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Abstract—With the rise of deep learning methods, neural 

network architecture adopted from neural machine translation 

has been widely studied in code summarization by learning the 

sequential content of code. Given the inherent nature of 

programming languages, learning the representation of source 

code from the parsed structural information is also a typical way 

for constructing code summarization models. Recent studies 

show that the overall performance of the neural models for code 

summarization can be improved by utilizing sequential and 

structural information in a hybrid manner. However, both of 

these two kinds of information fed to the neural models for code 

summarization fail to embrace the semantics of source code 

snippets in an explicit way. Is it really a good way to just leave 

the semantics as hidden things in the source code and have the 

neural models capture whatever they can get? To observe the 

utilization of program semantics in automatic code 

summarization, we conducted an experimental study by 

analyzing the acceptability of the extreme code summaries 

generated from neural models. To make the models aligned in 

the same context for this experimental study and to focus on the 

observation of the semantics, we re-implement the neural models 

from three selected studies as extreme code summarization 

solutions. After an intuitive observation and exploration of the 

generated summaries with the models trained from a Java 

dataset, we identify five acceptability aspects: (1) function name 

format; (2) function naming style; (3) semantic level similarity; 

(4) the differences in hitting rate of representative words; and (5) 

the correlation between extreme code summaries with function 

body. Based on the false negative and false positive phenomena in 

the results, ablation experiments have shown that the use of 

program semantics has a positive effect on generating high-

quality abstracts in neural models. Our work proves the potential 

of utilizing the program semantics explicitly in code 

summarization, and the possible directions are also indicated. 

Keywords—Extreme code summarization; program semantics 

utilization; acceptability analysis of code summary 

I. INTRODUCTION 

The task of code summarization refers to the automatically 
creating readable summaries describing the function of the 
given code snippets, and identify the roles and responsibilities 
of software units [1]. A good summary can help developers 
understand, reuse and maintain code more easily, and greatly 
improve production efficiency. However, problems exist in 
code summaries, including missing information, errors, and 
outdated comments. Human-written summaries also require 

professional domain knowledge, making the entire process 
time-consuming. Hence, machine-generated summaries are 
gaining popularity, with their effectiveness acknowledged in 
many studies. 

The majority of automatic code summarization algorithms 
rely on techniques such as information retrieval, stereotype 
identification, machine learning and artificial neural network, 
and natural language processing [2] [3]. Among them, deep 
learning techniques have demonstrated the benefits of 
modeling programs recently [4] [5]. Specifically, guided by 
neural machine translation, early code summarization models 
focus on the sequential content of code [6]. Yet, leading 
approaches have recognized the significance of integrating 
structural information derived from Abstract Syntax Trees 
(ASTs). 

However, both traditional and deep learning techniques 
have limitations in generating natural language summaries.     
Traditional approaches struggle with extracting keywords 
when identifiers and methods are poorly named, and proper 
summaries cannot be generated if similar code snippets are 
absent. Moreover, the majority of deep learning-based 
approaches treat the source code as plain text, resulting in the 
omission of crucial information, such as naming conventions 
for identifiers and usage patterns of application programming 
interfaces [7] [8]. Since sequences of tokens parsed from AST 
are typically fed into the sequence-to-sequence framework, this 
approach may fail to capture long dependencies between code 
tokens [9]. These limitations may lead to the underutilization of 
program semantics at both the code text level and structural 
level, as evaluated using the acceptability of generated code 
summaries. However, there are currently no systematic studies 
to address this issue. To assess the acceptability of code 
summaries generated by neural models, we selected 
representative models from various categories for extreme code 
summarization tasks, and intend to get insights from the 
experimental results. The main contributions of our study are 
as follows: 

 To explore the acceptability of the code summaries 
generated from neural models, we re-implement the 
neural models from three selected studies for extreme 
code summarization. Following an intuitive observation 
of the generated summaries, we proposed five 
acceptability aspects for further analysis. 
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 To identify which limitations of the selected models 
aggravate to the lower acceptability, we conducted a 
comprehensive analysis, focusing on the misjudgment 
in generated summaries. We found that false negatives 
in extreme code summaries can be attributed to issues, 
such as text-level semantic similarity in code, variations 
in function hit rates, and the correlation between 
function names and their respective bodies.       Besides, 
the format and naming conventions of function names 
may result in false positives in extreme code 
summaries.       In accordance with these observations, 
further hypotheses are formulated to improve automatic 
code summarization, including from the perspective of 
underutilization of function body semantics by neural 
models and potential issues related to dataset 
preprocessing. 

 To verify our hypothesis, we conducted the ablation 
experiments based on the selected models. We 
discovered that phrases with similar semantics have a 
greater impact on false negatives in generated 
summaries, while the format of function names has a 
stronger influence on false positives in the results.       
Subsequently, we provide directions for improvement 
in three aspects: dataset preprocessing, external data 
source and the model's learning process.  These 
directions serve as a valuable reference for future 
research in the field. 

II. RELATED WORK 

A. Overview of Common Models in the Field of Code 

Summarization 

At present, several representative neural models which can 
be used to perform the task of code summarization in relevant 
field, including CODE-NN [10] model based on attention 
mechanism, Deep-Com [11] model based on code structure 
analysis, summary generation model based on reinforcement 
training and so on. Several classic code summarization models 
are as follows. 

 CODE-NN is an end-to-end summary generation 
system built directly by using the structure of circular 
neural network, and relevant summary are generated 
according to the word vectors of source code. The 
introduction of attention mechanism not only highlights 
the contribution of key words in the decoding process, 
but also solves the problem that the summary generated 
by long code is difficult to understand.  

 The code summarization model based on sequence-to-
sequence learning algorithm [12] is also popular. The 
encoder and decoder of this model are built by 
independent LSTM neural networks, which can extract 
lexical features of source code and generate summaries. 
It inputs the key vocabulary sequence of the source 
code function and outputs the English summary related 
to the function. 

 Deep-Com [11] based on code structure analysis is also 
a mainstream model in this field. To extract the hidden 

structural information in the source code, Deep-Com 
firstly outputs the summary syntax tree as a sequence of 
nodes in a specific order through a special traversal 
algorithm [13], and then generates the summary of the 
target code by using the classic encoder-decoder model. 
The author thinks that the traversal algorithm used by 
Deep-Com can express the structural characteristics of 
the summary syntax tree without loss, and the generated 
summary can also accurately describe the functional 
characteristics of the source code. 

 The reinforcement learning model for parameter 
training based on actor-critic mode recently proposed 
by wan et al gradually becoming popular [14]. Different 
from the common code summarization model in the 
field, the author innovatively uses reinforcement 
learning to update the model parameters, which can 
further reduce the exposure bias. 

In addition, there are also several neural models that can be 
used directly to perform the task of extreme code 
summarization, such as Code2Vec, Code2seq, Code-
Transformer are shown below: 

 Code2Vec [15], which transforms code fragments into 
vectors with fixed length and continuous distribution, 
which can be used to predict the semantic information 
of code fragments. To achieve this goal, Code2Vec is 
first decomposed into a set of paths in its corresponding 
AST, and then the neural network is used to learn the 
representation of each path and how to integrate the 
representations of all paths. The effectiveness of 
Code2Vec has been verified by the task of predicting 
the function name with vector representation of 
function body. 

 Code2seq [16], which uses the syntax structure in 
programming language to encode the source code. In 
this model, a part of paths are extracted from AST of 
code fragments, and the target sequence is generated by 
Attention after LSTM coding. Code2seq uses the way 
of encoding the sample of code fragment AST to extract 
grammatical information better. The effectiveness of 
Code2seq has been verified in the extreme code 
summarization task. 

 Code-Transformer [17], which jointly learns the 
sequential and structural information in source code. 
Compared with other neural models, it only depends on 
language-independent features, and can directly 
calculate the source code and features from AST. The 
performance of the Code-Transformer model is also 
validated on the task of predicting function name based 
on function body. 

Although the above models have good performance in code 
summarization generation, due to the lack of learning about 
structural information or semantic information of source code, 
sometimes it is inevitable that the generated summaries are 
difficult to understand or have poor readability. 
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B. Performance Analysis of Code Summarization Model 

The code summarization algorithm based on deep neural 
network uses the neural machine translation technology to 
select the corresponding words from the corpus according to 
the maximum similarity principle with the help of the previous 
generated words. It transforms the sequence data by using the 
good transformation ability of the classical encoder-decoder 
framework, which transforms the source language sequence 
into the target language sequence. The classic structure has 
achieved good translation results, despite of the obvious 
structural and hierarchical characteristics of programming 
languages, when the neural machine translation method is 
applied to the generation of code summary, the source code 
will be treated as an ordinary text. This will inevitably cause 
the lack of source code structure and make the summarization 
effect of neural code summarization algorithm worse. 
Generally speaking, the accuracy of automatic code 
summarization system based on neural network is not high 
[18]. 

 

Fig. 1. The limitations of the model's ability to generate summaries. 

To sum up, the neural model algorithm used for code 
summarization has two limitations, as shown in Fig. 1. First, 
only the sequence information in the code is taken into account 
by the encoder-decoder structure while the hidden semantics 
such as the structural information in the code are ignored [19] 
[20]. Second, the neural code summarization model based on 
maximum similarity will encounter the problem that low-
frequency words or unknown words in the training data cannot 
be generated correctly during testing [21][22]. In this situation, 
even if the training data set is large enough and the quality is 
good enough, low-frequency words cannot be generated 
correctly; Moreover, when the summary model is applied to a 
code file in a different domain, there is also the problem of not 
being able to generate an accurate summary because of words 
for related domains that are not present in the training set. 
Above two kinds of findings are the main problems of neural 
code summarization algorithm. 

Although scholars in related fields have identified these 
hidden dangers, there is currently no targeted solution for these 

specific problems in code summarization. Therefore, our study 
attempts to analyze the generated summaries by neural models 
to observe these phenomena and propose improvement ideas. 

III. RESEARCH METHODOLOGIES 

A. Extreme Code Summarization Task 

To observe the utilization of program semantics in 
automatic code summarization, we conducted an experimental 
study by analyzing the acceptability of the code summaries 
generated from neural models. To determine whether our 
experiment can be generalized to different versions of the 
neural models, we re-implement the neural models from three 
selected studies as extreme code summarization solutions. The 
executive process of the neural model for the task of extreme 
code summarization is shown in Fig. 2. These neural models 
are trained by different procedures and can be used directly. 

 

Fig. 2. Overview of models for extreme code summarization. 

For the sake of better evaluating the universality of our 
research, we selected three representative models from 
different categories. Their different architectures may result in 
different focuses on learning source code semantics. Among 
them, code2Vec extracts AST path from the abstract syntax 
tree (AST) of Code, learns the vector representation of each 
path through the deep learning model and how to aggregate 
multiple paths into one vector to represent the entire Code; 
Code2seq uses LSTMs to encode paths node-by-node (rather 
than monolithic path embeddings as in code2vec), and an 
LSTM to decode a target sequence (rather than predicting a 
single label at a time as in code2vec); Code-Transformer is a 
Transformer based architecture that learns both source code 
(context) and an abstract syntax tree (AST) for parsing. In view 
of their different model architectures result in different ways of 
learning source code semantics, we infer that there may also be 
some differences in the generated summaries. 

Therefore, Code2vec, Code2seq and Code-Transformer 
represent a set of diverse but representative models. Using the 
same dataset to evaluate the task of extreme code 
summarization on Code2vec, code2seq, and code-transformer 
highlights the potential risk of false negative and false positive 
generation when using neural models. Although we can't say 
for sure, other neural models trained on similar data set may 
exhibit similar behavior. 

B. Dataset 

For the task of extreme code summarization, a high-quality 
dataset plays a crucial role in the quality and acceptability of 
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the summary generated by neural model. Therefore, we chose 
the Java dataset proposed by Hu et al., which has been used to 
evaluate code summarization models such as Code-NN and 
Deep-Com by using common metrics of bleu, rouge, and 
meteor, and has achieved relatively complete experimental 
results. 

Java dataset [5], including Java methods extracted from 
Java projects from 2015 to 2016, collected from GitHub. The 
first sentence of Javadoc is extracted as a natural language 
description, which describes the functions of Java methods. 
The quantity distribution of the dataset is shown in Table I. 

TABLE I.  JAVA DATASET STATISTICS 

Dataset Samples 

Train 26142 

Test 8714 

Validation 8714 

C. Evaluation Metrics 

In order to better evaluate the quality of generated extreme 
code summaries, we selected three commonly used metrics in 
the field of code summarization: bleu, rouge, and meter. 

1) BLEU: BLEU is used to compare the overlapping 

degree of n-gram in candidate translation and reference 

translation [23]. N-gram accuracy refers to the ratio of the total 

number of n-gram matches between the evaluated generated 

summary and the reference summary to the total number of n-

grams in the reference summary. BLEU is often applied to 

evaluate the similarity between generated summary and 

reference text. 

                            (   ∑   
 
         )  (1) 

Here Pn refers to the accuracy rate of n-gram; Wn refers to 
the weight of n-gram; BP is a penalty factor. 

2) ROUGE: ROUGE is a quality evaluation method of text 

summary based on recall, it calculates the similarity between 

generated summary and reference text [23]. ROUGE-L is often 

applied to evaluate the quality of code summarization. 
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The denominator of the formula here is to count the number 
of n-grams in the reference translation, while the numerator is 
to count the number of n-grams shared by the reference 
translation and the machine translation [24]. 

3) Meteor: Meteor is used to calculate the score based on 

the clear word-word matching degree between the generated 

summary and the reference text [23], so it is often applied to 

evaluate the quality of the generated summary according to the 

score. 
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Here, P and R are 1-gram accuracy and recall, c  is the 
number of blocks, M is the matching number. 

4) Limitations of metrics: These three types of metrics are 

all calculated based on the degree of matching at the text level, 

and cannot be used to evaluate the degree of semantic 

similarity. All of them have a clear bias towards the order of 

words, which may lead to some false negatives and 

misjudgments in the results of extreme code summarization. 

IV. EXPERIMENTS 

A. Research Questions and Experimental Process 

In order to explore the acceptability of the code summaries 
generated from neural models, we re-implement the models of 
code-transformer, code2vec and code2seq to perform the task 
of extreme code summarization, and conduct statistics and 
analysis for the preliminary experimental results. We found 
that different models have different qualities for summaries 
generated from the same piece of code, such as the length of 
generated summaries and the omission of semantic 
information. 

Based on relevant development experience and previous 
research evidence, we propose the following research questions 
regarding the preliminary results of the task of extreme code 
summarization: 

RQ1-1: How effectively do existing models employ 
program semantics for text-level matching? 

RQ1-2: Why do many generated function names shrink in 
length compared to the original function names in the extreme 
code summaries generated by neural models? 

RQ1-3: Whether different types of naming styles of 
function names affect the accuracy of the model in capturing 
semantics? 

RQ2-1: Whether some synonyms representing the same 
program semantics can be identified during model learning? 

RQ2-2: Whether the model's ability to capture the 
semantics of verbs greater than that of nouns? 

RQ2-3: Will neural models only capture the semantics of 
words with the same name as function names while ignoring 
other important semantics? 

Afterwards, we will design our experimental plan based on 
these research questions. The experimental process steps are 
shown in the following Fig. 3, and the experimental design 
plan and result analysis are shown in Section IV(B). 

B. Experimental Analysis 

We re-implement the models of code-transformer, 
code2vec and code2seq to perform the task of extreme code 
summarization, and get the preliminary experimental results. 
Then we use BLEU metric to divide the hit degree into four 
levels, we define the BLEU value greater than 0.7 as a high hit 
level and the BLEU value between 0.3 and 0.7 as a low hit 
level [25]. We calculated the proportion of the data sets 
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generated by the three models in each hit level; the preliminary 
experimental results are shown in Table II: 

 

Fig. 3. Experimental process. 

TABLE II.  HIT LEVEL CATEGORY 

Hit level BLEU Code2Vec Code2Seq 
Code-

Transformer 

Code-Equal 1.0 17.8% 18.1% 19.8% 

High-Match 0.7~1.0 34.7% 36.9% 38.9% 

Low-Match 0.3~0.7 32.8% 31.5% 31.4% 

Code-Wrong 0~0.3 13.1% 12.8% 8.2% 

From the above results in Table II, we found that there are 
many low matching phenomena between the extreme 
summaries generated by three models and the original function 
names. After an intuitive exploration of the generated 
summaries with the models trained from a Java dataset and 
based on relevant program development experience, we 
identify five acceptability aspects to be analyzed in detail: (a) 
the format of the function name; (b) function name naming 
style; (c) the semantic similarity in code; (d) the differences in 
hitting rate of functions; (e) the correlation between function 
name and function body. We found that the above five aspects 
of problems are common in the results generated by the three 
models, so we chose the Code-Transformer model with the 
best experimental result to analyze its result data from these 
five aspects in detail. The analytical process of the experiments 
as follows: 

1) The format of the function name: We conducted 

preliminary observations on the generated results of models 

and found that it is very common that the generated extreme 

code summary is inconsistent with the length of the original 

function name after word segmentation. Compared with the 

length of the original function name, part of the extreme code 

summary generated by the model shrinks and part of the 

extreme code summary extends. Then, we counted the 

proportion of each phenomenon to analyze whether these 

phenomena are caused by the model's omission or analytic 

error of the semantic information of the function body. 

TABLE III.  THE FORMAT OF THE FUNCTION NAME 

Preliminary 
experimental analysis 

We compared and analyzed the length of the 
original function name and extreme code summary. 

Observation and 
discovery 

The generation of extreme code summaries has 

more shrinkage phenomenon and less extension 

phenomenon. 

Put forward 
hypothesis 

The semantic information within the function body 

has not been fully extracted and utilized by the 

neural model. 

Verification 

Experiment 

Which semantic information in function name were 

missed during the learning process of neural model. 

Problem Analysis 
The semantic information of function body is not 

fully utilized by neural model. 

The analysis process is shown in Table III. Firstly, we do 
word segmentation for the original function names and the 
extreme code summaries and compare the length of them. Then 
we divided the results into three categories for statistical 
analysis, the ratio of them is shown in the Fig. 4. We observed 
that among the three categories, The model has more shrinkage 
and less extension for the generation of function names. 
Therefore, we put forward the hypothesis that the semantics of 
function is not fully extracted and utilized by neural model, 
leading to the serious shrinkage phenomenon. 

 

Fig. 4. Word length mapping. 

In order to verify the hypothesis, we conducted a 
verification experiment; we analyze the function name, 
parameter list and function body in three categories 
respectively from the following two scenarios. 

 Shrinkage Scenario: (including 3166 pieces of data): 
Function names in this category map from multiple 
words to fewer words. For example, the noun 
information in the parameter list of function is omitted: 
We select three types of the highest frequency verbs 
(get, set, add) to analyze their representative examples 
as shown in Table IV: 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 10, 2023 

729 | P a g e  

www.ijacsa.thesai.org 

TABLE IV.  THE HIT RATIO OF SHRINKAGE WORD 

Origin_name Prediction_name Percentage 

getProperties(Properties) get 36% 

setDisplay(dsiplay) set 23% 

addRenderer(Renderer) add 21% 

 Extension Scenario: (including 1069 pieces of data): 
Function names in this category map from fewer words 
to multiple words. For example, a preverb is added 
before the noun in the function name. Then we selected 
three kinds of data with the highest frequency according 
to the frequency of occurrence as shown in Table V 
below: 

TABLE V.  THE HIT RATIO OF EXTENSION WORD 

Origin_name Prediction_name Percentage 

id getid 19% 

Max getMax 11% 

XML setXML 8% 

Problem analysis: From the verification experiment results, 
we can conclude that part of the semantic information of the 
function body (such as the nouns in the parameter list) has been 
ignored during the process of model learning, which leads to 
the highest proportion of shrinkage in the results, resulting in 
the false positive in generated results. 

2) Naming style of function name: Based on the 

preliminary observation of the results generated by the models, 

several representative words were selected and classified 

according to the program development experience: (1) 

Function names starting with “is” to indicate the judgment 

semantics; (2) Function names containing conjunctions (such 

as “to”, “as”, “of”); (3) Function names starting with common 

verbs. We want to explore how these different naming styles 

differ in generated extreme code summaries. The analysis 

process is shown in Table VI. 

TABLE VI.  FUNCTION NAMING STYLE 

Preliminary 
experimental analysis 

We selected several representative categories to 
classify the function names. 

Observation and 
discovery 

Function names with different naming styles appear 
in different hit levels. 

Put forward 
hypothesis 

Some commonly used conjunction words in 
function names will cause false positive in 
generated results. 

Verification 
Experiment 

Whether the semantics of function names with 
different naming styles can be fully captured 

Problem Analysis 
Function names with conjunctions and judgment 
words are not further preprocessed. 

Firstly, we made quantitative statistics on their frequency in 
four different hit levels, as shown in the Fig. 5. Then we find 
that in the category of function names representing judgment, 
the proportion of low hit level is significantly higher than that 
of high hit level; In the category of function names containing 
conjunctions, the ratio difference between low and high hit 

levels is larger than that of the category representing judgment. 
In the function name category consisting of verb and noun 
classes, there is little difference in the proportion of low and 
high hit level. Therefore, we put forward the hypothesis that 
these function names with representative naming styles are not 
preprocessed, so the classic metrics cannot evaluate them 
correctly and result in false positive results. 

 

Fig. 5. Hit frequency in different level. 

In the verification experiment, we compare the original 
function name with the generated function name data set after 
word segmentation. In the category of low hit level, we check 
for missing connectors in the generated extreme code 
summaries. However, the result is not as we expected, the 
conjunction such as “to” have not been omitted. We also find 
that the main reason why such words appear in low hit level 
frequently is that the nouns immediately after conjunctions are 
often omitted. Therefore, our hypothesis that conjunctions are 
omitted was overturned. 

In the category of representing judgment function names 
starting with “is”, the neural model focuses on capturing the 
semantic information of embedded function names during the 
learning process, resulting in a high frequency of occurrence in 
the category with a lower hit level. 

In the category where the function names consisting of verb 
and noun, we infer that the noun that carries the important 
semantic information of the function body is often omitted, 
which leads to the phenomenon of false negative in result. 
Then we selected a representative high-frequency word in each 
of three categories and calculated their proportion in the same 
category is shown in the Table VII below. 

TABLE VII.  THE HIT RATIO OF REPRESENTATIVE WORDS 

Origin_name Prediction_name Analysis Percentage 

isDoubleFile isFile Embedded function 4% 

tobyte tostring 
Error in capturing 

business semantics 
3% 

addRenderer add 
Parameter nouns 

are omitted 
7% 

Problem analysis: From the verification experiment results, 
we can conclude that due to much important semantic 
information is not captured during model learning, resulting in 
the false positive in generated results. 
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3) The semantic similarity in code: We conducted 

preliminary observations on the results generated by the 

models and found that some frequent words in function names 

have specific program semantics; These words with special 

program semantics have more similar variants in the actual 

code, that is, there is the semantic similarity in program 

representation, and these variants can describe the semantics of 

similar function bodies. Therefore, we put forward the 

hypothesis that these phrases with similar program semantics 

cannot be captured by neural model; moreover, the metric 

cannot evaluate their similarity and result in false negative 

results. 

TABLE VIII.  THE SEMANTIC SIMILARITY IN CODE 

Preliminary 
experimental analysis 

We searched program semantic synonyms by 
wordnet thesaurus and artificial selection. 

Observation and 
discovery 

A lot of function names have similar variants in 
code, which can describe the similar semantics. 

Put forward 
hypothesis 

The semantic similarity in code cannot be evaluated 
by classic metrics. 

Verification 
Experiment 

Evaluation of representative synonyms with the 
same program semantics. 

Problem Analysis 
Function names with similar program semantics are 
not captured by neural model. 

The analysis process is shown in Table VIII. Firstly, 213 
pairs of synonyms identified from wordnet thesaurus were 
integrated with 84 pairs of synonyms selected manually for k-
means cluster analysis, then four groups of synonyms with the 
highest frequency were selected, as shown in the Fig. 6. 

 

Fig. 6. The four highest frequency synonym groups. 

To verify our hypothesis, we use the bleu metric to 
calculate the similarity of each group of words after stemming, 
and the results of similarity calculation are all 0%, as shown in 
the Table IX, but the synonyms in each group can all represent 
the semantic of the function body. So it can be seen that the 
model will produce false negative results because these verbs 
with similar program semantics cannot be captured by neural 
model and evaluated by classic metrics. 

TABLE IX.  SEMANTIC SIMILARITY OF SYNONYMS 

Origin_name Prediction_name Similarity 

add increase, append, plus 0% 

create find, get, insert 0% 

write build, comment, encode 0% 

clear free, reset 0% 

Problem analysis: From the verification experiment results, 
we can conclude that since function names with similar 
program semantics are not captured by neural models, resulting 
in the false negative in generated results. 

4) The differences in hitting rate of functions: We have 

preliminarily observed the generated results of models: The 

four types of words (“add”, “remove”, “write”, “read”) that 

represent addition, deletion, modification and selection in 

database operation for a high proportion in the generated 

results, and each type of words has a certain frequency in 

different hit levels. We want to make statistics on the 

occurrence frequency of these four representative words in 

different hit levels to explore whether the semantic of function 

body is not fully utilized, leading to the occurrence of these 

representative words in low hit levels. 

TABLE X.  THE DIFFERENCES IN HITTING RATE OF FUNCTIONS 

Preliminary 

experimental analysis 

We count the hitting ratio of four high-frequency 

verbs in different hitting levels. 

Observation and 

discovery 

High frequency words also appear frequently in low 

hit levels. 

Put forward 

hypothesis 

Common prefix verbs in function names can cause 

false positives in the generated extreme summary. 

Verification 

Experiment 

Whether function names that only contain verbs can 

represent the semantics of the function body. 

Problem Analysis 
Many nouns that represent business semantics have 

not been captured by neural model. 

The analysis process is shown in Table X. We sampled four 
kinds of verbs with the highest frequency from the data set 
including the “verb + noun” combination whose first word is 
this verb, the four kinds of verbs are “add”, “remove”, “write” 
and “read” respectively. 

 

Fig. 7. Four kinds of words hit frequency in different level. 

Then, we count the numbers of these four words in above 
four hit levels proposed in Table II, the statistic results are 
shown in the Fig. 7. By preliminary observation, we find that 
four types of words appear frequently both in high hit and low 
hit levels, so we put forward the hypothesis that the semantics 
in function body are not fully extracted and utilized by the 
neural model, which leads to false negative results. 
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To verify our hypothesis, we made a statistical analysis on 
the function body of four kinds of words extracted from the 
original data set. We observed that there are embedded 
function names with the same name as the extreme code 
summary generated by neural model in these function bodies, 
which may cause the model to ignore the semantic information 
of other nouns within the function body, and leads to the false 
negative results of the model.  Then we calculate the 
proportion of highest frequency words in four types of 
categories in the low hit level as shown in Table XI: 

TABLE XI.  THE HIGHEST HIT RATIO OF FOUR TYPES OF WORD 

Origin_name Prediction_name Percentage 

add append 31% 

remove delete 44% 

write encode 26% 

read find 30% 

Problem analysis: From the verification experiment results, 
we can conclude that due to the fact that many nouns that 
represent business semantics in the function body, except for 
verbs, has not been captured by the model during learning 
process, resulting in false negative in generated results. 

5) The correlation between function name and function 

body: By comparing the generated extreme code summary with 

the function body of the original data set, we find that many 

generated extreme code summaries are inconsistent with the 

original function names, but they are consistent with the 

embedded function names in the original function body. We 

propose the hypothesis that this phenomenon may be caused by 

the model concentration learning the semantics of the 

embedded function body while ignoring other important 

semantics. 

TABLE XII.  THE CORRELATION BETWEEN FUNCTION NAME AND 

FUNCTION BODY 

Preliminary 

experimental analysis 

We compare the generated function name with the 

function body of the original dataset. 

Observation and 

discovery 

Many generated function names are consistent 

with the embedded function names in the function 

body. 

Put forward hypothesis 
The semantic information of the function body 

was not fully captured by the model. 

Verification Experiment 
Whether embedded function names can represent 

the semantics of their function body. 

Problem Analysis 
Other important semantic information within the 

function body was not captured by neural model. 

Embedding function name: First, we define the embedded 
function name: that is, the function name that appears in a one-
line statement in the function body. For example, “write” is the 
embedding function name in Fig. 8 below. 

 

Fig. 8. The embedded function name “write”. 

The analysis process as shown in Table XII. According to 
the development experience, we classify these embedded 
function names into four categories: (1) including common 
verb, (2) including conjunctions, (3) mathematical functions, (4) 
representing judgement category; We count the function names 
with the highest frequency in these four categories by 
frequency, the result as shown in the Fig. 9. 

 

Fig. 9. The high frequency words in four groups of phrases. 

To verify the hypothesis, we counted and analyzed the 
mapping number between the above four class function names 
and the function names embedded in the function body. 

There are 1139 pieces of data embedded with the same 
function name as the original. We selected the three most 
frequent words and calculated their proportion in their category 
as shown in the Table XIII below. 

TABLE XIII.  THE HIGHEST HIT RATIO OF CONSISTENT WORD 

Origin_name 
Prediction_name & 

Embedded function name 
Percentage 

Sort sort 11% 

Tostring tostring 9% 

IsEmpty isEmpty 9% 

Sqrt sqrt 5% 

There are a total of 478 extreme code summaries that are 
the same as the embedded function names in the function body, 
but different from the original function names. It can be seen 
that the model concentrates on learning the local program 
semantics of some embedded functions while ignoring other 
semantics in function body, which leads to the false negative 
result of the model. We selected three kinds of verbs with the 
highest frequency for statistical analysis as shown in the Table 
XIV below. 
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TABLE XIV.  THE HIGHEST HIT RATIO OF INCONSISTENT WORD 

Origin_name 
Prediction_name & 

Embedded function name 
Percentage 

copy write 14% 

delete remove 13% 

reset clear 8% 

Problem analysis: From the verification experiment results, 
we can conclude that due to the fact that many semantic 
information other than embedded function name in the function 
body was not captured by neural model, resulting in false 
negative in generated results. 

C. Ablation Study 

Based on the statistical study of these five aspects, to 
further explore the impact of various aspects on the model's 
ability to capture semantics hidden in source code, we 
conducted the ablation experiment, in which we respectively 
improve the  preprocessor statement of data sets in terms of 
function name format, function naming style, semantic level 
similarity, the differences in hitting rate of functions and the 
correlation between function name and function body, then we 
evaluate the ablation experimental results by using Bleu, 
Rouge and Meteor metrics, as shown in Table XV. 

1) False negative aspect: In terms of the three aspects that 

produced false negative results, we performed the following 

ablation experiments. 

a) The differences in Hitting Rate of Functions: We 

filter four types of high-frequency verbs in low hit level 

category. 

b) The Correlation between Function Name and 

Function Body: We filter the function name data set which 

omits nouns in the parameter list from the data set whose 

embedded function name is inconsistent with the original 

function name. 

2) False positive aspect: In terms of the two aspects that 

produced false negative results, we performed the following 

ablation experiments: 

a) The Format of the Function Name: We filter the 

function name data set with omitted parameters in the function 

name data set with shrinkage scenario. 

b) The Naming Style of Function Name: We filter out 

“is” in the function name data set of representing judgment 

class; We filter out the pre-verbs in the data set of the function 

name consisting of verb and noun; We don't deal with the 

conjunctions. 

3) Ablation result: Ablation experiment results (Table XV) 

show that semantic similarity in program has a stronger 

influence on false negative in results, the format of function 

name has a stronger influence on false positive in results. 

D. Insights Gained From Experiments 

Based on the analysis of experimental results and further 
validation of ablation experiments on the above research 
questions, we can make some improvements to the model for 
executing the task of extreme code summarization in terms of 
preprocessing filtering enhancement, external data source 
enhancement, and attention mechanism enhancement. The 
specific optimization steps are outlined in red dashed lines in 
Fig 10. 

1) Preprocessing filtering enhancement: For the cases of 

different types of naming styles of function names in section 

B-b and function names with high correlation with function 

bodies in section B-e, we will seek optimization from the 

perspective of data preprocessing. We plan to filter out 

common prefixes of data words with specific naming styles 

and embedding function names during the preprocessing 

process to reduce the occurrence of false positives in the 

generated results. 

2) External data source enhancement: For the situation 

that the synonym group representing the same program 

semantics in section B-c cannot be recognized by the program, 

we plan to import the constantly improving program semantic 

synonym library as an external data source and integrate it with 

summary information during the model training process, so 

that the neural model can gain data enhancement in the process 

of learning the text of summary to avoid false negatives in the 

generated results. 

TABLE XV.  ABLATION EXPERIMENTAL RESULT 

Aspect 

Code2Vec Code2Seq Code-Transformer 

BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR 

False 
Negative 

Semantic Similarity 48.85 63.86 31.79 51.81 63.84 32.77 52.88 64.89 29.83 

Classification Hit Rate 39.79 54.81 25.74 40.76 53.82 24.75 42.84 53.87 21.78 

Func_Body_Correlation 37.98 52.80 22.70 39.74 51.81 23.71 40.82 50.83 20.76 

False 
Positive 

Naming Format 47.54 58.51 30.49 49.52 60.50 29.46 50.59 59.61 32.53 

Naming Style 37.58 52.55 21.54 38.54 49.54 18.52 41.62 51.63 23.56 
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Fig. 10. The Diagram of model architecture for extreme code summarization. 

3) Enhancement of attention mechanism: For the cases 

where the important program semantics in section B-a and the 

noun semantics in section B-d are omitted during the model 

learning process, we will seek optimization from the 

perspective of attention mechanism. In the attention 

mechanism, each piece of information is assigned a different 

attention score. If the attention score of important semantic 

information is low, it may cause the output sequence 

information to lose this part of semantics. Therefore, we can try 

to innovate in the calculation methods of attention score, such 

as dot product, multiplication, addition, or other more complex 

calculation formulas, then assign new attention score to each 

information, so as to improve the attention score of important 

semantic information and avoid false positives in the results as 

much as possible. 

V. THREAT TO VALIDITY 

1) Model re-implementation: In the process of 

reimplementing the three models, the word length of some data 

sets exceeds the limit. For example, the length of words in the 

function body of code-transformer cannot exceed 1200, and the 

length of code2vec and code2seq exceeding 900 will also cause 

model parsing failure. In order to avoid this situation, we need 

to filter out relevant nonconforming data in the process of data 

set preprocessing. 

2) Selected dataset: Java dataset has a total of 8714 pieces 

of data. Although the sample data is of high quality and 

representative, and the domain knowledge is perfect, the 

overall scale is small. If we want to retrain the data set of the 

model in the future, we should inject a larger data set. 

3) Model comparison: We choose the three represents 

extreme code summary generation model. In our experiment, 

we use the same data set, run all models in the same hardware 

environment, and adopt the same data preprocessing process to 

reduce this threat. 

VI. CONCLUSION 

Many studies show that the quality of code summary 
generation algorithms based on deep learning is not ideal 
because it does not take full advantage of relevant program 
semantic information. In this paper, in order to observe the 
utilization of program semantics in automatic code 
summarization, we conducted an experimental study by 
analyzing the acceptability of the code summaries generated 

from neural models. To focus on the observation of the 
semantics, we re-implement the neural models from three 
selected studies as extreme code summarization solutions. Fig. 
10 shows the diagram of model architecture for extreme code 
summarization. After an intuitive observation and exploration 
of the generated summaries with the models trained from a 
Java dataset, we identify five acceptability aspects: (1) function 
name format; (2) function naming style; (3) semantic level 
similarity; (4) the differences in hitting rate of representative 
words; (5) the correlation between extreme code summaries 
with function body. Experimental analysis shows that false 
negative is common in the results if only evaluated with classic 
metrics, and aspects (3)(4)(5) bring the major influence. We 
also observed that false positives related to aspects (1)(2) also 
commonly appeared in the result, which suggests that the 
current models also fail to filter the noise from the raw source 
code to a reasonable extent. 

We put forward hypotheses for these above five aspects, for 
example, the semantics of the function body may not have been 
fully learned by neural model. Then we designed and 
completed relevant verification experiments to prove whether 
our hypotheses are correct. The verification experiment 
confirmed that aspects (2)(5) is caused by insufficient 
preprocessing of the data set, aspects (1)(3)(4) are caused by 
the semantics of function body have not been fully extracted 
and utilized by neural model. 

To further explore the influence of the above five aspects 
on the quality of extreme code summaries, we conducted 
ablation experiments which indicated that aspect (3) had a 
stronger influence on false negative in extreme code 
summarization results than the other aspects (4)(5), The aspect 
(1) has a stronger influence on false positive in extreme code 
summarization results than aspect (2). The results of ablation 
experiment illustrate prove the significance and potential of 
utilizing the program semantics explicitly in code 
summarization. 

Therefore, based on the experimental results and findings, 
in the future study, we plan to improve the model in 
performing code summarization tasks from three aspects of 
preprocessing filtering enhancement, external data source 
enhancement and attention mechanism enhancement, which 
have been mentioned in section IV-D. Let's wish all these 
findings promote the progress in the field of code 
summarization. 
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