the RANSAC algorithm 
and the LK algorithm to are improved to adapt to the “imaging 
function” of traditional PointNet and expand the PointNet 
model, the RANSAC algorithm, and the LK algorithm into a 
unified deep learning framework, whose structure is shown in 
Fig. 1.  

The proposed registration framework starts from 
constructing feature representations that from the PointNet. 
The representations using the global features are input into the 
improved RANSAC algorithm to compute the rough 
transformation between different point clouds and the 
improved LK algorithm refines the roughly transformed 
results according to the local feature representations. The 
registration procedure stops until the optimal transformation is 
found by the recurrent learning.  

A. The MLP Symmetric Pooling Feature Extractor 

Let Q  and P  be the source and target dataset, 

respectively. 
3: N K   , for the inputting point cloud 

3 NP  , 
3 NQ  , ( )P  and ( )Q  generate a eigenvector 

descriptor of K-dimension, which   represents the PointNet 
function. When the function   is applied by the multi-layer 

perceptron (MLP) to the 3D points in P  and Q  , the 

dimension of the output is also K . Then, the pooling function 
with symmetry is applied to promote the invariance of point 
order arrangement, and a K-dimensional global feature 
descriptor is obtained. The whole structure is shown in Fig. 2. 
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Fig. 1. The structure of the registration framework. 

B. The Improved RANSAC Algorithm 

The advantage of the traditional RANSAC algorithm is 
that it can automatically match the model according to the 
data, but it is not effective to compute the corresponding 
locations of the point cloud. To effectively apply it to 3D point 
cloud registration, an improved RANSAC algorithm is 
proposed to calculate the initial registration matrix to 
minimize the objective functions between the corresponding 
point cloud. The whole procedure is shown in Fig. 2. 

 

Fig. 2. The flowchart of the improved RANSAC algorithm. 

As shown in Fig. 3, the input of the improved algorithm 
can be treated to be the K-dimensional feature descriptor 
corresponding to the two inputting point cloud datasets. The 
main steps are described as follows: 

1) Search the corresponding features. Randomly select n 

features  1 2( ), ( ), , ( )nQ Q Q   , and find the corresponding 

features  1 2( ), ( ), , ( )nP P P    in ( )P  through the nearest 

neighborhood. 

2) Calculate the difference vector of the corresponding 

features. Firstly, the Euclidean distance between the features is 

calculated; then, the difference ratio is calculated to form the 

vector  , which is shown in Eq. (1). 

( ) ( ) ( ) ( )( ) ( )

23 23 13 1312 12

( ) ( ) ( ) ( ) ( ) ( )

12 12 23 23 13 13

, ,
max( , max( , max( ,

P Q P QP Q

P Q P Q P Q

d d d dd d

d d d d d d

    

     


  
  
  (1) 

3) Correspond the feature transformation. A temporary 

transformation matrix 
iT  is estimated from the corresponding 

feature pairs, and ( )P  is converted to ( )iP . 

4) Compute the transformed matrix shown by Eq. (2). 

2arg min ( ) arg min ( )
T T p P

T g T Tp q


  
(2) 

 

Fig. 3. The structure of the feature extractor. 

C. The Improved LK Algorithm  

In the refine registration, it wants to find the 

transformation G  that best aligns the data Q from P , which 

can be denoted by using the exponential map in Eq. (3). 

exp( )i i

i

G T     (3) 
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where, 
1 2 6( , , , )T     is the torsion parameter. 

iT  is 

the transformation matrix generated by the coarse registration. 
The three-dimensional point cloud alignment problem can be 

described as ( ) ( )P G Q    to find the optimal G , where the 

abbreviation ( )  represents the transformation of Q  through 

the rigid transformation G . 

In the traditional LK algorithm, as shown in Equation (4), 
the Jacobian matrix is defined to be: 

1( )J G P



   

  (4) 

where 
6KJ  . 

Usually, the calculation of the J is not an easy issue for it 

heavily requires the gradient of the distortion parameter for 
the PointNet function that relative to G . Therefore, as shown 

in Fig. 4, the stochastic gradient method similar in reference 
[23] is employed to calculate the value of the Jacobian matrix 
J . Specifically speaking, each column of the Jacobian matrix 

are approximated by calculating the finite difference gradient 
that described by the Eq. (5). 

(exp( ) ) ( )i i

i

i

t T P P
J

t

   
   (5) 

where 
it  is the infinitesimal perturbation of the torsion 

parameter  . 

 

Fig. 4. The flowchart of the improved LK algorithm. 

In the improved version, J  is equal to an analytic 

derivative because the i-th torsion parameter 
it  in each 

column is non-zero. According to the experiments, a small, 

fixed value for 
it will produce the better results. The  can be 

expressed as: 

 ( ) ( )J Q P      (6) 

where J   represents the Moore-Penrose of J . 

The Equation (6) is used to calculate the optimal twist 
parameters, and update the point cloud data Q  to Equation 

(7): 

exp( )i i

i

G T

Q G Q

 

  


  (7) 

As shown in Equation (8), the final estimation matrix is 
the combination of all incremental estimation that calculated 
in the iteration loop. 

1est n oG G G G       (8) 

D. The Loss Function 

The aim is to search out the best transformation by 
minimizing the difference between the estimation 

transformation 
estG  and the forward transformation gtG . To 

avoid possible logarithmic operation of the function during the 
training process and improve the computational efficiency, the 
objective function in Eq. (9) is used. 

1

4( )est gt F
G G I     (9) 

III. EXPERIMENTAL RESULTS AND DISCUSSIONS 

A. The Experimental Details 

The experiments are designed by using the point cloud 
data of the Stanford University and the Geometry Center for 
training [32]. The maximum number for iterations is 80. Other 
parameters are set to be the best according to the reference 
[19]. 

Two classical global methods and two advanced deep 
learning-based methods are used to compare the registration 
performance, i.e., the ICP method [33], the histogram based 
registration method (3DHoPD) [34], the 3DSmoothNet [30], 
and the PointNet LK [35]. 

As shown in the Eq. (10), the Root Mean Square Error 
(RMSE) is selected as the error measurement for its popularity 
in point cloud registration. It refers to the average square 
summation of the distance between the corresponding points. 

2

1

1
,(1 )

N

i j

i

RMSE P Q j M
N 

     (10) 

where
iP  and jQ  are the pairwise nearest neighbors in the 

two datasets. N , M is the scale parameter, respectively. The 

smaller RMSE means the better result. 

Actually, only the RMSE is not enough to know the 
number of aligned points. The Effective Root Mean Square 
Error (ERMSE) can better describe the registration accuracy. 
How to calculate the ERMSE is show in Eq. (11).  
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2

1

( ) /

1
, (1 j M)

N

i j

i

N k N

ERMSE P Q
N k





 



   



 (11) 

where   is the ratio of the aligned points to all the points,

k  is the number of non-aligned points, N  is the number of all 

the points. 

B. The Results and Discussion 

Firstly, a test on the learned model by using the open 
ModelNet40 dataset [36-40] is implemented. The intermediate 
results in the iterations are shown in Fig. 5. After the model is 
trained, when the new registration data is input, it can be seen 
that as the iterations increase, the alignment from the source 
points to the target points can be well obtained, even if the 
data is not used to train the model, demonstrating the proposed 
method is robust enough and has the good feasibility and 
generalization.  

          
Iteration number of 0                 Iteration number of 20 

        
Iteration number of 40               Iteration number of 60 

Fig. 5. The registration procedure in different iterations. 

Then, the ICP, 3DHoPD, 3DSmoothNet, PointNetLK and 
the proposed method are tested on the four models that are 
shown in Fig. 6. The blue points are the source points, and the 
yellow points are target points. All the visual registration 
results are shown in Fig. 7 and the quantitative comparison 
results are shown in Table I to Table Ⅳ. The deviation of the 
initial attitude is significant for the data in Model 1 and 
Model 2. It can be found from Fig. 7 that the ICP and the 
3DHoPD perform very poor on these two datasets, even the 
registration is failed. From the value of  in Table I and 

Table Ⅱ, it means only few corresponding points are obtained. 
In addition, the value of the RMSE and the ERMSE is 
obviously larger than that of the other three methods, showing 
the traditional global registration cannot well deal with the 
significant attitude deviation. On the other hand, the tree 
methods using the deep learning theory perform well on the 
two dataset, especially the proposed method can get the best 
ratio of 89.2%, which means most of the corresponding points 
are obtained. This is because the important structural features 

in the deep levels can be effectively captured. The superiority 
is obvious to deal with the attitude deviation problem. 

For the data in Model 3 and Model 4, they mainly focus on 
the translation when the partial overlap happens. It can be 
found that the ICP and the 3DHoPD perform better than their 
performance in Model 1 and Model 2; the value of  in 

Table Ⅲ and Table Ⅳ showing more corresponding points 
can be obtained. Of all the five registration methods, the 
proposed method achieves the best quantitative comparison 
and the highest accuracy is 93.52%, improving five percent 
compared with the ICP method. Overall, the proposed method 
can achieve sufficiently good results for both of the translation 
and rotation in the registration, demonstrating stronger 
robustness, better generalization and higher accuracy. 

TABLE I. THE REGISTRATION RESULTS OF MODEL 1 

Method RMSE   ERMSE 

ICP 0.6673 0.0603 0.6676 

3DHoPD 0.3391 0.3610 0.4451 

3DSmoothNet 0.1360 0.5513 0.1540 

PointNetLK 0.0843 0.8704 0.0631 

Proposed 0.0531 0.8920 0.0615 

       
  Model 1                                     Model 2 

       
      Model 3                                     Model 4 

Fig. 6. The four models of the point cloud. 

TABLE II. THE REGISTRATION RESULTS OF MODEL 2 

Method RMSE   ERMSE 

ICP 0.5664 0.0045 0.5861 

3DHoPD 0.2168 0.2550 0.2476 

3DSmoothNet 0.0158 0.7655 0.0169 

PointNetLK 0.0098 0.8612 0.0112 

Proposed 0.0075 0.8823 0.0985 

TABLE III. THE REGISTRATION RESULTS OF MODEL 3 

Method RMSE   ERMSE 

ICP 0.0038 0.8870 0.0046 

3DHoPD 0.0036 0.8939 0.0045 

3DSmoothNet 0.0034 0.9053 0.0043 

PointNetLK 0.0032 0.9171 0.0040 

Proposed 0.0030 0.9280 0.0033 
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TABLE IV. THE REGISTRATION RESULTS OF MODEL 4 

Method RMSE   ERMSE 

ICP 0.0076 0.8935 0.0078 

3DHoPD 0.0065 0.9089 0.0066 

3DSmoothNet 0.0056 0.9110 0.0058 

PointNetLK 0.0050 0.9286 0.0052 

Proposed 0.0045 0.9352 0.0050 

    

    

    

     
                 (a) ICP                                (b) 3DHoPD                               (c) 3DSmoothNet                        (d)  PointNetLK                            (e) Proposed 

Fig. 7. The registration results of different methods.

TABLE V. THE RUNNING TIME OF DIFFERENT METHODS 

Method Model 1         Model 3 Model 4 

ICP 13.25 15.85 3.85 3.88 

3DHoPD 13.13 15.45 3.65 3.70 

3DSmoothNet 12.07 14.15 16.30 24.15 

PointNetLK 2.96 3.50 3.86 6.04 

Proposed 1.63 1.91 2.20 3.31 

The time cost of the five methods on the four models is 
also shown in Table Ⅴ (time/s). It can be found that when 
dealing with the significant deviation of the initial attitude in 
Model 1 and Model 2, the proposed method achieves almost 8 
times faster than the ICP method and 3DHoPD method, 7 
times faster than the 3DSmoothNet method and 1.5 times 
faster than the PointNetLK method. When deal with the partial 
overlap problem in Model 3 and Model 4, the time cost of the 
ICP, 3DHoPD is almost the same, the 3DSmoothNet spends 
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the most time, and the proposed method achieves at least 1.6 
times faster than the PointNetLK method. Therefore, both of 
the qualitative and quantitative analysis on experimental 
results show the superiority and feasibility. 

IV. CONCLUSION AND FUTURE WORK 

A novel point cloud registration method by using the 
coarse-to-fine strategy is developed. This method integrates 
the improved RANSAC algorithm and the LK algorithm into 
the PointNet network, effectively avoiding the inherent defect 
that the PointNet network cannot adapt to the gradient 
estimation through convolutions. In addition, the proposed 
method reduces the attitude difference and partial overlap 
between the source point cloud datasets by simultaneously 
making use of the global and local features. Experimental 
results obtained by four state-of-the art methods on four 
datasets fully verify its effectiveness, accuracy and 
superiority. 

Though good results have been obtained, some limitations 
should be fixed, such as the extracted features are not rich 
enough, the registration accuracy is not satisfying and the time 
cost is still too high to apply it in practice. In future work, the 
proposed method will be further optimized by introducing 
advanced theory and applying it to other registration tasks. For 
example, the famous transformer model and attention 
mechanism will be employed to extract more deep features to 
improve the registration performance. 
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