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Abstract—This study highlights on the methods used for 

surface reconstruction from unstructured point cloud data, 

characterized by simplicity, robustness and broad applicability 

from 3D point cloud data. The input data consists of 

unstructured 3D point cloud data representing a building. The 

reconstruction methods tested here are Poisson Reconstruction 

Algorithm, Ball Pivoting Algorithm, Alpha Shape Algorithm and 

3D surface refinement, employing mesh refinement through 

Laplacian smoothing and Simple Smoothing techniques. Analysis 

on the algorithm parameters and their influence on 

reconstruction quality, as well as their impact on computational 

time are discussed. The findings offer valuable insights into 

parameter behavior and its effects on computational efficiency 

and level of detail in the reconstruction process, contributing to 

enhanced 3D modeling and digital twin for buildings.    

Keywords—Surface reconstruction; point cloud; building 

reconstruction; 3D mesh 

I. INTRODUCTION  

Buildings play a pivotal role in our everyday lives, and 
consequently, considerable endeavors have been directed 
towards enhancing them. One approach to achieve this 
enhancement involves integrating digital technologies 
throughout the entire life cycle of the building, encompassing 
various stages such as planning, construction, operation, 
renovation and demolition [1]. Notably, significant attention 
has been dedicated to integrating digital advancements into the 
construction life cycle in the past decade [2]. Throughout this 
life cycle, three-dimensional (3D) models have demonstrated 
their utility in facilitating decision-making, scenario modeling, 
and analysis of 3D data. In recent years, there has been a 
growing demand for effective and efficient monitoring of 
changes in buildings and construction installations within 
urban areas. This demand is particularly evident in the domains 
of architecture, engineering, construction/facility management 
(AEC/FM), urban planning, surveying and mapping. Various 
applications, such as progress tracking, profitability 
enhancement, quality control, security assurance and incident 
investigation, underscore the necessity for advanced 
methodologies that employ automated measurements, 
including 2D imaging, photogrammetry and 3D laser scanning, 
instead of relying solely on visual inspection and manual data 
collection. 

3D building models are important in representing the urban 
environment and have numerous applications, including 3D 

Geographic Information Systems (GIS), urban planning, 
environmental simulation, energy consumption assessment, 
tourism, mobile navigation, heritage preservation and change 
detection [3]–[5]. Many studies have been conducted 
throughout the years on the reconstruction of building 
information models (BIM). BIM, as a valuable methodology, 
serves as a pivotal tool in facilitating the planning and 
construction processes of architectural and infrastructural 
projects. BIM models intricately replicate physical structures, 
offering a comprehensive foundation for undertaking 
assessments of their status, condition, and strategizing 
maintenance activities. Furthermore, BIM presents a unified 
and cohesive platform for the seamless integration of data 
collected from the construction site. 

Recently, the concept of BIM has expanded to include the 
concept of a digital twin (DT). DT is a virtual representation of 
a physical entity that used to simulate and evaluate the 
performance of a building throughout its lifespan. The digital 
twin technology can be utilized for various purposes such as 
visualization, modelling, simulation, analysis and future 
planning [6], [7]. These virtual models can help optimize the 
design and building process, anticipate potential issues and 
enhance the building's performance and features over time [8]. 
The idea of a digital twin was initially introduced by M. 
Grieves during a Product Life-Cycle Management Symposium 
at the University of Michigan Lurie Engineering Center in 
2002 [9]. The proposed model of a digital twin comprises three 
primary components: the physical product, the virtual product 
and the connection between the physical and virtual entities. In 
a subsequent publication [10], Grieves further defined digital 
twinning as the integration of three essential elements: a virtual 
twin, a physical counterpart (such as a product, system, model, 
or entity like a robot, car, power turbine, human, hospital, etc.), 
and a data flow cycle that facilitates the exchange of 
information between the physical and virtual twins. The virtual 
twin employs simulation algorithms to replicate (either fully or 
partially) the performance of its physical counterpart, 
generating equivalent outputs based on input values. This 
technology is commonly used in the context of smart 
manufacturing but is applicable to various domains, including 
construction, education, transportation, human and healthcare, 
also industrial production [7]. The primary advantages of 
digital twin models are their ability to access and query 
structured data and their visual representation of information. 
Digital twins undergo periodic updates to maintain alignment 
with their physical counterparts. The frequency of these 
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updates varies contingently upon factors including the inherent 
characteristics of the product, its dynamic attributes and the 
specific objectives underlying the model's use. For instance, in 
the case of a jet engine, updates may occur at minute intervals, 
whereas for maintenance management of a building, annual 
updates may suffice. Notwithstanding, a notable complexity 
emerges due to the historical context of many extant buildings, 
often constructed decades ago, thereby necessitating the 
development of digital twin models that accurately represent 
these pre-existing assets. 

To create a digital twin of a building, one of the essential 
steps is to capture its geometry and appearance using point 
cloud data. A point cloud is a collection of points in 3D space 
that represent the surface of an object. These data points 
typically comprise X, Y, and Z coordinates and are primarily 
utilized to depict the outer surfaces of an entity [11]. Point 
clouds can be obtained from various sources, such as laser 
scanners or cameras, by capturing the geometry of an existing 
facility. These techniques produce point cloud data as output. 
Compared to visual inspection, point cloud data offers shorter 
processing times and higher measurement accuracy. With the 
introduction of very precise data collection techniques 
involving terrestrial laser scanning, aerial oblique photography 
and satellite imagery, 3D point cloud has established itself as 
the principal data sources for large-scale building 
reconstruction. Point clouds can be processed and 
reconstructed to create 3D models of building interiors and 
exteriors in vector format.  Furthermore, existing research 
projects have emerged proposing approaches for generating 
accurate building footprints and models by combining point 
clouds and imaging  [12]–[14]. This interdisciplinary field, 
which includes photogrammetry, computer vision and 
modelling, has seen significant research efforts over the last 
two decades, delivering important and significant results. 

While 3D building models and digital twins offer immense 
potential in urban development and architectural landscapes, 
there exists a notable gap in systematically and critically 
analyzing the various surface reconstruction techniques that 
form the foundation of these models especially on its 
simplicity, robustness, and broad applicability in surface 
reconstruction from point cloud data. This paper aims to bridge 
this research gap by addressing the following pivotal questions: 
(a) How does different surface reconstruction technique 
perform when applied to large, unstructured point cloud data 
like buildings, both in terms of quality and speed of 
calculation? and (b) In what contexts do these techniques 
exhibit optimal efficiency and precision? This paper central 
contribution is an in-depth comparative assessment of specific 
surface reconstruction techniques, bringing clarity to the 
challenges, advantages, and nuances of each. In doing so, 
professionals and researchers in the related field could equip 
with a clearer understanding and guide for their practical and 
academic endeavors. 

In existing research, a rich set of methods has been 
proposed for surface reconstruction from point clouds, and 
some reviews and benchmarks of these methods have also been 
provided [15]. However, they still face challenges in terms of 
robustness, generalization and efficiency, especially for 
unstructured, complex and large-scale surfaces such as 

buildings. Furthermore, the scalability and parallelizability of 
these methods become critical when dealing with big data, as 
they must handle enormous point cloud collections while 
maintaining computational efficiency. Point cloud-based 3D 
reconstruction in buildings has many applications for the 
construction industry, such as automatic creation of as-built 
BIMs, damage detection and assessment, cultural heritage, and 
facility management [16]–[18]. Therefore, there is a need for 
developing an effective method for surface reconstruction from 
point clouds that can handle the specific characteristics and 
requirements of building surfaces. 

This paper focuses on a few types of surface reconstruction 
techniques use for building data. Thus, a comparison between 
these techniques, based on the quality of the surfaces and the 
speed of calculation, will be made. This work is organized as 
follows: Section II presents a summary of reconstruction 
methods from a set of discrete data points or sample. 
Section III shows the visualization and discussion of the 
surface reconstruction results for more understanding. Lastly, 
Section IV explains the conclusion for this paper. 

II. METHODOLOGY 

The overview of the sample data used for reconstructing 
3D surface of a building is as shown in Fig. 1. The point cloud 
data represents one of the buildings in Faculty of Electrical 
Engineering & Technology, Universiti Malaysia Perlis, 
Malaysia. The initial step involves converting the binary data 
into a more interpretable format compatible with standard 3D 
libraries and applications. Subsequently, downsampling the 
data is performed to make it efficiently better processed with 
shorter computational time. Next, data cleaning is implemented 
to mitigate imperfections in the real data, enhancing the 
efficiency of the surface reconstruction method for mesh 
generation.  Finally, five different surface reconstruction 
techniques are applied and assessed based on the resulting 
processed point cloud data to generate a 3D triangulated mesh.   

A. The Sample Data 

The point cloud data of 3D coordinates is stored in six 
different files and saved in .ptx file format and consists of 
approximately 226,471,204 points. The data is collected by 
Geodelta Systems Sdn. Bhd. using 3D terrestrial laser scanner 
model Leica RTC360 where it has a scanning speed up to 2 
million pts/sec and advanced HDR imaging. 

To extract the 3D file format from the .ptx file and 
transform it into a commonly used 3D point cloud data format, 
such as the .pcd file format, a comprehensive understanding of 
the binary file data structure assumes paramount significance. 
Each .ptx file encompasses vital data elements, encompassing 
color information, the minimum depth value (zmin), the 
subsampled number of rows (nrows), the subsampled number 
of columns (ncols), the image file name, and an Nx5 matrix 
signifying 3D and 2D normalized coordinates falling within the 
[0,1] range [19]. Herein, N denotes the product of nrows and 
ncols, where values equivalent to zmin denote the background. 
The extraction process selectively focuses on the isolation and 
preservation of solely the 3D coordinates from the .ptx file, 
ultimately saving them in the .pcd file format, facilitating 
subsequent analytical endeavors. Various software tools, such 
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as CloudCompare, MeshLab, Blender and Python 3D libraries, 
can read the .pcd file format, facilitating data visualization and 
manipulation. This enables easier understanding and 
modification of the data as needed. An example of an extracted 
point cloud dataset is illustrated in Fig. 1, where the image at 
the below shows a zoomed-in view of the original 3D point 
cloud shown on the top. From the figure, it can be inferred that 
each point exhibits ambiguous relationships with neighbouring 
points. 

 

Fig. 1. The point cloud data used in this study. 

B. Data preprocessing 

In order to improve the data quality and computational 
efficiency, a preprocessing stage is employed to eliminate 
unnecessary data of point clouds. One of the often used as a 
pre-processing step for many point cloud data processing tasks 
is voxel downsampling. Downsampling is a technique to 
reduce the number of points in a point cloud as the original 
dataset is too large to handle. It can improve efficiency and 
accuracy by minimizing storage requirements, processing time 
and memory usage. One of the common methods for 
downsampling is voxel downsampling. It uses a regular voxel 
grid to create a uniformly downsampled point cloud from an 
input point cloud. The algorithm follows a two-step process: 
initially, data points are grouped into voxel containers and 
subsequently, each occupied voxel yields a single 
representative point through the computation of the average of 
all points contained within it. So, all of the point clouds are 
being downsampled to 0.01 resulted in easier to be processed 
due to lesser number of points as shown in Fig. 2. The 

downsampled point cloud data reduced to 12,704,776 points, 
from its original which consists of 226,471,204 points. 

 

Fig. 2. Downsampled data of original point cloud. 

Next, the preprocessing step involves removing statistical 
outliers. It removes points that are further away from their 
neighboring points. The mean inter-point separation is 
computed via the application of the k-nearest neighbors 
algorithm. Should the computed average distance between a 
query point and its neighboring points surpass a threshold 
established by the standard deviation, it is categorized as an 
outlier and subsequently excluded from the dataset. This initial 
preprocessing stage employs various standard deviation ratios, 
notably a factor of 0.75, to accentuate differentiation. The 
parameter kNN, signifying the number of nearest neighbors 
considered, is set to a value of 50. Fig. 3 shows the 
visualization of the point cloud data with red and grey colour 
that indicates the outlier and inlier. The red colour is the 
outliers that being filtered out. Fig. 4 shows the remaining 
point cloud in original colour of 12,225,180 points. 

 

Fig. 3. Inlier (in grey) and outlier (in red) of the point cloud data. 
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Fig. 4. Remaining point cloud after outlier removal. 

However, the remaining point clouds are not accurate as the 
surrounding of the buildings still contains points that are 
considered as noise. So, a process of filtering takes over using 
CloudCompare by manually remove the excessive point cloud 
surrounding the building. Fig. 5 below shows the remaining 
point cloud data that will be processed for surfacce 
reconstruction which only consist of 7,258,055 points.  

 

Fig. 5. Filtered point cloud. 

C. Surface reconstruction 

The field of geometry processing has significant emphasis 
on the foundational challenge of surface reconstruction from 
point clouds. This endeavor is rooted in the objective of 
generating a continuous 2D manifold surface from the inherent 
sparsity of raw, discrete point cloud data. It is worth noting that 
this problem is inherently ill-posed, and its complexity 
escalates when considering the various sensor-related 
imperfections that manifest within point clouds acquired 
through real-world depth scanning techniques.  

Hence, this paper will focus exclusively on five distinct 
surface reconstruction approaches, aimed at visualizing a range 
of methodologies advanced by prior researchers addressing this 
issue. These methodologies can be broadly categorized into 
three primary groups, namely Alpha Shape, Ball Pivoting and 
Poisson reconstruction, as well as combinations of Alpha 
Shape with Ball Pivoting and the amalgamation of Alpha 
Shape, Ball Pivoting and mesh refinement. 

The Alpha Shape technique serves as an extension of the 
convex hull method, allowing for the representation of point 
clouds with concavities and holes. However, choosing an 
appropriate value for "α" requires a balance. If the value is too 
small, the resulting mesh may include more noise or artifacts, 
and it may overfit to local irregularities in the point cloud. On 
the other hand, if the value is too large, the resulting mesh may 
oversimplify the shape and fail to capture fine details or 
concavities. By adjusting the parameter alpha or "α", the level 
of detail in the reconstructed surface can be controlled. A 
smaller "α" value results in a more intricate surface, while a 
larger "α" value produces a smoother and simpler surface. The 
reconstruction process involves computing the Delaunay 
tetrahedralization of the point cloud and extracting the faces 
belonging to the "α" complex as it contains points, edges, 
triangles and tetrahedrons. 

Ball Pivoting Algorithm (BPA), another surface 
reconstruction method, is closely related to the Alpha Shape 
technique. It is an efficient surface reconstruction approach 
which operates by simulating the rolling of a ball with a 
predetermined radius across the point cloud. Triangles are 
created whenever the ball encounters three points without 
penetrating them. As the ball moving through the point cloud, a 
triangular interconnected 3D mesh is formed, linking the 3D 
points. The method is repeated until all the points form a 
triangle. Starting with a seed triangle, the algorithm pivots the 
ball around the edges of existing triangles until all feasible 
triangles are produced. The BPA exhibits sensitivity to 
variations in the ball radius, which plays a crucial role in 
determining the quantity of reconstructed faces. A smaller 
radius renders the model susceptible to noise in the input data, 
while a larger radius may lead to the missing of intricate 
details, resulting in the formation of holes within the generated 
surface. BPA is suitable for handling point clouds with non-
uniform densities and noise; however, careful selection of the 
ball radius is crucial to prevent gaps or overlaps in the 
reconstructed surface. 

Poisson reconstruction is a widely recognized approach for 
generating smooth surfaces from point clouds using a 
volumetric strategy. It leverages oriented point samples 
obtained from 3D range scanners to create watertight surfaces. 
The method assumes that the point cloud serves as a sample of 
an underlying surface's indicator function and solves for an 
implicit function whose gradient best aligns with the estimated 
normals of the point cloud. The surface is subsequently 
extracted as an iso-surface of the implicit function utilizing 
marching cubes. Poisson reconstruction excels in producing 
high-quality surfaces with well-defined features, but it requires 
oriented normals as input and may introduce undesired 
intricacies in flat regions. Nevertheless, this technique exhibits 
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resilience to noisy data and artifacts arising from 
misregistration. 

III. RESULTS AND DISCUSSION 

All surface reconstruction techniques were evaluated and 
tested on a computer system comprising an Intel i7 12700h 
processor with 32GB of RAM and a GTX 3050ti graphics 
card. All methods were implemented using the Open3D library 
in python. Fig. 6 shows the clean point cloud data of the 
chosen building that will be used for the surface reconstruction 
algorithms upon preprocessing and Fig. 7 shows the close-up 
view for the point cloud for better understanding to show its 
complexity and unstructured of the data. Table I shows the 
comparison of all algorithms with the parameters used, time 
taken for each algorithm needs to be completed, together with 
their resulting images from two views: the whole building and 
close-up view from the top corner. 

 

Fig. 6. Point cloud data of the building. 

 

Fig. 7. Close-up view of the point cloud.  

Poisson surface reconstruction necessitated the prior 

prediction of normals for surface reconstruction, employing it 

automatically by the maximum nearest neighbour search. The 

depth of reconstruction indicated the resolution of the 

resulting triangle mesh, determined by the octree's depth 

which being set to 8. The minimum number of sample points 

within an octree node was established to adapt the octree 

construction to the sampling process, with lower numbers 

chosen to mitigate noise interference. The scale factor denoted 

the ratio between the reconstruction cube's diameter and the 

sample bounding box's diameter. Nevertheless, Poisson 

surface reconstruction yielded outcomes without any mesh 

holes but it leaves unnecessary mesh triangulations on planar 

point as shown in Table I. 

TABLE I. SUMMARY OF RESULT COMPARISON FOR THE SELECTED ALGORITHMS 

Algorithms Parameters Processing Time (s) Results 

Poisson 

Reconstruction 

Octree depth=8 

Scale factor=1 
163.92 
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Ball Pivoting Ball radius=0.02 288.34 

 

 

Alpha Shape α = 0.13 303.19 

 
 

Alpha Shape + Ball 

Pivoting 

α = 0.13 

Ball radius=0.02 
566.38 
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Alpha Shape + Ball 

Pivoting + Mesh 

Filtering 

α = 0.13 

Ball radius=0.02 

Number of 

iterations (Simple 

Smoothing)=30 

Number of 

iterations 

(Laplacian)=30 

Lambda 

filter=0.5 

 

1092.07  

 

 

On the other hand, Ball Pivoting surface reconstruction 
required prior normal estimation before commencing surface 
reconstruction. Vertices falling within a given percentage of 
the clustering radius were merged to prevent excessive small 
triangle creation. The ball rolling process would cease if it 
encountered a significant crease angle surpassing the threshold 
angle. The ball's rolling radius over the point cloud was set to 
0.02. Table I exhibited also the outcomes of ball pivoting 
surface reconstruction, where holes were observed in regions 
with lower point cloud density. However, unlike Poisson 
surface reconstruction, this method avoided unnecessary mesh 
creation that required subsequent cropping since it failed to 
represent facial depth accurately. 

Meanwhile, the result of meshing using the Alpha Shape 
method with a parameter value of 0.13 involves generating a 
surface mesh that captures the shape of a point cloud with 
holes and concavities. The Alpha Shape method is a 
generalization of the convex hull and is particularly useful 
when dealing with point clouds that have irregular or non-
convex shapes. Unlike Poisson and Ball Pivoting, Alpha Shape 
algorithm does not require normal estimation. The parameter 
"α" in the Alpha Shape method determines the level of detail in 
the reconstructed surface. A smaller value of "α" (0.13) 
produces a more detailed mesh with a higher resolution where 

smaller features and intricate details present in the point cloud 
can be captured in the resulting mesh as shown in Table I. The 
mesh will closely follow the shape of the input point cloud and 
adapt to its local density and curvature. Therefore, the choice 
of the "α" parameter is decided after running several tests with 
different values. This gives the best result as it still can 
capturing details and maintaining the overall shape fidelity in 
the resulting mesh.  

Due to the limitations of each individual algorithm, the 
combination of Ball Pivoting and Alpha Shape methods in 
meshing involves leveraging the strengths of both approaches 
to achieve a more robust and accurate representation of the 
underlying point cloud. By combining Ball Pivoting and Alpha 
Shape methods, the strengths of both techniques can be fully 
utilized. Ball Pivoting handle the local details and irregularities 
of the point cloud, while Alpha Shape capture the overall shape 
and handle concavities. This combined approach produced a 
mesh that preserves the important features and characteristics 
of the original point cloud, while also providing a more 
accurate and visually appealing representation as shown. 
However, the Alpha Shape results in not so precise 
reconstruction when it comes to sharpness of angles of the 
building as shown in Table I. 
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The integration of Ball Pivoting, Alpha Shape and mesh 
refinement through Laplacian smoothing and Simple 
Smoothing however constitutes a comprehensive strategy for 
the task of surface reconstruction and subsequent mesh 
enhancement. In terms of mesh refinement, two distinct 
smoothing techniques are employed. Laplacian smoothing 
involves iterative adjustments of vertex positions, effectively 
attenuating high-frequency noise and enhancing mesh 
smoothness while preserving sharp geometric features. 
Conversely, Simple Smoothing employs a rudimentary moving 
average filter to vertices, delivering a general refinement to the 
mesh's geometric properties. This two-fold smoothing 
methodology serves the purpose of mitigating undesired 
irregularities and augmenting the overall visual fidelity of the 
mesh representation. Through the combination of these 
methodologies, the resultant mesh stands to gain advantages in 
terms of heightened accuracy, diminished noise, and improved 
surface regularity. The amalgamation of Ball Pivoting, Alpha 
Shape, and the aforementioned dual smoothing techniques 
yields a potent solution applicable across diverse domains, 
encompassing computer graphics, 3D modeling, virtual reality, 
and computational geometry. Furthermore, the adaptability 
inherent in this combined approach empowers users to fine-
tune parameters and iteration counts, thereby achieving optimal 
outcomes tailored to the distinctive attributes of their datasets 
and the desired level of mesh refinement. Consequently, this 
combination of methodologies emerges as an efficacious and 
versatile technique for addressing surface reconstruction and 
mesh refinement tasks. 

In summary, each of the methodologies introduced for 
surface reconstruction has its respective advantages and 
limitations. The Poisson surface reconstruction method 
consistently produces hole-free results but can also introduce 
unnecessary triangulations. On the other hand, the Ball 
Pivoting method excels in avoiding unnecessary mesh 
production yet lacks in representing facial depth precision. The 
Alpha Shape method, adaptable to non-convex and irregular 
shapes, offers a versatile solution to meshing, though it may 
occasionally compromise the precision of angles. However, it 
becomes evident that the approach emerges from the 
integration of Ball Pivoting, Alpha Shape, and mesh 
refinement techniques, specifically through the incorporation 
of Laplacian and Simple Smoothing. This combination 
technique harnesses the unique strengths of each individual 
method, producing an optimal solution that balances accuracy, 
noise mitigation, and enhanced surface consistency. As a 
result, this integrated methodology stands out as the most 
recommended, providing unparalleled robustness and 
adaptability suitable for a wide range of surface reconstruction 
and mesh refinement applications. 

Upon analyzing the results obtained, it becomes imperative 
to consider the scalability of the proposed methodologies. 
While the techniques have shown promising outcomes on the 
datasets in this study, there is an important area of evaluation to 
consider. Their performance across datasets that represent 
distinct architectural styles, varying scales, and diverse 
complexities needs to be examined. Future investigations 
should focus on evaluating these methods across a wider range 

of datasets. This approach will help validate the adaptability 
and universality of the proposed techniques. In scenarios where 
the datasets are vast and depict intricate urban landscapes, it is 
vital to assess metrics such as computational efficiency, 
memory requirements, and the fidelity of the resultant mesh. 

Additionally, despite the promising outcomes, there exist 
potential limitations and areas for further exploration. One 
foreseeable challenge pertains to highly intricate and ornate 
architectural designs, where capturing every minute detail 
could strain the computational resources and necessitate further 
algorithmic optimizations. Moreover, while the combination of 
Ball Pivoting and Alpha Shape methods harnesses their 
collective strengths, there remains room for improvement in 
handling sharp angles, as evidenced in Table I. Future research 
could just focus on refining these combinations, possibly 
integrating other meshing algorithms or advanced smoothing 
techniques to better address such challenges. Furthermore, with 
the rapid evolution of hardware and software capabilities, 
exploring the integration of machine learning or AI-driven 
approaches in the surface reconstruction pipeline could offer 
innovative solutions, enhancing the accuracy and efficiency of 
the process. 

IV. CONCLUSION 

In conclusion, the successful implementation of specific 
surface reconstruction methods is contingent upon satisfying 
the input requirements, such as having normal orientation 
information available for the point cloud. In cases where the 
input lacks normal orientation, an algorithm must be employed 
to estimate the orientation values for the point cloud. For 
instance, Poisson surface reconstruction necessitates the 
estimation of normal orientations prior to the reconstruction 
process. Certain methods exhibit robustness towards specific 
types of point cloud artifacts, including noisy data, nonuniform 
sampling, outliers, misaligned scans and missing or incomplete 
data. However, certain methods may be limited in their 
applicability to different shape classes. For instance, surface 
reconstruction cannot handle shape classes that do not result in 
watertight meshes. The output of the reconstruction process 
can manifest in various forms, such as producing watertight 
meshes, mesh triangulation on planar surfaces, generating 
cloth-like meshes that envelop the initial point cloud or 
voxelization. The result of Poisson surface reconstruction often 
presents unnecessary mesh triangulations on planar point 
clouds, resembling cloth-like structures, while effectively 
closing holes in sparsely sampled regions. On the other hand, 
Ball Pivoting surface reconstruction tends to yield accurate 
mesh edges but can leave numerous holes due to nonuniform 
sampling and missing data, particularly in areas like the angle’s 
region with less point cloud. By combining different methods, 
it can help to achieve smoother with higher accuracy of the 
surface of buildings. 
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