
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

724 | P a g e

www.ijacsa.thesai.org

Exploring the Utilization of Program Semantics in

Extreme Code Summarization: An Experimental

Study Based on Acceptability Evaluation

Jiuli Li, Yan Liu
*

School of Software Engineering, Tongji University, Shanghai, China

Abstract—With the rise of deep learning methods, neural

network architecture adopted from neural machine translation

has been widely studied in code summarization by learning the

sequential content of code. Given the inherent nature of

programming languages, learning the representation of source

code from the parsed structural information is also a typical way

for constructing code summarization models. Recent studies

show that the overall performance of the neural models for code

summarization can be improved by utilizing sequential and

structural information in a hybrid manner. However, both of

these two kinds of information fed to the neural models for code

summarization fail to embrace the semantics of source code

snippets in an explicit way. Is it really a good way to just leave

the semantics as hidden things in the source code and have the

neural models capture whatever they can get? To observe the

utilization of program semantics in automatic code

summarization, we conducted an experimental study by

analyzing the acceptability of the extreme code summaries

generated from neural models. To make the models aligned in

the same context for this experimental study and to focus on the

observation of the semantics, we re-implement the neural models

from three selected studies as extreme code summarization

solutions. After an intuitive observation and exploration of the

generated summaries with the models trained from a Java

dataset, we identify five acceptability aspects: (1) function name

format; (2) function naming style; (3) semantic level similarity;

(4) the differences in hitting rate of representative words; and (5)

the correlation between extreme code summaries with function

body. Based on the false negative and false positive phenomena in

the results, ablation experiments have shown that the use of

program semantics has a positive effect on generating high-

quality abstracts in neural models. Our work proves the potential

of utilizing the program semantics explicitly in code

summarization, and the possible directions are also indicated.

Keywords—Extreme code summarization; program semantics

utilization; acceptability analysis of code summary

I. INTRODUCTION

The task of code summarization refers to the automatically
creating readable summaries describing the function of the
given code snippets, and identify the roles and responsibilities
of software units [1]. A good summary can help developers
understand, reuse and maintain code more easily, and greatly
improve production efficiency. However, problems exist in
code summaries, including missing information, errors, and
outdated comments. Human-written summaries also require

professional domain knowledge, making the entire process
time-consuming. Hence, machine-generated summaries are
gaining popularity, with their effectiveness acknowledged in
many studies.

The majority of automatic code summarization algorithms
rely on techniques such as information retrieval, stereotype
identification, machine learning and artificial neural network,
and natural language processing [2] [3]. Among them, deep
learning techniques have demonstrated the benefits of
modeling programs recently [4] [5]. Specifically, guided by
neural machine translation, early code summarization models
focus on the sequential content of code [6]. Yet, leading
approaches have recognized the significance of integrating
structural information derived from Abstract Syntax Trees
(ASTs).

However, both traditional and deep learning techniques
have limitations in generating natural language summaries.
Traditional approaches struggle with extracting keywords
when identifiers and methods are poorly named, and proper
summaries cannot be generated if similar code snippets are
absent. Moreover, the majority of deep learning-based
approaches treat the source code as plain text, resulting in the
omission of crucial information, such as naming conventions
for identifiers and usage patterns of application programming
interfaces [7] [8]. Since sequences of tokens parsed from AST
are typically fed into the sequence-to-sequence framework, this
approach may fail to capture long dependencies between code
tokens [9]. These limitations may lead to the underutilization of
program semantics at both the code text level and structural
level, as evaluated using the acceptability of generated code
summaries. However, there are currently no systematic studies
to address this issue. To assess the acceptability of code
summaries generated by neural models, we selected
representative models from various categories for extreme code
summarization tasks, and intend to get insights from the
experimental results. The main contributions of our study are
as follows:

 To explore the acceptability of the code summaries
generated from neural models, we re-implement the
neural models from three selected studies for extreme
code summarization. Following an intuitive observation
of the generated summaries, we proposed five
acceptability aspects for further analysis.

*Corresponding Author.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

725 | P a g e

www.ijacsa.thesai.org

 To identify which limitations of the selected models
aggravate to the lower acceptability, we conducted a
comprehensive analysis, focusing on the misjudgment
in generated summaries. We found that false negatives
in extreme code summaries can be attributed to issues,
such as text-level semantic similarity in code, variations
in function hit rates, and the correlation between
function names and their respective bodies. Besides,
the format and naming conventions of function names
may result in false positives in extreme code
summaries. In accordance with these observations,
further hypotheses are formulated to improve automatic
code summarization, including from the perspective of
underutilization of function body semantics by neural
models and potential issues related to dataset
preprocessing.

 To verify our hypothesis, we conducted the ablation
experiments based on the selected models. We
discovered that phrases with similar semantics have a
greater impact on false negatives in generated
summaries, while the format of function names has a
stronger influence on false positives in the results.
Subsequently, we provide directions for improvement
in three aspects: dataset preprocessing, external data
source and the model's learning process. These
directions serve as a valuable reference for future
research in the field.

II. RELATED WORK

A. Overview of Common Models in the Field of Code

Summarization

At present, several representative neural models which can
be used to perform the task of code summarization in relevant
field, including CODE-NN [10] model based on attention
mechanism, Deep-Com [11] model based on code structure
analysis, summary generation model based on reinforcement
training and so on. Several classic code summarization models
are as follows.

 CODE-NN is an end-to-end summary generation
system built directly by using the structure of circular
neural network, and relevant summary are generated
according to the word vectors of source code. The
introduction of attention mechanism not only highlights
the contribution of key words in the decoding process,
but also solves the problem that the summary generated
by long code is difficult to understand.

 The code summarization model based on sequence-to-
sequence learning algorithm [12] is also popular. The
encoder and decoder of this model are built by
independent LSTM neural networks, which can extract
lexical features of source code and generate summaries.
It inputs the key vocabulary sequence of the source
code function and outputs the English summary related
to the function.

 Deep-Com [11] based on code structure analysis is also
a mainstream model in this field. To extract the hidden

structural information in the source code, Deep-Com
firstly outputs the summary syntax tree as a sequence of
nodes in a specific order through a special traversal
algorithm [13], and then generates the summary of the
target code by using the classic encoder-decoder model.
The author thinks that the traversal algorithm used by
Deep-Com can express the structural characteristics of
the summary syntax tree without loss, and the generated
summary can also accurately describe the functional
characteristics of the source code.

 The reinforcement learning model for parameter
training based on actor-critic mode recently proposed
by wan et al gradually becoming popular [14]. Different
from the common code summarization model in the
field, the author innovatively uses reinforcement
learning to update the model parameters, which can
further reduce the exposure bias.

In addition, there are also several neural models that can be
used directly to perform the task of extreme code
summarization, such as Code2Vec, Code2seq, Code-
Transformer are shown below:

 Code2Vec [15], which transforms code fragments into
vectors with fixed length and continuous distribution,
which can be used to predict the semantic information
of code fragments. To achieve this goal, Code2Vec is
first decomposed into a set of paths in its corresponding
AST, and then the neural network is used to learn the
representation of each path and how to integrate the
representations of all paths. The effectiveness of
Code2Vec has been verified by the task of predicting
the function name with vector representation of
function body.

 Code2seq [16], which uses the syntax structure in
programming language to encode the source code. In
this model, a part of paths are extracted from AST of
code fragments, and the target sequence is generated by
Attention after LSTM coding. Code2seq uses the way
of encoding the sample of code fragment AST to extract
grammatical information better. The effectiveness of
Code2seq has been verified in the extreme code
summarization task.

 Code-Transformer [17], which jointly learns the
sequential and structural information in source code.
Compared with other neural models, it only depends on
language-independent features, and can directly
calculate the source code and features from AST. The
performance of the Code-Transformer model is also
validated on the task of predicting function name based
on function body.

Although the above models have good performance in code
summarization generation, due to the lack of learning about
structural information or semantic information of source code,
sometimes it is inevitable that the generated summaries are
difficult to understand or have poor readability.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

726 | P a g e

www.ijacsa.thesai.org

B. Performance Analysis of Code Summarization Model

The code summarization algorithm based on deep neural
network uses the neural machine translation technology to
select the corresponding words from the corpus according to
the maximum similarity principle with the help of the previous
generated words. It transforms the sequence data by using the
good transformation ability of the classical encoder-decoder
framework, which transforms the source language sequence
into the target language sequence. The classic structure has
achieved good translation results, despite of the obvious
structural and hierarchical characteristics of programming
languages, when the neural machine translation method is
applied to the generation of code summary, the source code
will be treated as an ordinary text. This will inevitably cause
the lack of source code structure and make the summarization
effect of neural code summarization algorithm worse.
Generally speaking, the accuracy of automatic code
summarization system based on neural network is not high
[18].

Fig. 1. The limitations of the model's ability to generate summaries.

To sum up, the neural model algorithm used for code
summarization has two limitations, as shown in Fig. 1. First,
only the sequence information in the code is taken into account
by the encoder-decoder structure while the hidden semantics
such as the structural information in the code are ignored [19]
[20]. Second, the neural code summarization model based on
maximum similarity will encounter the problem that low-
frequency words or unknown words in the training data cannot
be generated correctly during testing [21][22]. In this situation,
even if the training data set is large enough and the quality is
good enough, low-frequency words cannot be generated
correctly; Moreover, when the summary model is applied to a
code file in a different domain, there is also the problem of not
being able to generate an accurate summary because of words
for related domains that are not present in the training set.
Above two kinds of findings are the main problems of neural
code summarization algorithm.

Although scholars in related fields have identified these
hidden dangers, there is currently no targeted solution for these

specific problems in code summarization. Therefore, our study
attempts to analyze the generated summaries by neural models
to observe these phenomena and propose improvement ideas.

III. RESEARCH METHODOLOGIES

A. Extreme Code Summarization Task

To observe the utilization of program semantics in
automatic code summarization, we conducted an experimental
study by analyzing the acceptability of the code summaries
generated from neural models. To determine whether our
experiment can be generalized to different versions of the
neural models, we re-implement the neural models from three
selected studies as extreme code summarization solutions. The
executive process of the neural model for the task of extreme
code summarization is shown in Fig. 2. These neural models
are trained by different procedures and can be used directly.

Fig. 2. Overview of models for extreme code summarization.

For the sake of better evaluating the universality of our
research, we selected three representative models from
different categories. Their different architectures may result in
different focuses on learning source code semantics. Among
them, code2Vec extracts AST path from the abstract syntax
tree (AST) of Code, learns the vector representation of each
path through the deep learning model and how to aggregate
multiple paths into one vector to represent the entire Code;
Code2seq uses LSTMs to encode paths node-by-node (rather
than monolithic path embeddings as in code2vec), and an
LSTM to decode a target sequence (rather than predicting a
single label at a time as in code2vec); Code-Transformer is a
Transformer based architecture that learns both source code
(context) and an abstract syntax tree (AST) for parsing. In view
of their different model architectures result in different ways of
learning source code semantics, we infer that there may also be
some differences in the generated summaries.

Therefore, Code2vec, Code2seq and Code-Transformer
represent a set of diverse but representative models. Using the
same dataset to evaluate the task of extreme code
summarization on Code2vec, code2seq, and code-transformer
highlights the potential risk of false negative and false positive
generation when using neural models. Although we can't say
for sure, other neural models trained on similar data set may
exhibit similar behavior.

B. Dataset

For the task of extreme code summarization, a high-quality
dataset plays a crucial role in the quality and acceptability of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

727 | P a g e

www.ijacsa.thesai.org

the summary generated by neural model. Therefore, we chose
the Java dataset proposed by Hu et al., which has been used to
evaluate code summarization models such as Code-NN and
Deep-Com by using common metrics of bleu, rouge, and
meteor, and has achieved relatively complete experimental
results.

Java dataset [5], including Java methods extracted from
Java projects from 2015 to 2016, collected from GitHub. The
first sentence of Javadoc is extracted as a natural language
description, which describes the functions of Java methods.
The quantity distribution of the dataset is shown in Table I.

TABLE I. JAVA DATASET STATISTICS

Dataset Samples

Train 26142

Test 8714

Validation 8714

C. Evaluation Metrics

In order to better evaluate the quality of generated extreme
code summaries, we selected three commonly used metrics in
the field of code summarization: bleu, rouge, and meter.

1) BLEU: BLEU is used to compare the overlapping

degree of n-gram in candidate translation and reference

translation [23]. N-gram accuracy refers to the ratio of the total

number of n-gram matches between the evaluated generated

summary and the reference summary to the total number of n-

grams in the reference summary. BLEU is often applied to

evaluate the similarity between generated summary and

reference text.

 (∑

) (1)

Here Pn refers to the accuracy rate of n-gram; Wn refers to
the weight of n-gram; BP is a penalty factor.

2) ROUGE: ROUGE is a quality evaluation method of text

summary based on recall, it calculates the similarity between

generated summary and reference text [23]. ROUGE-L is often

applied to evaluate the quality of code summarization.

∑ ∑ () * +

∑ ∑ () * +

 (2)

The denominator of the formula here is to count the number
of n-grams in the reference translation, while the numerator is
to count the number of n-grams shared by the reference
translation and the machine translation [24].

3) Meteor: Meteor is used to calculate the score based on

the clear word-word matching degree between the generated

summary and the reference text [23], so it is often applied to

evaluate the quality of the generated summary according to the

score.

 ((

)

)

 ()
 (3)

Here, P and R are 1-gram accuracy and recall, c is the
number of blocks, M is the matching number.

4) Limitations of metrics: These three types of metrics are

all calculated based on the degree of matching at the text level,

and cannot be used to evaluate the degree of semantic

similarity. All of them have a clear bias towards the order of

words, which may lead to some false negatives and

misjudgments in the results of extreme code summarization.

IV. EXPERIMENTS

A. Research Questions and Experimental Process

In order to explore the acceptability of the code summaries
generated from neural models, we re-implement the models of
code-transformer, code2vec and code2seq to perform the task
of extreme code summarization, and conduct statistics and
analysis for the preliminary experimental results. We found
that different models have different qualities for summaries
generated from the same piece of code, such as the length of
generated summaries and the omission of semantic
information.

Based on relevant development experience and previous
research evidence, we propose the following research questions
regarding the preliminary results of the task of extreme code
summarization:

RQ1-1: How effectively do existing models employ
program semantics for text-level matching?

RQ1-2: Why do many generated function names shrink in
length compared to the original function names in the extreme
code summaries generated by neural models?

RQ1-3: Whether different types of naming styles of
function names affect the accuracy of the model in capturing
semantics?

RQ2-1: Whether some synonyms representing the same
program semantics can be identified during model learning?

RQ2-2: Whether the model's ability to capture the
semantics of verbs greater than that of nouns?

RQ2-3: Will neural models only capture the semantics of
words with the same name as function names while ignoring
other important semantics?

Afterwards, we will design our experimental plan based on
these research questions. The experimental process steps are
shown in the following Fig. 3, and the experimental design
plan and result analysis are shown in Section IV(B).

B. Experimental Analysis

We re-implement the models of code-transformer,
code2vec and code2seq to perform the task of extreme code
summarization, and get the preliminary experimental results.
Then we use BLEU metric to divide the hit degree into four
levels, we define the BLEU value greater than 0.7 as a high hit
level and the BLEU value between 0.3 and 0.7 as a low hit
level [25]. We calculated the proportion of the data sets

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

728 | P a g e

www.ijacsa.thesai.org

generated by the three models in each hit level; the preliminary
experimental results are shown in Table II:

Fig. 3. Experimental process.

TABLE II. HIT LEVEL CATEGORY

Hit level BLEU Code2Vec Code2Seq
Code-

Transformer

Code-Equal 1.0 17.8% 18.1% 19.8%

High-Match 0.7~1.0 34.7% 36.9% 38.9%

Low-Match 0.3~0.7 32.8% 31.5% 31.4%

Code-Wrong 0~0.3 13.1% 12.8% 8.2%

From the above results in Table II, we found that there are
many low matching phenomena between the extreme
summaries generated by three models and the original function
names. After an intuitive exploration of the generated
summaries with the models trained from a Java dataset and
based on relevant program development experience, we
identify five acceptability aspects to be analyzed in detail: (a)
the format of the function name; (b) function name naming
style; (c) the semantic similarity in code; (d) the differences in
hitting rate of functions; (e) the correlation between function
name and function body. We found that the above five aspects
of problems are common in the results generated by the three
models, so we chose the Code-Transformer model with the
best experimental result to analyze its result data from these
five aspects in detail. The analytical process of the experiments
as follows:

1) The format of the function name: We conducted

preliminary observations on the generated results of models

and found that it is very common that the generated extreme

code summary is inconsistent with the length of the original

function name after word segmentation. Compared with the

length of the original function name, part of the extreme code

summary generated by the model shrinks and part of the

extreme code summary extends. Then, we counted the

proportion of each phenomenon to analyze whether these

phenomena are caused by the model's omission or analytic

error of the semantic information of the function body.

TABLE III. THE FORMAT OF THE FUNCTION NAME

Preliminary
experimental analysis

We compared and analyzed the length of the
original function name and extreme code summary.

Observation and
discovery

The generation of extreme code summaries has

more shrinkage phenomenon and less extension

phenomenon.

Put forward
hypothesis

The semantic information within the function body

has not been fully extracted and utilized by the

neural model.

Verification

Experiment

Which semantic information in function name were

missed during the learning process of neural model.

Problem Analysis
The semantic information of function body is not

fully utilized by neural model.

The analysis process is shown in Table III. Firstly, we do
word segmentation for the original function names and the
extreme code summaries and compare the length of them. Then
we divided the results into three categories for statistical
analysis, the ratio of them is shown in the Fig. 4. We observed
that among the three categories, The model has more shrinkage
and less extension for the generation of function names.
Therefore, we put forward the hypothesis that the semantics of
function is not fully extracted and utilized by neural model,
leading to the serious shrinkage phenomenon.

Fig. 4. Word length mapping.

In order to verify the hypothesis, we conducted a
verification experiment; we analyze the function name,
parameter list and function body in three categories
respectively from the following two scenarios.

 Shrinkage Scenario: (including 3166 pieces of data):
Function names in this category map from multiple
words to fewer words. For example, the noun
information in the parameter list of function is omitted:
We select three types of the highest frequency verbs
(get, set, add) to analyze their representative examples
as shown in Table IV:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

729 | P a g e

www.ijacsa.thesai.org

TABLE IV. THE HIT RATIO OF SHRINKAGE WORD

Origin_name Prediction_name Percentage

getProperties(Properties) get 36%

setDisplay(dsiplay) set 23%

addRenderer(Renderer) add 21%

 Extension Scenario: (including 1069 pieces of data):
Function names in this category map from fewer words
to multiple words. For example, a preverb is added
before the noun in the function name. Then we selected
three kinds of data with the highest frequency according
to the frequency of occurrence as shown in Table V
below:

TABLE V. THE HIT RATIO OF EXTENSION WORD

Origin_name Prediction_name Percentage

id getid 19%

Max getMax 11%

XML setXML 8%

Problem analysis: From the verification experiment results,
we can conclude that part of the semantic information of the
function body (such as the nouns in the parameter list) has been
ignored during the process of model learning, which leads to
the highest proportion of shrinkage in the results, resulting in
the false positive in generated results.

2) Naming style of function name: Based on the

preliminary observation of the results generated by the models,

several representative words were selected and classified

according to the program development experience: (1)

Function names starting with “is” to indicate the judgment

semantics; (2) Function names containing conjunctions (such

as “to”, “as”, “of”); (3) Function names starting with common

verbs. We want to explore how these different naming styles

differ in generated extreme code summaries. The analysis

process is shown in Table VI.

TABLE VI. FUNCTION NAMING STYLE

Preliminary
experimental analysis

We selected several representative categories to
classify the function names.

Observation and
discovery

Function names with different naming styles appear
in different hit levels.

Put forward
hypothesis

Some commonly used conjunction words in
function names will cause false positive in
generated results.

Verification
Experiment

Whether the semantics of function names with
different naming styles can be fully captured

Problem Analysis
Function names with conjunctions and judgment
words are not further preprocessed.

Firstly, we made quantitative statistics on their frequency in
four different hit levels, as shown in the Fig. 5. Then we find
that in the category of function names representing judgment,
the proportion of low hit level is significantly higher than that
of high hit level; In the category of function names containing
conjunctions, the ratio difference between low and high hit

levels is larger than that of the category representing judgment.
In the function name category consisting of verb and noun
classes, there is little difference in the proportion of low and
high hit level. Therefore, we put forward the hypothesis that
these function names with representative naming styles are not
preprocessed, so the classic metrics cannot evaluate them
correctly and result in false positive results.

Fig. 5. Hit frequency in different level.

In the verification experiment, we compare the original
function name with the generated function name data set after
word segmentation. In the category of low hit level, we check
for missing connectors in the generated extreme code
summaries. However, the result is not as we expected, the
conjunction such as “to” have not been omitted. We also find
that the main reason why such words appear in low hit level
frequently is that the nouns immediately after conjunctions are
often omitted. Therefore, our hypothesis that conjunctions are
omitted was overturned.

In the category of representing judgment function names
starting with “is”, the neural model focuses on capturing the
semantic information of embedded function names during the
learning process, resulting in a high frequency of occurrence in
the category with a lower hit level.

In the category where the function names consisting of verb
and noun, we infer that the noun that carries the important
semantic information of the function body is often omitted,
which leads to the phenomenon of false negative in result.
Then we selected a representative high-frequency word in each
of three categories and calculated their proportion in the same
category is shown in the Table VII below.

TABLE VII. THE HIT RATIO OF REPRESENTATIVE WORDS

Origin_name Prediction_name Analysis Percentage

isDoubleFile isFile Embedded function 4%

tobyte tostring
Error in capturing

business semantics
3%

addRenderer add
Parameter nouns

are omitted
7%

Problem analysis: From the verification experiment results,
we can conclude that due to much important semantic
information is not captured during model learning, resulting in
the false positive in generated results.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

730 | P a g e

www.ijacsa.thesai.org

3) The semantic similarity in code: We conducted

preliminary observations on the results generated by the

models and found that some frequent words in function names

have specific program semantics; These words with special

program semantics have more similar variants in the actual

code, that is, there is the semantic similarity in program

representation, and these variants can describe the semantics of

similar function bodies. Therefore, we put forward the

hypothesis that these phrases with similar program semantics

cannot be captured by neural model; moreover, the metric

cannot evaluate their similarity and result in false negative

results.

TABLE VIII. THE SEMANTIC SIMILARITY IN CODE

Preliminary
experimental analysis

We searched program semantic synonyms by
wordnet thesaurus and artificial selection.

Observation and
discovery

A lot of function names have similar variants in
code, which can describe the similar semantics.

Put forward
hypothesis

The semantic similarity in code cannot be evaluated
by classic metrics.

Verification
Experiment

Evaluation of representative synonyms with the
same program semantics.

Problem Analysis
Function names with similar program semantics are
not captured by neural model.

The analysis process is shown in Table VIII. Firstly, 213
pairs of synonyms identified from wordnet thesaurus were
integrated with 84 pairs of synonyms selected manually for k-
means cluster analysis, then four groups of synonyms with the
highest frequency were selected, as shown in the Fig. 6.

Fig. 6. The four highest frequency synonym groups.

To verify our hypothesis, we use the bleu metric to
calculate the similarity of each group of words after stemming,
and the results of similarity calculation are all 0%, as shown in
the Table IX, but the synonyms in each group can all represent
the semantic of the function body. So it can be seen that the
model will produce false negative results because these verbs
with similar program semantics cannot be captured by neural
model and evaluated by classic metrics.

TABLE IX. SEMANTIC SIMILARITY OF SYNONYMS

Origin_name Prediction_name Similarity

add increase, append, plus 0%

create find, get, insert 0%

write build, comment, encode 0%

clear free, reset 0%

Problem analysis: From the verification experiment results,
we can conclude that since function names with similar
program semantics are not captured by neural models, resulting
in the false negative in generated results.

4) The differences in hitting rate of functions: We have

preliminarily observed the generated results of models: The

four types of words (“add”, “remove”, “write”, “read”) that

represent addition, deletion, modification and selection in

database operation for a high proportion in the generated

results, and each type of words has a certain frequency in

different hit levels. We want to make statistics on the

occurrence frequency of these four representative words in

different hit levels to explore whether the semantic of function

body is not fully utilized, leading to the occurrence of these

representative words in low hit levels.

TABLE X. THE DIFFERENCES IN HITTING RATE OF FUNCTIONS

Preliminary

experimental analysis

We count the hitting ratio of four high-frequency

verbs in different hitting levels.

Observation and

discovery

High frequency words also appear frequently in low

hit levels.

Put forward

hypothesis

Common prefix verbs in function names can cause

false positives in the generated extreme summary.

Verification

Experiment

Whether function names that only contain verbs can

represent the semantics of the function body.

Problem Analysis
Many nouns that represent business semantics have

not been captured by neural model.

The analysis process is shown in Table X. We sampled four
kinds of verbs with the highest frequency from the data set
including the “verb + noun” combination whose first word is
this verb, the four kinds of verbs are “add”, “remove”, “write”
and “read” respectively.

Fig. 7. Four kinds of words hit frequency in different level.

Then, we count the numbers of these four words in above
four hit levels proposed in Table II, the statistic results are
shown in the Fig. 7. By preliminary observation, we find that
four types of words appear frequently both in high hit and low
hit levels, so we put forward the hypothesis that the semantics
in function body are not fully extracted and utilized by the
neural model, which leads to false negative results.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

731 | P a g e

www.ijacsa.thesai.org

To verify our hypothesis, we made a statistical analysis on
the function body of four kinds of words extracted from the
original data set. We observed that there are embedded
function names with the same name as the extreme code
summary generated by neural model in these function bodies,
which may cause the model to ignore the semantic information
of other nouns within the function body, and leads to the false
negative results of the model. Then we calculate the
proportion of highest frequency words in four types of
categories in the low hit level as shown in Table XI:

TABLE XI. THE HIGHEST HIT RATIO OF FOUR TYPES OF WORD

Origin_name Prediction_name Percentage

add append 31%

remove delete 44%

write encode 26%

read find 30%

Problem analysis: From the verification experiment results,
we can conclude that due to the fact that many nouns that
represent business semantics in the function body, except for
verbs, has not been captured by the model during learning
process, resulting in false negative in generated results.

5) The correlation between function name and function

body: By comparing the generated extreme code summary with

the function body of the original data set, we find that many

generated extreme code summaries are inconsistent with the

original function names, but they are consistent with the

embedded function names in the original function body. We

propose the hypothesis that this phenomenon may be caused by

the model concentration learning the semantics of the

embedded function body while ignoring other important

semantics.

TABLE XII. THE CORRELATION BETWEEN FUNCTION NAME AND

FUNCTION BODY

Preliminary

experimental analysis

We compare the generated function name with the

function body of the original dataset.

Observation and

discovery

Many generated function names are consistent

with the embedded function names in the function

body.

Put forward hypothesis
The semantic information of the function body

was not fully captured by the model.

Verification Experiment
Whether embedded function names can represent

the semantics of their function body.

Problem Analysis
Other important semantic information within the

function body was not captured by neural model.

Embedding function name: First, we define the embedded
function name: that is, the function name that appears in a one-
line statement in the function body. For example, “write” is the
embedding function name in Fig. 8 below.

Fig. 8. The embedded function name “write”.

The analysis process as shown in Table XII. According to
the development experience, we classify these embedded
function names into four categories: (1) including common
verb, (2) including conjunctions, (3) mathematical functions, (4)
representing judgement category; We count the function names
with the highest frequency in these four categories by
frequency, the result as shown in the Fig. 9.

Fig. 9. The high frequency words in four groups of phrases.

To verify the hypothesis, we counted and analyzed the
mapping number between the above four class function names
and the function names embedded in the function body.

There are 1139 pieces of data embedded with the same
function name as the original. We selected the three most
frequent words and calculated their proportion in their category
as shown in the Table XIII below.

TABLE XIII. THE HIGHEST HIT RATIO OF CONSISTENT WORD

Origin_name
Prediction_name &

Embedded function name
Percentage

Sort sort 11%

Tostring tostring 9%

IsEmpty isEmpty 9%

Sqrt sqrt 5%

There are a total of 478 extreme code summaries that are
the same as the embedded function names in the function body,
but different from the original function names. It can be seen
that the model concentrates on learning the local program
semantics of some embedded functions while ignoring other
semantics in function body, which leads to the false negative
result of the model. We selected three kinds of verbs with the
highest frequency for statistical analysis as shown in the Table
XIV below.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

732 | P a g e

www.ijacsa.thesai.org

TABLE XIV. THE HIGHEST HIT RATIO OF INCONSISTENT WORD

Origin_name
Prediction_name &

Embedded function name
Percentage

copy write 14%

delete remove 13%

reset clear 8%

Problem analysis: From the verification experiment results,
we can conclude that due to the fact that many semantic
information other than embedded function name in the function
body was not captured by neural model, resulting in false
negative in generated results.

C. Ablation Study

Based on the statistical study of these five aspects, to
further explore the impact of various aspects on the model's
ability to capture semantics hidden in source code, we
conducted the ablation experiment, in which we respectively
improve the preprocessor statement of data sets in terms of
function name format, function naming style, semantic level
similarity, the differences in hitting rate of functions and the
correlation between function name and function body, then we
evaluate the ablation experimental results by using Bleu,
Rouge and Meteor metrics, as shown in Table XV.

1) False negative aspect: In terms of the three aspects that

produced false negative results, we performed the following

ablation experiments.

a) The differences in Hitting Rate of Functions: We

filter four types of high-frequency verbs in low hit level

category.

b) The Correlation between Function Name and

Function Body: We filter the function name data set which

omits nouns in the parameter list from the data set whose

embedded function name is inconsistent with the original

function name.

2) False positive aspect: In terms of the two aspects that

produced false negative results, we performed the following

ablation experiments:

a) The Format of the Function Name: We filter the

function name data set with omitted parameters in the function

name data set with shrinkage scenario.

b) The Naming Style of Function Name: We filter out

“is” in the function name data set of representing judgment

class; We filter out the pre-verbs in the data set of the function

name consisting of verb and noun; We don't deal with the

conjunctions.

3) Ablation result: Ablation experiment results (Table XV)

show that semantic similarity in program has a stronger

influence on false negative in results, the format of function

name has a stronger influence on false positive in results.

D. Insights Gained From Experiments

Based on the analysis of experimental results and further
validation of ablation experiments on the above research
questions, we can make some improvements to the model for
executing the task of extreme code summarization in terms of
preprocessing filtering enhancement, external data source
enhancement, and attention mechanism enhancement. The
specific optimization steps are outlined in red dashed lines in
Fig 10.

1) Preprocessing filtering enhancement: For the cases of

different types of naming styles of function names in section

B-b and function names with high correlation with function

bodies in section B-e, we will seek optimization from the

perspective of data preprocessing. We plan to filter out

common prefixes of data words with specific naming styles

and embedding function names during the preprocessing

process to reduce the occurrence of false positives in the

generated results.

2) External data source enhancement: For the situation

that the synonym group representing the same program

semantics in section B-c cannot be recognized by the program,

we plan to import the constantly improving program semantic

synonym library as an external data source and integrate it with

summary information during the model training process, so

that the neural model can gain data enhancement in the process

of learning the text of summary to avoid false negatives in the

generated results.

TABLE XV. ABLATION EXPERIMENTAL RESULT

Aspect

Code2Vec Code2Seq Code-Transformer

BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR

False
Negative

Semantic Similarity 48.85 63.86 31.79 51.81 63.84 32.77 52.88 64.89 29.83

Classification Hit Rate 39.79 54.81 25.74 40.76 53.82 24.75 42.84 53.87 21.78

Func_Body_Correlation 37.98 52.80 22.70 39.74 51.81 23.71 40.82 50.83 20.76

False
Positive

Naming Format 47.54 58.51 30.49 49.52 60.50 29.46 50.59 59.61 32.53

Naming Style 37.58 52.55 21.54 38.54 49.54 18.52 41.62 51.63 23.56

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

733 | P a g e

www.ijacsa.thesai.org

Fig. 10. The Diagram of model architecture for extreme code summarization.

3) Enhancement of attention mechanism: For the cases

where the important program semantics in section B-a and the

noun semantics in section B-d are omitted during the model

learning process, we will seek optimization from the

perspective of attention mechanism. In the attention

mechanism, each piece of information is assigned a different

attention score. If the attention score of important semantic

information is low, it may cause the output sequence

information to lose this part of semantics. Therefore, we can try

to innovate in the calculation methods of attention score, such

as dot product, multiplication, addition, or other more complex

calculation formulas, then assign new attention score to each

information, so as to improve the attention score of important

semantic information and avoid false positives in the results as

much as possible.

V. THREAT TO VALIDITY

1) Model re-implementation: In the process of

reimplementing the three models, the word length of some data

sets exceeds the limit. For example, the length of words in the

function body of code-transformer cannot exceed 1200, and the

length of code2vec and code2seq exceeding 900 will also cause

model parsing failure. In order to avoid this situation, we need

to filter out relevant nonconforming data in the process of data

set preprocessing.

2) Selected dataset: Java dataset has a total of 8714 pieces

of data. Although the sample data is of high quality and

representative, and the domain knowledge is perfect, the

overall scale is small. If we want to retrain the data set of the

model in the future, we should inject a larger data set.

3) Model comparison: We choose the three represents

extreme code summary generation model. In our experiment,

we use the same data set, run all models in the same hardware

environment, and adopt the same data preprocessing process to

reduce this threat.

VI. CONCLUSION

Many studies show that the quality of code summary
generation algorithms based on deep learning is not ideal
because it does not take full advantage of relevant program
semantic information. In this paper, in order to observe the
utilization of program semantics in automatic code
summarization, we conducted an experimental study by
analyzing the acceptability of the code summaries generated

from neural models. To focus on the observation of the
semantics, we re-implement the neural models from three
selected studies as extreme code summarization solutions. Fig.
10 shows the diagram of model architecture for extreme code
summarization. After an intuitive observation and exploration
of the generated summaries with the models trained from a
Java dataset, we identify five acceptability aspects: (1) function
name format; (2) function naming style; (3) semantic level
similarity; (4) the differences in hitting rate of representative
words; (5) the correlation between extreme code summaries
with function body. Experimental analysis shows that false
negative is common in the results if only evaluated with classic
metrics, and aspects (3)(4)(5) bring the major influence. We
also observed that false positives related to aspects (1)(2) also
commonly appeared in the result, which suggests that the
current models also fail to filter the noise from the raw source
code to a reasonable extent.

We put forward hypotheses for these above five aspects, for
example, the semantics of the function body may not have been
fully learned by neural model. Then we designed and
completed relevant verification experiments to prove whether
our hypotheses are correct. The verification experiment
confirmed that aspects (2)(5) is caused by insufficient
preprocessing of the data set, aspects (1)(3)(4) are caused by
the semantics of function body have not been fully extracted
and utilized by neural model.

To further explore the influence of the above five aspects
on the quality of extreme code summaries, we conducted
ablation experiments which indicated that aspect (3) had a
stronger influence on false negative in extreme code
summarization results than the other aspects (4)(5), The aspect
(1) has a stronger influence on false positive in extreme code
summarization results than aspect (2). The results of ablation
experiment illustrate prove the significance and potential of
utilizing the program semantics explicitly in code
summarization.

Therefore, based on the experimental results and findings,
in the future study, we plan to improve the model in
performing code summarization tasks from three aspects of
preprocessing filtering enhancement, external data source
enhancement and attention mechanism enhancement, which
have been mentioned in section IV-D. Let's wish all these
findings promote the progress in the field of code
summarization.

REFERENCES

[1] Allamanis M, Barr ET, Devanbu P, et al. Code Generation as a Dual
Task of Code Summarization [J]. ACM Computing Surveys (CSUR),
2020, 51(4): 1-37.

[2] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles
Sutton. 2017. A Survey of Machine Learning for Big Code and
Naturalness. arXiv preprint arXiv:1709.06182 (2017).

[3] Raychev V, Vechev M, Krause A. Predicting program properties from"
big code"[J]. ACM SIGPLAN Notices, 2015, 50(1): 111-124.

[4] Parisotto E, Mohamed A, Singh R, et al. Neurol-symbolic program
synthesis[J]. arXiv preprint arXiv:1611.01855 (2016).

[5] Liu S, Chen Y, Xie X. A Convolutional Attention Network for Extreme
Summarization of Source Code [J]. arXiv preprint arXiv:1802.03691
(2017).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

734 | P a g e

www.ijacsa.thesai.org

[6] Wang K, Singh R, Su Z. Reassessing Automatic Evaluation Metrics for
Code Summarization Tasks [J]. arXiv preprint arXiv:1711.07163(2020).

[7] Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel, Joseph E. Gonzalez,
and Ion Stoica. 2020. Contrastive Code Representation Learning. CoRR
abs/2007.04973 (2020).

[8] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of
Summaries. In Text Summarization Branches Out. Association for
Computational Linguistics, Barcelona, Spain, 74–81.

[9] Shangqing Liu, Yu Chen, Xiaofei Xie, Jing Kai Siow, and Yang Liu.
2021. Retrieval-Augmented Generation for Code Summarization via
Hybrid GNN. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.

[10] Monperrus M. Summarizing Source Code using a Neural Attention
Model [J]. ACM Computing Surveys (CSUR), 2018, 51(1): 1-24.

[11] Hellendoorn V J, Sutton C, Singh R, et al. Deep code comment
generation with hybrid lexical and syntactical information
[C]//International conference on learning representations (2018).

[12] Vasic M, Kanade A, Maniatis P, et al. Sequence to Sequence Learning
with Neural Networks [J]. arXiv preprint arXiv:1904.01720 (2016).

[13] Guo D, Ren S, Lu S, et al. Graphcodebert: Pre-training code
representations with data flow[J]. arXiv preprint arXiv:2009.08366
(2021).

[14] Chen X, Liu C, Song D, et al. Multi-modal attention network learning
for semantic source code retrieval[J]. arXiv preprint arXiv:1909.13516
(2019).

[15] Alon, Uri, Meital Zilberstein, Omer Levy, and Eran Yahav. “code2vec:
Learning distributed representations of code.” Proceedings of the ACM
on Programming Languages 3, no. POPL (2019): 1-29.

[16] Uri Alon, Shaked Brody, Omer Levy, Eran Yahav: code2seq:
Generating Sequences from Structured Representations of Code.
ICLR,2019.

[17] D. Zügner, T. Kirschstein, M. Catasta, J. Leskovec, and S.
Günnemann, “Language-agnostic representation learning of source code
from structure and context”. ICLR, 2021.

[18] Kishore Papineni, Salim Roukos, Todd Ward,et al. BLEU: a Method for
Automatic Evaluation of Machine Translation[J]. ACL, Philadelphia,
July 2002, pp. 311.

[19] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer
Normalization. CoRR abs/1607.06450 (2016).

[20] Zi Gong, Cuiyun Gao, Yasheng Wang, Wenchao Gu, Yun Peng, and
Zenglin Xu. 2022. Source Code Summarization with Structural Relative
Position Guided Transformer. CoRR abs/2202.06521 (2022).

[21] Xing Hu, Xin Xia, David Lo, Zhiyuan Wan, Qiuyuan Chen, and Tom
Zimmermann. 2022. Practitioners’ Expectations on Automated Code
Comment Generation. In ICSE ’22: Proceedings of the 44th ACM/IEEE
International Conference on Software Engineering.

[22] Zhongxin Liu, Xin Xia, Christoph Treude, David Lo, and Shanping Li.
2019. Automatic Generation of Pull Request Descriptions. In 34th
IEEE/ACM International Conference on Automated Software
Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019.
IEEE, 176–188.

[23] Paul W. McBurney and Collin McMillan. 2016. Automatic Source Code
Summarization of Context for Java Methods. IEEE Trans. Software Eng.
42, 2(2016), 103–119.

[24] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting
Code Clones with Graph Neural Network and Flow-Augmented
Abstract Syntax Tree. In SANER. IEEE, 261–271.

[25] Lun Yiu Nie, Cuiyun Gao, Zhicong Zhong, Wai Lam, Yang Liu, and
Zenglin Xu. 2020. Contextualized Code Representation Learning for
Commit Message Generation. CoRR abs/2007.06934 (2020).

