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Abstract—The popularity of on-demand multimedia such as 

video streaming services has been rapidly increasing the overall 

Internet traffic volume in the world. As of the beginning of 2023, 

almost 82% of this global Internet traffic came from video 

transmission through on-demand online services, trending 

towards changing the Internet paradigm from location-based to 

content-based, culminating in a new paradigm of Information-

Centric Networking (ICN). ICN focuses on content distribution 

based on name rather than location, allowing Internet Service 

Providers (ISP) to implement local content caching systems for 

faster delivery and reduced transmission delays and 

unnoticeable jitter or distortions. ICN can be implemented over 

a Software-Defined Networking (SDN) infrastructure. SDN 

enables flexible programming and implementation of 

forwarding packet rules within a network domain seamlessly. 

This paper proposes a hybrid architecture that combines ICN 

and SDN to create a transparent in-network caching system for 

content distribution over the traditional IP network. The 

architecture aims to improve the performance of Video-on-

Demand (VoD) services for customers while efficiently utilizing 

network provider resources. A prototype called CDCA was 

developed and evaluated in a Mininet emulation environment. 

The results of the evaluation demonstrate that the CDCA hybrid 

architecture to create a caching system for content distribution 

enhances VoD service performance and optimizes network 

resource utilization. 
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I. INTRODUCTION 

The integration of the Web, ICN, SDN and NFV, 
juxtaposed the archaic Internet.  By combining these 
technologies, there is the potential to enable seamless 
placement and retrieval of multimedia content by multiple 
users. The integration of these technologies allows internet 
network service providers to leverage local caching 
mechanisms to deliver content to multiple users 
simultaneously. This unique CDCA approach of a system 
represents a novel and innovative way of optimizing content 
distribution and improving the overall user experience. The 
specific details and benefits of this novel approach are further 
elucidated in this paper. 

A. Summary of the CDCA Solution 

This paper presents a content delivery-based caching 
framework architecture system called CDCA that typically 
resides inside network providers’ premises, i.e., Internet 
Service Providers (ISP), using SDN, which is completely 
transparent for users, content provider applications and 

network providers. Transparency is applied to all actors: the 
user, the content provider and the ISP network, which 
neither needs to modify any application and network 
equipment. ..In essence, the SDN/NFV module within the 
CDCA architecture permits forwarding data packets to the 
content cache or to the content source server transparently. 

The key features and advantages of the CDCA architecture 
provide for in-network caching. The architecture is applicable 
to any application communication protocol that follows the 
client-server model and identifies content using unique logical 
names, such as HTTP URLs. The combination of the SDN 
control plane, Proxy, and Cache components enables the 
orchestration of a distributed caching framework. CDCA 
ensures that content is transparently delivered as close to the 
user as possible without any modifications to communication 
protocols or user clients. 

CDCA is designed with horizontal scalability and high 
manageability in mind, adopting the principles of the 
microservice architectural pattern style that structures an 
application as a collection of services. This design approach 
provides elevated deployment flexibility and high levels of 
availability, regardless of the network's operational state. 
Content management within the architecture is driven by rule-
based policies, facilitated by distributed decision-making 
mechanisms and multiple caches distributed throughout the 
network. These components interact with the SDN centralized 
control plane to ensure efficient content delivery. Although 
this topic is relevant and interesting and outside the scope of 
this paper, it will be addressed in-depth in future research 
works. 

CDCA is designed to be deployed and supported by the 
ISP premises on the client side. In CDN architecture, the 
service must be contracted and paid for by the content 
provider. And also, if the CDN server is not located within the 
ISP network, it will be not worth it, since it will have to pay 
for the high bandwidth requested by multiple users’ content 
downloads. 

B. Rest of the Paper 

The CDCA architecture is distinct from a traditional 
Content Delivery Network (CDN) infrastructure. They are not 
comparable. The unique aspects and differences of the CDCA 
solution are elaborated in Section IV. 

The rest of the paper is structured as follows. Section II 
covers the background to the concepts and issues related to 
the topic of this paper. Section III presents the literature 
review of related works. Section IV presents the CDCA 
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architecture and in Section V the evaluation and results 
from the experiments are presented. Section VI discusses 
some important open issues and challenges to consider for 
future research related to the CDCA architecture and its 
content delivery operations, and finally, Section VII concludes 
the paper. 

II. BACKGROUND 

It is a remarkable transformation of the Internet from its 
humble beginnings as a point-to-point communication 
network for users to becoming a ubiquitous and essential 
infrastructure for global everyday communication. Over its 
nearly 54-year history, commencing as ARPANET, the 
Internet has evolved and gained popularity, becoming a highly 
successful and effective communication system that continues 
to rapidly advance. With the increasing volume of traffic and 
the complexity of modern services such as file sharing, VoIP, 
social networking, e-commerce, online gaming, and 
multimedia streaming, the inadequacies of the Internet's 
original design have become apparent. The architecture of the 
Internet has undergone numerous amendments to 
accommodate these evolving needs, resulting in a 
progressively more complex system at each stage of its 
development. This growing complexity poses challenges in 
terms of implementation, maintenance, and management of 
new networking services and applications. The costs 
associated with these tasks continue to rise as the Internet 
becomes more sophisticated and intricate. However, 
innovation in information communication and internetworking 
philosophies helps to mitigate the phenomenon of ossification 
[1], whilst acknowledging the challenges posed by the 
limitations of the original design and recognizing the ongoing 
efforts to innovate and adapt to meet the demands of modern 
communication and networking needs. 

The evolving nature of Internet applications, particularly 
the significant growth in video streaming services, including 
both live broadcasts and on-demand content is increasing 
exponentially. According to Cisco, it has seen a massive 
buildup of Internet traffic in the order of 4.8 zettabytes during 
2022, which is over three times the 2017 rate, led by a 
combination of increased use of cloud computing, IoT device 
traffic, video viewing, and the sheer number of new users 
coming onboard every day. The video traffic constituted 82% 
of the total Internet traffic in 2021, a substantial increase from 
over 70% in 2017, excluding video exchanged through Peer-
to-Peer (P2P) file sharing [2]. The forecast indicates that 
Internet video traffic will grow at a rate of more than 31% per 
year, while online gaming, which is part of the audio/video 
mix, is expected to grow at a rate of over 50% plus per year 
until 2025. Currently, most content distribution platforms 
handle content requests individually, resulting in a unicast 
delivery paradigm where each user receives content from a 
Content Delivery Network (CDN) infrastructure separately 
[43]. However, this approach overlooks the fact that much of 
the content requested by users is identical to content requested 
by others just moments ago. As a result, a substantial amount 
of redundant content is delivered repeatedly over the same 
network segment, leading to unnecessary strain on service 
providers' transmission capacity and bandwidth. This 
inefficiency becomes more significant as the number of users 

and unicast content continues to grow. Consequently, new 
approaches are needed to improve and optimize the efficiency 
of content distribution. 

The ongoing modifications and improvements to the 
Internet's architecture to accommodate new applications 
demand faster infrastructure and versatile middleware. 
However, the modern web still faces many challenges due to 
incompatibilities inherited from the original design of the 
Internet. The shift in user behaviour is highlighted, with 
Internet users now seeking specific content (“what”) rather 
than focusing on the location of that content (“where”). This 
shift necessitates more than simple unicast communication for 
modern web applications [44]. As a result, network 
architectures need to be smarter and more flexible to support 
the exponential growth resulting from the dynamic nature of 
multimedia content availability and online delivery. This trend 
is expected to persist in the foreseeable future. To emphasize 
the magnitude of this growth, a comparison between the 
content data produced in 2008 amounted to 500 exabytes 
compared to the present-day zettabyte scale [3]. This example 
illustrates the substantial increase in content generation and 
consumption over the years. The need for smarter and more 
flexible network architectures to support the dynamic nature 
of content availability and delivery on the modern web is a 
must with the significant growth in content data generation 
and consumption. 

In recent years, some proposals tried to change the current 
end-to-end IP packet networking and web search engines to 
innovate enhanced content-based network architecture, called 
Information-Centric Networking (ICN) [4]. ICN is based on 
the principle that the Internet should prioritize the data needed 
by users rather than focusing on the physical location from 
which the data can be retrieved. In contrast, the current 
Internet architecture is host-based and was initially designed 
to facilitate communication between a limited number of fixed 
computers and geographically dispersed users. Although ICN 
offers significant advantages, implementing it as a 
replacement for the existing Internet backbone would require a 
radical and impractical overhaul. Consequently, various 
research efforts have focused on adapting ICN architectures to 
operate within the constraints of the legacy Internet 
infrastructure. One approach involves integrating ICN with 
Software-Defined Networking (SDN) and the OpenFlow 
protocol, allowing for the implementation of ICN concepts 
while leveraging the programmability and flexibility of SDN 
to make it compatible with the current Internet backbone [5]–
[8]. 

The concept of a "programmable network" originated as a 
result of the SDN principles and architecture. The concept of a 
programmable network was initially driven by the 
introduction of OpenFlow, an open protocol that enables the 
configuration of packet forwarding tables in switches. With 
OpenFlow, network users can actively modify these tables, 
providing a level of control over the network's behaviour [9]. 
By utilizing OpenFlow and similar technologies, a 
programmable network introduces an abstraction layer for 
switches, allowing the separation of the data and control 
planes. In this context, the switch functions as a hardware 
fabric that primarily focuses on transparently forwarding data. 
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The policy management for handling data content is then 
handled by software through the control plane functions and 
mechanisms. This decoupling of data and control planes 
enables greater flexibility and programmability in network 
management and configuration. 

Over the last few years, Network Functions Virtualization 
(NFV) [10] has shown the most promising results in the 
development of advanced computer networking. NFV offers a 
new approach to developing network services by utilizing 
programmable software and virtualization means. It replaces 
traditional proprietary hardware network elements and 
appliances that perform various network functions, such as 
Network Address Translation (NAT), Intrusion Detection and 
Prevention System (IDPS), caching, and more. With NFV, 
these network functions are implemented as Virtualized 
Network Functions (VNFs) using software and deployed 
within Virtual Machines (VMs). This approach enables more 
flexible and efficient networking and network service 
deployment. By utilizing NFV, network services can be 
customized according to specific business needs, allowing for 
greater agility in serving the ever-changing demands of 
service providers and end-users. Additionally, NFV brings 
significant cost savings by eliminating the reliance on 
expensive proprietary hardware and enabling more efficient 
resource utilization. 

III. LITERATURE REVIEW 

Ooka et al. propose the OpenFlow-CCN, a system 
architecture joining Content-Centric Network (CCN) and 
OpenFlow mechanisms to achieve content end-to-end 
forwarding [6]. In their proposal, the content names are 
mapped to hierarchical structure hash values and the long 
prefix matching. In an OpenFlow network, the content packet 
is forwarded by a unique IP address based on the content 
name hash value. The architecture was evaluated on the 
Trema Controller in an OpenFlow network. Their proposal is 
quite interesting because it does not impose any modification 
to either the OpenFlow protocol or CCN. CDCA does not 
require a CCN infrastructure because it uses a traditional IP 
network. 

Nguyen et al. propose an improvement in CCN caching 
strategy that uses SDN [7]. They implement a wrapper 
between CCNx software and OpenFlow switch to decode 
and hash the content name in CCN messages into parameters 
that an OpenFlow switch can forward, e.g., IP address or port 
number. They argue that the large naming space offered by 
these fields restricts the collision probability between two 
different content names. The evaluation shows that the wrapper 
does not affect forwarding performance but might have name-
space problems. CDCA does not require a CCN 
infrastructure. 

Chandra et al., proposed a caching architecture specifically 
for HTTP on an SDN infrastructure [11]. They concluded that 
while the OpenFlow protocol maintains an abstraction of 
control and forwarding planes, it presents challenges when 
dealing with ICN because it lacks content abstractions. In 
response to this limitation, Chandra et al. proposed an 
architecture that utilizes a unique Proxy and multiple caches 
distributed across the OpenFlow network. In comparison to 

the CDCA solution provided in this paper, it employs the 
concept of deploying a Proxy to determine whether content 
should be fetched from the Cache or the server and it 
introduces a distributed Proxy and Cache architecture to 
enhance scalability and resilience. This means that the CDCA 
Cache architecture is designed to accommodate scalability and 
provide better fault tolerance and resilience. 

Georgopoulos et al. presented OpenCache, an in-network 
caching system designed specifically for Video-on-Demand 
(VoD) applications using OpenFlow technology [12]. 
OpenCache consists of two main components: the 
OpenCache Node (OCN) and the OpenCache Controller 
(OCC). The OCC is responsible for determining which videos 
should be cached, while the OCN handles the storage 
necessary for video caching. The experiments conducted on 
OpenCache have demonstrated positive results in terms of 
video start-up delay, external link usage, and video quality. 
However, it is noted that these experiments were conducted 
with a single video client, which may not fully represent the 
behaviour and performance of OpenCache in real-world 
production networks with multiple user accesses. 

The CDCA concept and solution offered in this paper of 
finding the Cache that is nearest to the user overcomes the 
deficiencies from other comparative approaches in so far as 
making Cache decisions based on user requests in an on-
demand fashion, rather than relying solely on operator 
decisions. 

IV. CDCA: CONTENT DELIVERY CACHE ARCHITECTURE 

The CDCA architecture aligns with the SDN principle of 
having a centralized control plane, which is responsible for 
controlling and directing the forwarding of data packets within 
the network. In this architecture, the centralized control plane 
is designed to handle cacheable requests that adhere to the 
client-server model, similar to the distributed content Cache 
architecture embedded inside the provider datacenter [13], but 
going one step further by deploying the distributed content 
Cache system inside the ISP infrastructure closest to the end-
user, offering better response time and server load-balancing. 
By leveraging the capabilities of the centralized control plane, 
the architecture enables efficient management of cacheable 
requests. The control plane can make decisions regarding 
content caching based on various factors, such as user 
demand, network conditions, or predefined rules. These 
decisions are then communicated to the versatile device 
responsible for managing the caching process. Overall, the 
architecture combines the benefits of SDN's centralized 
control plane with the ability to handle cacheable requests in a 
client-server model. This integration allows for effective 
management and optimization of caching operations within 
the network. 

The CDCA operational framework architecture is shown 
in Fig. 1. It is based on two fundamental components: the 
Proxy and the Cache. The SDN Controller identifies a 
potential content flow, such as an HTTP request to a VoD 
provider via the destination IP address and TCP port 
information. Once identified, the content flow is redirected to 
the Proxy component. Within the Proxy, the traffic of interest 
(content) is mapped to the content re-director module 
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responsible for forwarding the content request to an 
appropriate Cache instance where the content is stored. The 
Cache instance can be located within the same network or 
distributed across multiple locations. By redirecting the 
content request to the Cache instance, the CDCA aims to 
retrieve the content from the Cache instead of fetching it from 
the original source, thereby reducing latency and network 
traffic. This mechanism improves the overall efficiency of 
content delivery by serving frequently requested content from 
nearby caches. This approach enables faster and more efficient 
content delivery by leveraging caching capabilities within the 
network. 

Note that the Proxy searches in the DHT to find if the 
content is cached, then, forward the requests to the Cache or to 
the Content Server. Fig. 1 illustrates the Cache-missed 
example shown on the left side, and the successful Cache hit 
case shown on the right side. 

 

Fig. 1. CDCA system operational framework architecture. 

The CDCA architecture implements an on-demand 
caching scheme for video-on-demand (VoD) services. In this 
architecture, larger content files can lead to longer transfer 
delays and higher processing overhead for caching operations, 
such as storing an entire file in the Cache and delivering it to 
the user while small files do not need chunking. To overcome 
this issue, large content files are divided into smaller parts 
called content chunks. Each chunk is handled independently, 
allowing for more efficient caching and delivery. This chunk-
based delivery approach is specifically designed to handle the 
delivery of content in smaller segments rather than delivering 
the entire file at once. All VoD providers analyzed in this 
work used chunk-based delivery. This indicates that dividing 
content into smaller chunks is a common practice in the 
industry, likely due to the advantages it offers in terms of 
caching, delivery efficiency, and user experience. By adopting 
this chunk-based delivery approach and caching content 
chunks on-demand, the CDCA architecture aims to optimize 
the delivery of VoD content while minimizing transfer delays 
and processing overhead associated with caching operations. 

Chunk-based caching [45] offers several advantages over 
file-based content caching. By dividing a content file into 
smaller chunks, it becomes possible to deliver different 
chunks from multiple caches, improving the efficiency of 
content delivery. One of the key benefits of chunk-based 
caching is increased storage efficiency. Instead of storing and 
replacing entire content files, the caching system can focus on 

individual chunks. This fine-grained approach allows for 
precise caching decisions, reducing the amount of storage 
required and improving overall Cache utilization. But the 
distribution of chunks within the network becomes a crucial 
decision in chunk-based Cache delivery since the placement of 
chunks across caches can significantly impact the performance 
and effectiveness of the caching system. Optimizing the 
distribution of chunks involves considering factors such as 
Cache proximity to users, network congestion, and popularity 
of specific content chunks. Efficient chunk distribution 
strategies typically enhance the caching system's ability to 
serve content quickly and reduce network traffic. Techniques 
such as content popularity analysis, adaptive caching 
algorithms, and dynamic chunk placement are employed to 
ensure effective distribution and retrieval of content chunks 
from caches. Furthermore, chunk-based caching has many 
advantages over file-based content caching. Different chunks 
of the same content can be delivered from multiple caches. 
Replacing some chunks instead of a whole content file may 
increase storage inefficiency. However, careful consideration 
must be given to the distribution of chunks within the network 
to optimize performance and achieve efficient content 
delivery. 

In the CDCA architecture, the selection of caches is 
determined based on either the shortest path to the content or a 
set of custom rule-based policies. The forwarding decision is 
made by the Proxy that may receive information from the 
network management system and server state. Based on this 
information, the Proxy chooses the best Cache instance. For 
instance, when a content request is received by the Proxy, it 
checks if the requested content is already cached in a Cache 
instance. If a Cache hit occurs, meaning that the content is 
present in the Cache. This allows for fast and efficient content 
delivery without the need to retrieve the content from an 
external source. However, if the requested content is not 
present in any Cache, resulting in a missed Cache, the Proxy 
will then forward the request to the nearest Cache. The closest 
Cache is determined based on factors such as network 
proximity or predefined routing policies. This Cache, in turn, 
will request the content from the external Content Server, 
retrieve and Cache the content locally, and finally serve the 
user's request. This mechanism ensures that frequently 
requested content is cached closer to the users, reducing the 
need for content retrieval from remote servers and improving 
the overall response time and user experience. By leveraging 
caching and intelligent Cache selection, the architecture 
minimizes the latency associated with content delivery, 
optimizing the use of network resources and enhancing the 
efficiency of the system. In summary, the Proxy in the CDCA 
architecture determines Cache hits and misses for content 
requests. Cache hits allow for direct content delivery, while 
Cache misses triggering the retrieval of content from the 
closest Cache or the external Content Server, enabling 
efficient content caching and delivery to users. 

In the CDCA architectural operating scheme, it is possible 
for multiple instances of the Proxy to be deployed across the 
network infrastructure “world”, where each instance is 
responsible for coordinating a “Cache island”, a group of 
Cache servers under same management domain. This 
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distributed deployment allows for efficient content delivery 
and load balancing. The SDN Controller plays a crucial role in 
the architecture by receiving network state information from 
the network management system. Based on this information, 
the SDN Controller makes forward decisions, determining the 
best Proxy instance to handle a content request. The goal is to 
minimize congestion, optimize transfer times, and enhance 
throughput by selecting the closest Proxy to the requesting 
user. Each Proxy instance is part of a Distributed Hash Table 
(DHT) in the overlay network. The DHT network facilitates 
the storage and retrieval of content-Cache instance mappings 
throughout the entire network. This distributed approach 
ensures that the mapping information is accessible and 
maintained across the network, enabling efficient Cache 
selection and content delivery. The Cache component, 
associated with each Proxy instance, is responsible for storing 
and serving cacheable objects triggered by any user's request 
within the network. When a cacheable object is requested, the 
Cache component determines if the object is already stored in 
the Cache. If it is present, the content is served directly from 
the Cache, minimizing latency. If the object is not in the 
Cache, the Cache component retrieves it from the appropriate 
source (e.g., external Content Server) and stores it in the 
Cache for future requests. By deploying this strategy of 
multiple Proxy instances, leveraging SDN-based forward 
decision-making, and utilizing a DHT overlay network, the 
CDCA architecture optimizes content delivery, reduces 
network congestion, and enhances the overall performance of 
the system. 

The CDCA architecture was designed to accentuate high 
level of scalability and manageability at runtime to 
accommodate the dynamic nature of network environments. 
To achieve this, a logically centralized platform, such as a 
distributed SDN Controller system, is employed to provide 
scalability and resilience at the SDN layer [14]. While the 
specific analysis of the distributed SDN Controller system is 
not within the scope of the paper, it serves as a foundational 
component for the overall architecture. 

Multiple instances of the Proxy and Cache components can 
be dynamically added or removed at runtime, facilitated by a 
cloud orchestration platform like OpenStack. This allows for 
an elastic and flexible solution where the system can adapt to 
changing demands and resource requirements. The 
management system, which could be integrated with the cloud 
orchestration platform, plays a vital role in monitoring the 
server's response time and making decisions regarding the 
deployment or termination of Proxy and Cache instances. 

Similar to cloud management, the management of the 
Proxy and Cache instances follows principles of scalability 
and flexibility. The system can scale up or down based on the 
workload and user demands, ensuring optimal performance 
and resource utilization. Cloud management practices can 
serve as a reference for managing the Proxy and Cache 
components, but further exploration and research in this area 
are needed. 

Of particular note to address the scalability issues 
mentioned in Section II, the CDCA architecture deploys many 
Proxy and Cache instances horizontally to assure a desired 

response time for any user by taking an integrated distributed 
Proxy approach to solve the unique Proxy limitation of the 
Chandra et al. proposal [11]. This CDCA approach directive 
offers several advantages in utilizing NFV in real-time 
network orchestration, particularly in optimizing runtime 
processing, transfer times, and scalability. Here are some 
benefits of using NFV in this context: 

1) Flexibility and agility: NFV enables the virtualization 

of network functions, allowing them to be deployed and scaled 

as needed. This flexibility enables dynamic resource allocation 

and efficient utilization of infrastructure based on the current 

workload. It allows for quick deployment and adjustment of 

network services, leading to improved agility in responding to 

changing network demands. 

2) Scalability: NFV provides scalability by allowing 

network functions to be dynamically instantiated and scaled 

according to the workload. During peak times, when network 

traffic is high, additional instances of network functions can 

be provisioned to handle the increased load, ensuring smooth 

operation and optimal performance. Similarly, during low-

traffic periods, unnecessary instances can be scaled down or 

deactivated, saving resources. 

3) Resource optimization: NFV allows for efficient 

utilization of hardware resources by consolidating multiple 

network functions onto virtualized infrastructure. This 

consolidation eliminates the need for dedicated hardware for 

each network function, leading to cost savings and improved 

resource utilization. Additionally, NFV enables the sharing of 

resources among different network functions, optimizing 

resource usage based on demand. 

4) Faster deployment and service innovation: NFV 

decouples network functions from proprietary hardware, 

allowing them to run on general-purpose servers or cloud 

infrastructure. This decoupling simplifies the deployment 

process and reduces the time required to introduce new 

services or update existing ones. It enables service providers 

to rapidly deploy and scale network functions, promoting 

faster innovation and time-to-market for new services. 

5) Cost efficiency: NFV can result in cost savings by 

reducing the need for expensive proprietary hardware 

appliances. Instead, virtualized network functions can be run 

on standard servers or cloud infrastructure, which are typically 

more cost-effective. NFV also enables service providers to 

adopt a pay-as-you-grow model, scaling their infrastructure 

based on actual demand, thereby optimizing costs. 

By leveraging NFV in real-time network orchestration, 
service providers can achieve optimum runtime processing, 
reduce transfer times, and achieve high scalability, allowing 
them to efficiently handle variable network workloads and 
provide a better quality of service to their users. 

Overall, the CDCA architecture aims to provide a scalable 
and manageable solution by exploiting distributed SDN 
controllers, dynamic deployment of Proxy and Cache 
instances, and integration with cloud orchestration platforms. 
Future work can delve deeper into the management aspects, 
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drawing inspiration from cloud management practices to 
enhance the efficiency and effectiveness of the system. 

Algorithm 1 gives the core logical idea behind the 
operational aspects of the CDCA architecture, describing how 
the Proxy and Cache instances work together. Both 
components have a specific task in the processing of user 
requests. The Proxy is responsible for identifying and deciding 
where and which requests are going to be cached, while the 
Cache is responsible for providing the storage resources in 
order to Cache the contents according to the network policy. 
The details of the operational aspects of each component are 
described in the next subsections. 

 

Algorithm 1: CDCA architecture operation 
 

 

1 The user triggers a content request; 

2 The SDN Controller forwards the request to the closest 

Proxy cPrx; 

3 cPrx checks its shared index if there is a content copy 

under its domain; 

4 if there is a content copy then 

5 cPrx forwards the request to the Cache cCh 

that holds the content copy; 

6 cCh delivers the cached content to the user; 

7 end 

8 else 

9 cPrx forwards the request to the closest Cache 

cCh; 

10 cCh retrieves the content from the original 

Content Server; 

11 cCh delivers the content to the User; 

12 cCh stores the content for next User; 

13 cCh notifies cPrx that a new content has 

been cached; 

14 cPrx updates the index; 

15 end 
 

 

A. Content Forwarding 

The dependency on the SDN infrastructure in the CDCA 
solution for content dispatching offers several advantages, 
particularly in terms of efficiency and transparency. Some key 
points related to this dependency: 

1) Transparent request forwarding: SDN allows for the 

transparent forwarding of content requests to cacheable 

content and Proxy instances on the network. By leveraging the 

OpenFlow protocol or similar SDN technologies, it becomes 

possible to create traffic flows on the switches that map 

specific TCP or UDP ports of applications. This enables the 

SDN Controller to direct requests to the appropriate Cache or 

Proxy without modifying the IP packet header. This 

transparency ensures that the communication between clients 

and the requested content or Proxy remains seamless and 

unaffected. 

2) Efficient traffic steering: With the help of SDN, traffic 

can be efficiently steered to the desired destinations. By 

leveraging the programmability and control capabilities of 

SDN, the SDN Controller can dynamically analyse network 

conditions, load distribution, and Cache availability to make 

intelligent decisions on how to direct traffic. This enables the 

system to optimize content delivery by sending requests to 

Cache instances or the closest Proxy, minimizing latency and 

improving overall network performance. 

3) Flexibility and adaptability: The use of SDN provides 

flexibility and adaptability to the solution. Since the 

forwarding, behaviour of switches can be dynamically 

controlled by the SDN Controller, changes in the network 

topology or caching infrastructure can be easily 

accommodated. New Cache instances or Proxy nodes can be 

added, removed, or reconfigured without requiring changes in 

the underlying network infrastructure. This flexibility allows 

the solution to scale and adapt to changing demands and 

evolving network conditions. 

4) Enhanced network visibility and control: SDN offers 

centralized network management and control, providing 

enhanced visibility and control over network traffic. By 

having a centralized SDN Controller, network administrators 

can monitor and manage content dispatching, Cache 

utilization, and overall network performance from a single 

point of control. This centralized control enables efficient 

decision-making and troubleshooting, leading to improved 

network efficiency and performance. 

Typically, the SDN infrastructure for content dispatching 
brings efficiency, transparency, flexibility, and enhanced 
control to the CDCA solution. By using SDN technologies 
like the OpenFlow protocol, it becomes possible to 
transparently forward requests to cacheable content and Proxy 
instances on the network without the need to modify IP packet 
headers. This enables efficient traffic steering and dynamic 
adaptability, leading to improved content delivery and 
network performance. 

In the CDCA architecture, two approaches are used for 
creating flows in the SDN switches: proactive and reactive 
[15]. Here are the characteristics and considerations associated 
with each approach: 

1) Proactive approach: In the proactive approach, the 

OpenFlow Controller configures all the necessary flows from 

the users to the nearest Proxy instance before any request is 

made to a server. This means that the flows are pre-installed in 

the switches based on anticipated traffic patterns. The 

advantage of this approach is that it avoids the need for 

switches to request the Controller for each new flow, thereby 

reducing forwarding delay. However, one drawback is that all 

data packets are routed through the same network segment or 

domain path, which can potentially lead to congestion on that 

path. 

2) Reactive approach: In the reactive approach, flows are 

created on-demand, meaning that they are installed in the 

switches only when a request is made by a user. When a 

switch receives a packet for which there is no pre-installed 

flow, it sends a request to the Controller, which then installs 

the appropriate flow and forwards the packet accordingly. 

This approach introduces some latency as switches need to 
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contact the Controller for each new flow. However, it provides 

the opportunity to use load-balancing techniques to set 

alternate paths, thereby reducing congestion and improving 

network performance. 

In the CDCA architecture, the Controller sets a path to the 
nearest Proxy instance in a reactive manner, meaning that 
flows are installed on-demand as requests are made by users. 
This allows for dynamic path determination based on the 
current network conditions and load distribution. On the other 
hand, the path from the user to the Cache or external network 
is set proactively, meaning that the necessary flows are pre-
installed to optimize the forwarding of user traffic. This 
proactive approach helps minimize latency and optimize link 
usage. Remember that the NFV module establishes a new path 
for each new user request, providing scalability and load 
balancing. 

By combining the proactive and reactive approaches, the 
CDCA architecture aims to achieve an efficient and balanced 
network operation. The reactive approach mapping users' 
requests to the nearest Proxy minimizes latency by 
dynamically determining the optimal path based on current 
network conditions. Meanwhile, the proactive approach 
setting the path from the user to the Cache or external network 
to ensure efficient forwarding without switches requires the 
Controller the path for each new flow [15]. 

It is important to note that the choice between proactive 
and reactive approaches may depend on specific network 
conditions, traffic patterns, and performance requirements. 
Both approaches have their advantages and trade-offs, and the 
decision should be made based on the specific needs and 
constraints of the network deployment. 

When the SDN Controller receives an HTTP request, it 
sets a flow from the user to the Proxy. The forwarding is 
based on the destination IP address, i.e., the Content Provider 
IP, destination HTTP port (typically port 80) and the user’s IP 
address to select the best Proxy to be used, e.g., closest to 
the user. The Proxy element is necessary because the SDN 
only analyses IP header fields, not HTTP requests. The Proxy 
analyzes the HTTP GET header and checks if the content is 
cached in its DHT index table. Then, it forwards, i.e., sets 
the flow in network switches, to connect the user to Cache. 
From this moment onwards, the user interacts only with the 
Cache until a new request is done, minimizing Proxy 
processing. In big content delivery, e.g., VoD services, a user 
maintains a long-time connection with a  Cache. 

Once a request arrives at a Proxy, it performs a deep 
inspection of the request to decide to which Cache this request 
should be forwarded.  This inspection is possible for requests 
using the HTTP protocol, as the packet payload can be read by 
the Proxy. However, for requests using the HTTPS protocol, 
which provides encryption and security, performing deep 
inspections on the packet payload is not feasible and would 
risk breaching security. 

When the Proxy needs to determine the path from the user 
to the closest Cache, it sends a command to the SDN 
Controller using a Representational State Transfer (REST) 
Application Programming Interface (API). The API allows the 

Proxy to communicate with the SDN Controller and provide 
the necessary information to install the required flows on the 
switches that belong to the network path connecting the user 
to the closest Cache. 

This process of sending commands to the SDN Controller 
and installing flows on the switches ensures that the traffic is 
directed efficiently and transparently, optimizing the content 
delivery process. Fig. 2 provides an illustration of this timeline 
flow process, highlighting the interactions between the Proxy, 
SDN Controller, and switches in the network path as follows: 

1) Content request identification: The SDN Controller 

identifies content requests from users within the network. 

2) Forwarding to proxy: The SDN Controller forwards 

the content requests to the Proxy component responsible for 

handling Cache-related operations. 

3) Checking cache availability: The Proxy checks if the 

requested content is already cached within the network. 

4) Forwarding to cache: If the content is already cached, 

the Proxy forwards the request to the appropriate Cache 

instance that stores the content. This allows for direct content 

delivery from the Cache to the user. 

5) Flow path configuration: The SDN Controller 

configures a data flow path from the Cache to the user, 

establishing a direct transmission route for efficient content 

delivery. 

 

Fig. 2. Content forwarding sequence flow steps. 

The CDCA approach ensures a transparent Cache handling 
for users without requiring any changes to their application 
implementations. The underlying transport protocol, TCP, 
necessitates that both the Proxy and Cache nodes are aware of 
connection handling details, as the connection state needs to 
be exchanged between them by SDN Controller that knows all 
Cache and clients address [16]. This awareness allows for the 
seamless transfer of connections from the Proxy to the Cache. 

The use of SDN in implementing a transparent forwarding 
mechanism is also discussed in the work by Koulouzis et al 
[17]. Their research focuses on enhancing the transfer of data-
intensive scientific applications by leveraging SDN network 
programmability. 

By incorporating SDN principles and applying the REST 
API and SDN architecture, the CDCA architecture enables 
dynamic and controlled flow management, allowing for 
efficient content caching and delivery while respecting 
security considerations and the limitations imposed by the 
HTTPS protocol. 
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The release of HTTP/2 introduces improvements and new 
challenges to the Web. Its specification was published in May 
2015 [18], and its adoption has been growing. The HTTP/2 
decreases latency and improves web browsers’ load speed and 
video delivery by implementing many new features [19]: (1) 
compression of HTTP headers; (2) inclusion of HTTP/2 Server 
Push; (3) multiplexing and pipelining of multiple requests 
over a single TCP connection; and, (4) fixing of blocking 
problem in HTTP/1.1. The HTTP/2 specification recommends 
cryptography using TLS 1.2, but it is not mandatory. For video 
streaming, HTTP/2 Server Push relieves the Proxy processing, 
and the video chunks should be delivered unencrypted to 
reduce the encryption overhead of video files. 

The CDCA architecture supports HTTP/1.1 and HTTP/2 
offering seamless smooth ambiance effect video viewing 
without side effects, because the request are initiated at the 
client side. In HTTP/1.1, with no Server Push, the 
performance is lower than HTTP/2. In general, most of the 
contemporaries, like CDCA researcher, consider encrypted 
video to be unfeasible for normal viewing because each 
browser would need a different crypt-key per connection. 
However, if cryptography is required for whatever reasons, 
CDCA system is easily capable of providing any publicly 
available standard encryption/decryption module such as a 
Deep Packet Inspection (DPI) module, which will be 
addressed in another article. 

Content identification is the initial most important task 
performed in the Proxy. The architecture does not Cache all 
kinds of information, but only large and reusable content, e.g., 
video and music on demand, software installers, or sizable 
images. 

The most important, big, and reusable content object 
application on the Internet is VoD. A plethora of VoD 
providers exist. All of them use similar approaches to provide 
a variety of content delivery services. Most of them use Flash 
and HTML5 as video player. In the CDCA experiment, 
HTML5 was chosen since it is better for identifying video 
characteristics. The video stream encoder is mostly 
H.264/MPEG-4, and the video stream is not encrypted to 
reduce server and client overhead. This fact is very important 
for the CDCA architecture because there are some outstanding 
security issues regarding encrypted content, which should be 
readable only by the first user. And, of course, we suppose the 
multimedia videos are royalty-free to permit distribution to all 
users, which, in reality, might be different in business-
oriented provider networks with regard to payment to owners 
of the content or to their nominated agents, such as the service 
provider. 

Currently, the transport protocol for video streaming on 
the Internet is accomplished  by using either TCP or UDP. 
The delivery of live video streaming with on-the-fly 
encoding, like IPTV, is mostly UDP based, but the delivery of 
pre-encoded video, called VoD, essentially uses TCP [20]. In 
the CDCA architecture, the focus is on VoD services over 
TCP. For the evaluation, YouTube is considered since it is the 
most prominent VoD portal, which handles more than several 
billion video streams daily. While the YouTube site itself 
operates over HTTPS, the actual video stream requests and 

delivery are performed using HTTP. This allows for the 
identification of unencrypted HTTP requests and the 
corresponding HTTP objects are easily identified using 
pattern-matching techniques [21]. It is worth noting that the 
architecture is designed to handle TCP-based VoD services 
and can be adapted to support other VoD providers with minor 
modifications. The future intention is to analyze and adapt the 
CDCA solution for various VoD platforms, applying the same 
approach used for YouTube. 

For instance, considering a YouTube video URL, the 

web page provides the link for different formats, e.g., 

href="http://www. youtube.com/watch?v=yXc8KCxyEyQ" 

for standard format, 

href="http://m.youtube.com/watch?v=yXc8KCxyEyQ" for  

hand-held devices, and also for specific devices, like 

Android,    href="android-

app://com.google.android.youtube/http/www. 

youtube.com/watch?v=yXc8KCxyEyQ". 

It seems that Google implements some techniques to 
restrict the direct access to video in a lot of ways. It is possible 
to see some interesting fields in the URLs, e.g., "?part=" and 
"?range=," which permit identifying of each downloaded 
chunk and storing it in the correct order. The process to 
retrieve a Youtube video requires reverse engineering to 
extract chunk information from the URL, a technique used by 
some “Youtube downloaders”, which is very common 
nowadays. 

YouTube employs various mechanisms, including DNS 
translation and URL redirection, to optimize the delivery of 
video content. These mechanisms help distribute the video's 
chunk files across multiple caching servers, allowing for load 
balancing of the transmission. 

The YouTube video delivery name is composed of three 
key components [22]: 

1) Video ID space: Each video on YouTube is assigned a 

unique video ID, which serves as an identifier for the specific 

video content. 

2) Hierarchical logical video server: YouTube utilizes a 

hierarchical logical video server structure to organize and 

manage video content. This structure helps ensure efficient 

content management and delivery across the platform. 

3) Physical server cache hierarchy: The physical server 

Cache hierarchy represents the distribution of caching servers 

used by YouTube. The chunk files of the videos are stored in 

these caching servers, which are strategically located to 

optimize content delivery and minimize latency for users. 

By employing DNS translation, URL redirection, and a 
well-structured video delivery name, YouTube can efficiently 
distribute and deliver video content, providing a seamless 
streaming experience to its vast user base as: 

a) YouTube Video Id Space: Each YouTube video 

is uniquely identified using a fixed-length flat identifier 

with random (nonsensical) characters, e.g., something like 

yXc8KCxyEyQ. 

b) Hierarchical Cache Server DNS Namespaces: 

http://www/
http://m.youtube.com/watch?v=yXc8KCxyEyQ
http://www/
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YouTube defines multiple DNS namespaces representing a 

group of logical video servers related to the video format and 

resolution. The DNS namespace forms a hierarchical 

structure of logical video servers that are mapped to an IP 

address where the video file is stored, e.g., http://b8u-

4vge.googlevideo.com 

c) Physical Cache Servers: In the case of YouTube, the 

logical Cache servers are represented by a unique logical 

namespace in the DNS names. However, each DNS resolution 

of this namespace can map to a large set of IP addresses, 

which correspond to the physical Cache servers. For example, 

if we consider the hostname http://b8u-4vge.googlevideo.com, 

the primary namespace represents the logical Cache server. 

However, depending on factors such as the user's location and 

the load balancing policy in place, multiple IP addresses can 

be associated with this hostname. These IP addresses 

correspond to the physical Cache servers that store and serve 

the video content. 

YouTube uses HTTP to deliver videos to users in order to 
reduce the cryptography overheads. Even under an HTTPS 
connection, the HTTP request can be easily seen. Analyzing 
the URL, we can identify the video name (Video Id Space) and 
the format and resolution for a specific device (Hierarchical 
Cache Server DNS Namespaces). In the CDCA architecture, 
the Physical Cache Server component does not give away any 
useful information. 

B. Proxy Design 

The Proxy component acts as an intelligent intermediary 
between users and Cache nodes, ensuring efficient content 
delivery and load balancing within the network. It plays a 
crucial role in the CDCA architecture as it handles users' 
requests and ensures the delivery of the requested content to 
the nearest available Cache. Its main function is to determine 
the appropriate Cache node to serve the content based on a 
mapping index. 

When a user makes a content request, the Proxy checks 
whether there is an existing copy of the requested content in 
the network. If a copy is available, the Proxy forwards the 
request to the Cache node that holds the content. This 
minimizes the latency and improves the response time for the 
user. In cases where the requested content is not available in 
any Cache node, the Proxy identifies the Cache node closest to 
the user and forwards the request to that node. This Cache 
node becomes a aspirant for holding a copy of the requested 
content. If there are multiple Cache nodes with the same 
distance from the user, the Proxy employs a round-robin 
operation. This load-balancing technique distributes the 
requests among the Cache nodes equally, ensuring efficient 
utilization of resources and preventing any single Cache node 
from becoming overloaded. 

Since it is possible that many Proxies exist over the 
network, each Proxy instance participates in a DHT to share 
the content index. This DHT serves as a Distributed 
Forwarding Unit (DFU) that allows efficient content lookup 
and forwarding among the proxies. 

While there are multiple Proxy instances distributed 

throughout the network, it is important to note that each user's 
requests will always be handled by the same Proxy node 
nearest to it. This selection of the closest Proxy node to the 
user ensures proximity-based routing and minimizes latency in 
the content delivery process. 

By maintaining the user's requests consistently routed to 
the same Proxy node, it offers several advantages. Firstly, it 
provides a predictable and reliable user experience as the user 
interacts with the system through a specific Proxy node. 
Secondly, it allows the Proxy node to maintain the context and 
state of the user's requests, facilitating personalized content 
delivery and improving overall efficiency. 

The sharing of the DHT among the Proxy instances 
enables efficient content indexing and lookup. When a user 
request arrives at a Proxy node, it can quickly query the DHT 
to determine if the requested content is available in the 
network and identify the Proxy node that holds a copy of the 
content. This ensures effective content retrieval and delivery 
to the user. 

The forward decision is taken by the SDN Controller that 
receives the network state information from the network 
management system, choosing the best Proxy instance. 
Because any new user’s request is processed by the SDN 
Controller, it should choose the optimal Proxy on-the-fly based 
on the network status. Generally, the closest Proxy will be the 
perfect solution because it will have the minimum delay. It 
also does not store any content and only looks at a DHT table. 
However, if one Proxy processes more requests than another, 
it is possible to redirect the requests to load balance the system 
considering network and server status. 

The Proxy and Cache instances maintain a virtual overlay 
network configuration schema, which enables them to 
exchange Cache states and commands seamlessly. When a 
Proxy decides to forward a user's request to a Cache instance, 
it sends a command to the chosen Cache, specifying the 
request and the user. This command instructs the Cache to 
serve the requested content to the user. 

Upon sending the command, the Proxy listens for an 
acknowledgment from the Cache. This acknowledgment 
confirms that the content has been successfully cached by the 
Cache instance. It allows the Proxy to update its index, which 
maps content names to Cache instances. This updated index 
enables the Proxy to efficiently forward future requests for the 
same content to the same Cache instance, enhancing caching 
effectiveness and reducing content retrieval latency. 

Additionally, the acknowledgment may provide 
information about the content's lifetime. The Cache instance 
specifies the maximum duration for which the content will be 
cached. Once the Cache lifetime expires, the corresponding 
index entry for the content is automatically removed from the 
DHT, ensuring that outdated content is not unnecessarily 
stored in the network. 

By maintaining an efficient and synchronized index across 
Proxy and Cache instances, the architecture optimizes content 
caching, improves content availability, and ensures that the 
most relevant content is stored and served efficiently. 

http://b8u-4vge.googlevideo.com/
http://b8u-4vge.googlevideo.com/
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The content caching mechanism is designed to be 
transparent and efficient, allowing any Proxy to forward a 
request to a Cache instance that already holds the requested 
content. This means that even if a Proxy is responsible for 
managing a specific Cache instance, it can still forward 
requests to other Cache instances that have the desired 
content. 

As an example, for instance, where Proxy 'A' manages 
Cache 'A' and Proxy 'B' manages Cache 'B', if a user near 
Proxy 'A' requests content 'C', Proxy 'A' would handle the 
request. However, since Proxy 'A' knows that Cache 'B' has a 
copy of content 'C' (as indicated by the DHT index), it would 
forward the user's request to Cache 'B' to fetch the content. 
This behaviour enables efficient utilization of the caching 
infrastructure, as any available Cache instance can serve 
content to users, regardless of the Proxy managing it, thus 
optimizing content retrieval and delivery, ensuring that users 
can access the content efficiently from the nearest available 
Cache instance. This approach enhances the overall 
performance of the caching system and improves user 
experience. 

Usually, choosing the optimal Cache or deciding to fetch 
content from an external server is most desirable in content 
delivery systems. The choice between fetching content from 
an in-network Cache or from an external server depends on 
various factors, such as Cache proximity, network conditions, 
content availability, and delivery requirements. 

In the CDCA architecture, the decision of whether to fetch 
content from an in-network Cache or from an external server 
is not explicitly addressed. However, future works and 
research can focus on developing intelligent policies or 
algorithms to determine the best Cache to use within the 
network or when it is more efficient to fetch content from an 
external server. These policies could take into account factors 
such as Cache proximity, network congestion, content 
popularity, Cache availability, and other performance metrics. 
By considering these factors, the system can dynamically 
adapt and make better decisions based on the current network 
conditions and optimize content delivery for the best user 
experience. 

Overall, this Proxy design scheme enhances the scalability, 
reliability, and performance of the CDCA architecture. 

C. Cache Design 

The Cache component plays a vital role in serving user 
requests and optimizing content delivery. When a request 
reaches a Cache instance, it first checks its local memory 
using a Hash Table for the fast lookup to see if the requested 
content is already stored. If the content is found in the Cache, 
it can immediately send the requested content back to the user 
through the previously configured OpenFlow path. This 
enables fast and efficient delivery of content from the Cache 
without the need to retrieve it from the original server. 

However, if the content is not available in the Cache, the 
Cache acts as a Proxy and forwards the user's request to the 
target server specified in the request. This behaviour is similar 
to a standard client-server interaction without caching. When 
the target server responds to the request, the Cache 

immediately sends the response back to the user. 

Additionally, the Cache performs a deep packet inspection 
on the response received from the target server. This 
inspection helps determine if the response is cacheable or not. 
The Cache examines the nature of the protocol being used 
(such as HTTP) and looks for specific headers, like the Cache-
Control header in the case of HTTP. The Cache-Control 
header provides instructions to consumers (in this case, the 
Cache) on how the response can be cached, including the 
duration for which it can be cached or whether caching is 
prohibited by the server. 

When the Cache determines that the fetched content is 
cacheable, it immediately notifies the Proxy that it now holds 
a copy of the content. This ensures that subsequent requests 
for the same content can be efficiently served from the Cache. 
Additionally, the Cache may include a Cache lifetime value, 
which indicates the maximum duration for which the content 
should be considered valid in the Cache. The determination of 
the Cache lifetime value depends on the characteristics of the 
media, such as its freshness requirements or expiration 
policies. 

In cases where the content is deemed non-cacheable, such 
as very small content that may not benefit from caching, the 
Cache simply sends the response directly to the user without 
storing it. This prevents unnecessary utilization of Cache 
space and avoids the need for DHT updates related to that 
particular content. 

Setting the Cache lifetime value appropriately is crucial for 
optimizing system performance. It allows balancing between 
serving stale content and the overhead of fetching fresh 
content from the server. The specific Cache lifetime values 
and policies can be defined by the content provider according 
to their own requirements and policies. 

D. Cache Management 

Separating the data storage layer from the control function 
of Cache instances offers flexibility and scalability in the 
deployment of the caching system. By decoupling these two 
functions, each Cache instance can operate independently 
without interfering with the others in the storage layer. 

This separation allows for various deployment scenarios, 
each with its own characteristics. For example, multiple Cache 
instances can be deployed on different physical servers or 
virtual machines, enabling distribution across different 
geographical locations or network segments. Each Cache 
instance can have its own storage resources, such as disk 
space or memory, dedicated to serving content requests. For 
instance, an ISP may deploy a number of caches over their 
network, configuring 70% of the instances to use their RAM 
memory while the other 30% are configured to use SSD disks. 
The decision about the type of storage that will be used by the 
Cache instances and where they are deployed is a decision that 
must be taken by the network operator since there are many 
strategical decisions involved. 

The separation of data and control also enables the 
implementation of different caching strategies or policies 
within each Cache instance. This means that each Cache 
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instance can have its own set of rules and algorithms for 
content eviction, replacement, or caching optimization, 
tailored to specific requirements or objectives, allowing for 
efficient and independent operation of each Cache instance 
within the caching system. 

The decision of whether to store content in memory or on 
local disks within a Cache instance is an important aspect that 
can significantly impact caching performance and efficiency. 
Both options have their advantages and considerations. 

Using an in-memory approach provides faster access to 
cached content due to the high speed of memory. It is 
particularly suitable for frequently accessed or hot content that 
requires low-latency delivery. However, memory capacity is 
typically limited compared to disk capacity, which means that 
the Cache can store a smaller amount of content in memory. 
This can lead to a higher likelihood of Cache eviction for less 
frequently accessed or cold content, resulting in potential 
Cache misses and increased latency. 

On the other hand, storing content on local disks provides 
a larger storage capacity, allowing the Cache to accommodate 
a larger volume of content. This is advantageous for caching 
less frequently accessed or larger files. Disk-based storage can 
be especially useful for VoD (Video on Demand) services that 
deal with pre-encoded videos, where the content size can be 
substantial. However, accessing content from disks is 
generally slower compared to memory, which can introduce 
additional latency. 

The choice between in-memory and disk-based storage 
depends on various factors, including the nature of the 
content, the expected workload, and the network 
administrator's policy. If the network administrator prioritizes 
fast access to frequently accessed content, an in-memory 
approach might be preferred. Conversely, if accommodating a 
larger volume of content is crucial, disk-based storage is more 
suitable. 

Additionally, the eviction policy is an essential 
consideration in Cache design. It determines how content is 
selected for eviction when the Cache reaches its capacity limit. 
There are various eviction algorithms, such as LRU (Least 
Recently Used), LFU (Least Frequently Used), and Random 
Replacement, each with its own trade-offs in terms of Cache 
efficiency and performance. The network administrator can 
choose the most suitable eviction algorithm based on factors 
such as content popularity, access patterns, and the desired 
Cache hit rate. 

The CDCA architecture is flexible such that it can be 
configured to use any eviction algorithm by an open API, i.e.; 
the network administrator can choose the best algorithm 
according to the user’s profile. Cache eviction policies are 
well discussed in Balamash [23] and Wang [24]. 

It is possible to use a hybrid approach when dealing with 
the decision to store the content in memory or on disk. For 
instance, a hybrid approach combining both memory (M1) and 
disk (M2) storage can provide a balance between fast access 
and larger storage capacity. This approach takes advantage of 
both memory and disk to optimize caching performance. 

In the hybrid approach, frequently accessed or hot data is 
stored in the M1 Cache, which is the faster memory 
component. This ensures that popular content is readily 
available for fast retrieval and reduces latency for frequently 
requested items. The M1 Cache acts as a high-speed Cache 
tier that can quickly serve content without accessing the 
slower disk storage. 

On the other hand, less frequently accessed or cold data is 
stored in the M2 Cache, which resides on a disk. The M2 
Cache provides a larger storage capacity compared to 
memory, allowing the Cache to accommodate a broader range 
of content. Although accessing content from the M2 Cache 
may introduce additional latency, the presence of frequently 
accessed items in the M1 Cache minimizes the impact on 
overall performance. 

To optimize the hybrid approach, a managing schema 
algorithm is employed to determine which data should reside 
in the M1 Cache and which should be stored in the M2 Cache. 
This algorithm can monitor access patterns, frequency of 
requests, and other relevant metrics to make informed 
decisions about data placement. For example, if a content item 
in the M2 Cache starts to experience increased access 
frequency, the managing schema algorithm can dynamically 
promote it to the M1 Cache to improve access time. 

The reconfigurability of the Cache instance is a valuable 
feature that allows for dynamic adjustments and fine-tuning of 
the Cache's parameters to meet changing demands and 
optimize performance. By deploying the Cache instance 
within a Virtual Machine (VM), it becomes possible to modify 
various aspects of the Cache configuration during runtime. 

One such configurable parameter is the storage capacity, 
which includes both memory and disk space. As the workload 
increases and the Cache approaches its capacity limit, it may 
become necessary to adjust the available storage resources to 
accommodate additional data. This can be achieved by 
dynamically increasing the memory allocation or expanding 
the disk space assigned to the Cache VM. 

In addition to storage capacity, other parameters such as 
eviction policies can also be tuned. The eviction policy 
determines which content items are evicted from the Cache 
when it reaches its capacity limit. By adjusting the eviction 
policy, the Cache manager can prioritize certain content or 
employ different strategies to optimize Cache utilization and 
improve hit rates. 

When the Cache becomes saturated and the eviction rate 
surpasses a predefined threshold, the Cache manager can take 
proactive measures to address the situation. This may involve 
automatically attaching a new VM to distribute the caching 
load, increasing the available memory to accommodate more 
content in the M1 Cache, or modifying the eviction policy to 
better manage the Cache's content. 

The ability to make such adjustments dynamically (on-the-
fly) and in a dynamic manner allows the Cache instance to 
adapt to varying workloads and optimize its performance in 
real time. This flexibility ensures that the Cache can 
efficiently handle increasing demands and effectively utilize 
available resources, ultimately enhancing the overall 
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efficiency and responsiveness of the caching system. 

E. Cache Policy Management 

Designing a system that can cater to various business 
needs and network traffic patterns requires careful 
consideration of policy management. Different organizations 
and network environments may have specific requirements, 
priorities, and constraints that need to be taken into account. 
Therefore, the system project incorporates design strategies to 
enable efficient content delivery while also accommodating 
complex real-world policies. 

Policy management encompasses various aspects, 
including caching policies, eviction policies, load balancing 
policies, content placement policies, and more. These policies 
define how the system operates, makes decisions, and 
prioritizes tasks. By incorporating flexibility in policy 
management, the system can be customized and tailored to 
meet specific requirements. 

One important design strategy is to provide configurable 
parameters and APIs that allow administrators or users to 
define and modify policies according to their needs. This 
flexibility empowers organizations to adapt the system to their 
unique business rules and network traffic patterns. For 
example, administrators can define caching policies based on 
content popularity, user preferences, or other relevant factors. 

Furthermore, the system project may offer a range of pre-
defined policy templates or algorithms that serve as a starting 
point for administrators to choose from. These templates can 
be based on industry best practices or research findings, 
providing guidance for policy selection. Administrators can 
then fine-tune and customize these templates to align with 
their specific requirements. 

Additionally, the system may provide monitoring and 
analytics capabilities to gather data on network traffic, content 
usage patterns, performance metrics, and other relevant 
information. This data can be used to evaluate the 
effectiveness of existing policies and make informed decisions 
for policy adjustments or optimizations. 

By considering policy management as an integral part of 
the system design, the project aimed to provide a flexible and 
adaptable solution that can cater to diverse business needs and 
network scenarios. This approach acknowledges that different 
organizations may have unique policies and requirements, and 
it offers the means to configure and manage these policies 
effectively to achieve optimum performance and content 
delivery outcomes. 

The policy management function being performed on the 
Proxy component is a logical and efficient choice. As the 
decision-maker responsible for managing a set of caching 
instances, the Proxy is well-positioned to handle policy 
management tasks. Since all requests from a subset of network 
nodes pass through the Proxy, it has the necessary visibility 
and control to implement and enforce caching policies 
effectively. 

By extending the Proxy's content inspection capabilities, it 
becomes possible to deeply analyse the content's data and 
incorporate manageable aspects into the policy management 

process. This allows the Proxy to make intelligent decisions 
about which content should be cached based on specific 
criteria or conditions. 

In the current stage of proposal development and 
experimentation, the system has addressed five caching 
policies to provide adaptability to different workloads 
commonly encountered in practice: 

1) Cache everything: This policy implies caching all 

content without any specific filtering or criteria. It ensures that 

all requested content is stored in the Cache for future retrieval. 

2) Cache only content whose name matches any given 

regular expression set: This policy allows administrators to 

define a set of regular expressions to match content names. 

Only content with names that match these expressions will be 

cached, while others will be bypassed. 

3) Cache only content whose size matches certain file 

criteria: This policy focuses on caching content based on their 

file size. Administrators can define specific criteria (e.g., 

minimum or maximum file size) to determine which content 

should be cached. 

4) Cache only content served by a specific set of target 

domains: This policy restricts caching to content served by 

designated domains. Administrators can specify a list of target 

domains, and only content from these domains will be eligible 

for caching. 

5) Cache-only content of a given type (audio, video, etc.): 

This policy enables selective caching based on content types. 

Administrators can specify the types of content (e.g., audio, 

video, images) that should be cached, while excluding others. 

The system utilizes a pipeline processing approach to 
handle multiple sets of distinct policies in an efficient manner. 
This approach allows the policies to be applied in a 
combinatorial fashion, starting from the most restrictive to the 
least restrictive that serves as a set of policy filters to derive an 
optimal management solution. 

When a request reaches the Proxy, it undergoes a deep 
inspection phase to gather relevant information about the 
content. Following this, the request is processed through the 
policy pipeline, which consists of sequentially applying the 
defined policies to determine whether the content should be 
cached or not. 

The policy pipeline filters the requests based on the 
defined rules, allowing or denying caching of the requested 
content. If a request is denied by any policy rule in the 
pipeline, the Proxy sends a forward command to the Cache 
instance without expecting Cache confirmation or 
acknowledgment. In this case, the content will have a flag 
indicating that it cannot be cached by that specific Cache 
instance. 

The algorithm presented in Algorithm 2 serves as an 
example of how the policy pipeline operates for Caching, 
determining the caching behaviour based on the policies: 

1) Initialize the request 

2) Perform deep inspection on the request 
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3) Set caching_allowed = True 

4) For each policy in the policy pipeline: a. Apply the 

policy rule to the request b. If the policy denies caching: - Set 

caching_allowed = False - Break the pipeline loop 

5) If caching_allowed is True: a. Forward the request to 

the closest Cache instance to the user b. Expect Cache 

confirmation/acknowledgment 

6) If caching_allowed is False: a. Send a forward 

command to the Cache instance b. Set the content's 

“cacheability” flag to indicate no caching 

By processing requests through this policy pipeline, the 
system can effectively filter and determine the caching 
behaviour based on the defined policies. The pipeline 
approach allows for flexible and customizable policy 
management, enabling administrators to derive an optimal 
caching solution based on their specific requirements and 
policies. 

In some cases, certain requests cannot enter the processing 
pipeline until they have been served by the originating server. 
For example, in HTTP requests, the requester may allow the 
receipt of both text and video responses, but the actual 
response will determine the content type by inspecting the 
ContentType header. Similarly, the content's size may not be 
known until the response has been completely received. 

In such cases, the same processing pipeline can be applied 
at the Cache instances, but only in specific scenarios where 
the request can be fully inspected and the necessary 
information is available. The Cache instances can run the 
policy pipeline to determine the caching behaviour based on 
the received response. 

It's important to note that if the Proxy's flag command 
allows caching, it prevents the Cache from overriding any 
previous decision made by the Proxy. This ensures that the 
caching behaviour determined by the Proxy is maintained and 
not altered by the Cache instances. 

By allowing the processing pipeline to run at both the 
Proxy and Cache instances, the system can ensure consistent 
caching decisions and policies across the network, taking into 
account the specific characteristics and information available 
at each stage of the request-response cycle. 

  Algorithm 2: Policy processing method  

Data: The content request cRqst; and a set of filters 

pol Fltr[] 

Result: 1 if the content should be cached, 0 otherwise 

1 foreach p in polFltr[] do 

2 if p(cRqst) == 0 then 

3 return 0; 

4 end 

5 end 
6 return 1; 

  

F. System Scalability 

Scalability is a crucial aspect of the CDCA architectural 
system, and it involves the SDN Controller, proxies, and 
caches. To ensure scalability and address availability 

concerns, the architecture allows for the deployment of new 
instances of these components in the network on the fly. One 
key factor in achieving scalability is the use of a stateless 
OpenFlow control. This enables simple load balancing across 
multiple Controller devices, ensuring that the control plane 
can handle increasing demands and distribute the workload 
effectively [9]. By distributing the control plane functionality, 
scalability and redundancy are improved, as multiple 
controllers can handle the control tasks in a distributed 
manner. In the context of SD-ICN, scalability becomes an 
even more significant concern due to the introduction of in-
network caching and content-based communication. To 
address the control plane scalability challenge, Gao et al. 
propose the Scalable Area-based Hierarchical Architecture 
(SAHA) [25]. SAHA is designed to handle the control plane 
scalability problem specific to SD-ICN environments and 
provides a hierarchical architecture that enables efficient 
management and scalability. 

Several distributed architectures have been CDCA to 
enhance OpenFlow scalability and redundancy. Examples 
include Disco [26], ElastiCon [27], and Onos [28]. These 
architectures aim to distribute control plane functionality, 
improve scalability, and provide redundancy mechanisms to 
ensure high availability. 

By leveraging these scalable and distributed architectures, 
the CDCA system can handle increasing demands, distribute 
control tasks effectively, and provide redundancy to ensure 
system availability. This enables the system to accommodate a 
growing number of users, requests, and caching instances 
while maintaining efficient control plane operations. 

Analyzing the Proxy design, it is possible to notice that its 
main idea is to simply forward the request to the appropriate 
Cache, thus it relies on the DHT index to get all information it 
needs about the caching state, which is spread over all Proxy 
instances of the network topology. The most costly operation 
that the Proxy does (determine where content was previously 
cached) basically relies on a DHT lookup operation, which is 
the operation that can constrain the Proxy scalability. Since the 
chosen DHT implementation is in conformance with Chord 
[29], a lookup operation needs just O(logN) messages to find 
any key in the table and O(log2N) messages to update any key, 

where N is the number of proxies deployed in the network. 
While the Proxy relies on a DHT to find the appropriate Cache 
to forward requests, the Cache itself is a simple solution that 
only relies on a Hash Table to look up cached contents locally, 
so all its operations require O(1) time. The main concern 
about the Cache is simply its memory capacity, which 
obviously will limit the amount of data that can be stored in 
that network node. 

Along with the individual characteristics of each 
component, the overall architecture is also important. The 
decision of using a microservice architectural pattern was 
furthermore taken based on the scalability opportunities that 
such design offers. Many modern systems built incloud 
environments take this same direction when scalability is a 
major nonfunctional requirement. The main characteristic of 
microservices comes from its own definition, which states that 
a microservice should do one thing, and do it well. Such an 
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idea allows that a system with multiple functional components 
can be developed, tested and deployed separately. It makes 
easy as operational actions that must be taken in response to 
business and network requirements. The CDCA solution has 
these characteristics, allowing, for instance; the number of 
proxies, caches, or controllers can be changed over time 
independently of each other to satisfy any demand. 

The CDCA architecture has been designed with flexibility 
in mind, and considering how the architecture’s components 
could be used and reused in real-world production provider 
networks. The architecture considers the business needs, 
the technical issues, and the most important constraints 
that concern network providers on a daily basis. As 
previously mentioned, the idea to use SDN and NFV brings 
several deployment possibilities, and the architecture has 
been designed to accommodate these different deployment 
possibilities. The network administrator can deploy the 
system according to the exact business and technical needs. 
The idea is to create autonomous islands responsible for 
handling the in-network content caching in a specific network 
segment/domain. These islands may contain several Cache 
instances and few Proxy instances, each of them operating 
independently, yet sharing the same data content across the 
DHT index at the proxies. The network segment/domain could 
be composed of any arbitrary set of users and/or network 
devices, each of them sharing common features, like 
geographical region, traffic patterns, etc. 

V. RESULT ANALYSIS OF THE CDCA SYSTEM 

The experiments have been conducted to evaluate the 
effectiveness of the CDCA architecture and prototype 
operational system. By conducting these experiments, one can 
gain valuable insights into the performance, scalability, and 
feasibility of deploying the system in real-time production 
networks. 

Evaluating the system in a realistic environment helps 
identify any potential challenges, bottlenecks, or areas for 
improvement. It also allows you to gather empirical data on 
the system's performance, such as response times, caching 
efficiency, and resource utilization. By conducting 
experiments and gathering insights, one can refine and 
optimize the CDCA architecture, ensuring that it meets the 
requirements and expectations of real-world deployment 
scenarios. Additionally, sharing the results of these 
experiments and promoting further research and development 
in this subject area can contribute to the advancement of the 
field and drive innovation in content delivery networks 
beyond today’s technical achievements. 

In all experiments, the CDCA solution is compared against 
a legacy network, i.e., a traditional Internet environment where 
the content is delivered directly from the content server to the 
user. 

The main objective of the experiment is to evaluate the 
effectiveness of the users, considering the network provider 
and the content provider resources. To this extent, the first 
experiment aims to analyze how long a set of users would 
wait to retrieve arbitrary contents with different chunk sizes 
from an external server. The second experiment aims to verify 

how many data packets and bytes are exchanged within the 
network provider’s infrastructure when requests for contents 
with distinct sizes are performed by several users. Finally, the 
third experiment checks the throughput at the content 
provider’s server at different hit rates and Cache storage 
capacities when requests for content with distinct sizes are 
performed by many users. 

A. Experimental Environment Evaluation 

The evaluation of the prototype using an emulation 
methodology provides a controlled and reproducible 
environment to assess the performance and behavior of the 
CDCA architecture. Mininet, a virtualized network platform, 
was chosen as the basis for the evaluation, offering the ability 
to create interconnected virtual devices such as hosts, 
switches, and controllers [30]. 

The evaluation scenario of the topology experiments was 
implemented within a c3.2xlarge Amazon EC2 VM, which 
provided sufficient resources including 8 virtual CPUs, 15GB 
of RAM, and 2 x 80GB of SSD storage. The virtualized 
devices in Mininet communicated with each other via virtual 
interfaces, enabling the execution of real protocol stacks in a 
virtual network. 

The network topology used in the experiment is composed 
of one content server, one SDN Controller and six islands with 
three users each as shown in Fig. 3. The network driver and 
switching delay considered in Mininet environment are not 
shown. The latency stated in the figure is only the fiber 
propagation delay. 

To control the traffic flow in the network, an OpenFlow 
Controller was employed. The Floodlight OpenFlow 
Controller was selected for its simplicity and development 
flexibility, which facilitated the implementation and 
management of the network environment [31]. The evaluation 
took into account the latency of a 1 Gbps Ethernet board 
driver (100 µs) and the switching latency in the Linux Open 
vSwitch. These latency values were set to be greater than 
those typically found in real network infrastructures to ensure 
the worst case scenario for evaluation purposes of the results. 

The flexibility of Mininet allowed configuring parameters 
such as link bandwidth and delaying strategies, enabling the 
emulation of various network conditions and scenarios similar 
to production networks. This flexibility enhanced the accuracy 
and applicability of the evaluation results. 

It is worth mentioning that the evaluation utilized 
OpenFlow version 1.0, as it was deemed sufficient for 
assessing the CDCA architecture. Subsequent versions of 
OpenFlow did not offer any new features or fields that would 
significantly impact the evaluation of the proposal. 

By conducting the evaluation in this controlled 
environment, the researchers were able to gather data on the 
performance, scalability, and feasibility of the prototype. 
These insights help validate the effectiveness of the CDCA 
architecture and provide valuable information for further 
refinement and improvement. It has allowed for a 
comprehensive assessment of the CDCA architecture's 
capabilities in a realistic network setting. 
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Fig. 3. Evaluation topology of the experiment. 

The experiment involved the initiation of multiple 
applications running over HTTP, encompassing a variety of 
content types ranging from plain text websites to multimedia 
video streams. The content response chunk sizes were varied 
in the range of 10 to 3200 kilobytes. 

The methodology employed in the experiment drew 
inspiration from the work of Augustin et al. [32], who 
extensively analysed the bandwidth usage of Web 2.0 
applications. By adopting a similar approach, the experiment 
aimed to evaluate the CDCA architecture's ability to handle a 
diverse range of applications and their associated bandwidth 
requirements. This experimental method was selected because 
it demonstrated success in addressing a wide spectrum of 
applications, including email and on-demand video streams. 
This approach also permitted gathering meaningful statistics 
and insights into the performance and efficiency of the CDCA 
architecture in handling different types of content and 
application scenarios. It also allowed conducting experiments 
with various content response chunk sizes and a diverse set of 
applications to assess the scalability, efficiency, and 
effectiveness of the CDCA architecture in accommodating 
different bandwidth demands and traffic patterns as well as 
providing valuable insights into its performance and potential 
benefits in practical deployment scenarios. 

 In the experiment, each user was implemented in Java 
using Apache's HTTP Client library to perform HTTP 
requests. Each user was single-threaded, and all users 
concurrently sent their requests. 

To simulate realistic user behaviour, the Cache hit rate was 
set at 70%, meaning that 70% of the requests made by the 
users were expected to be found in the Cache and result in 
Cache hits. The CDN’s Cache hit rate is variable and depends 
on the content and user profile. The literature typically regard 
CDN’s hit rate estimate to be in the range from 60% to 90%, 
so an intermediate value was used. As we used emulation, the 
chunks were randomly generated and the client’s hit rate was 

set to 70%. 

To optimize network resource utilization, each client used 
HTTP pipelining, which allows multiple requests to be sent 
over a single TCP connection without waiting for individual 
responses. This approach maximizes the use of network 
capacity by reducing the overhead of opening and closing 
TCP connections for each request. Each client was configured 
to have a maximum of 10 pipelined requests without 
responses, meaning that a client could have several pending 
requests in transit simultaneously, even though each client was 
single-threaded. 

The perceived delay experienced by users was measured as 
a roundtrip time, starting from the moment a user sent an 
HTTP request until the corresponding response was received 
by the same user. This metric captured the overall time 
required for a user to receive a response and reflected the 
user's perceived delay in accessing the requested content. 

To gather statistics on bytes and data packets, the 
OpenFlow Controller was utilized. After each experiment 
round, the OpenFlow Controller obtained the counter values 
for each port of the OpenFlow switches through StatsRequest 
messages [33]. This allowed collection of information on the 
amount of data transmitted and the number of packets 
exchanged within the network under realistic conditions. This 
approach provided insights into the system's ability to handle 
concurrent user requests, optimize network resources, and 
deliver content with reduced perceived delay. 

In the first experiment, caches with a capacity of 1GB 
were used. This means that each Cache instance had the 
ability to store up to 1GB of content. The experiment aimed to 
evaluate the system's performance and effectiveness with this 
limited Cache capacity. 

The second experiment involved two Cache instances, 
each with a capacity of 1GB. This setup allowed for a total 
Cache capacity of 2GB. By increasing the number of Cache 
instances, the system aimed to assess the impact of distributed 
caching on performance and content availability. 

In the third experiment, Cache capacities varied from 2GB 
to 6GB. This range of capacities allowed the researchers to 
investigate the scalability and performance of the system as 
the Cache capacity increased. The experiment aimed to 
understand how increasing Cache capacity influenced Cache 
hit rates, perceived delay, and overall system efficiency. 

In all three experiments, the caches were configured to use 
the Least Frequently Used (LFU) eviction policy. LFU is a 
Cache replacement policy that selects the least frequently used 
content for eviction when the Cache reaches its capacity limit. 
This policy is based on the assumption that content popularity 
is a significant factor in Cache usage, and frequently accessed 
content is more likely to be accessed again in the future. 

Additionally, the caches in these experiments used an in-
memory approach, meaning that the content was stored in the 
Cache's memory rather than on disk. This allowed for faster 
access times but limited the overall storage capacity compared 
to using disk-based storage. 

The decision to use an LFU eviction policy and an in-
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memory approach was based on previous research by Famaey 
et al. [34], which highlighted the effectiveness of popularity-
based Cache replacement strategies for Video-on-Demand 
(VoD) services. Adopting LFU and an in-memory approach, 
allowed them to align the experiments with existing literature 
for comparison purposes and leverage the benefits of these 
strategies in their system. 

B. Experimental Results 

In the first experiment, the user's average delay when 
requesting content from a server was evaluated. Each 
experiment was executed 10 times with different chunk sizes 
and hit rate of 70%, showing overall results of an average of 
95% confidence interval as shown in Fig. 4. It demonstrates 
the effectiveness of the CDCA architecture in improving the 
user's delay perception. 

The graph illustrates that the CDCA architecture led to a 
significant improvement in the user's delay, regardless of the 
content's size. On average, the delay was reduced by nearly 
75% compared to traditional approaches. This improvement 
indicates that the CDCA architecture effectively optimizes 
content delivery and reduces the perceived delay from the 
user's perspective. 

Furthermore, the result for 3200 kilobytes of contents 
showed an even higher improvement of almost 80%. This 
suggests that the CDCA solution not only enhances the user's 
delay but also reduces network traffic. By utilizing caching 
and efficient content delivery mechanisms, the CDCA 
architecture minimizes the need for repeated content requests, 
leading to reduced network congestion and improved overall 
performance. 

These findings support the effectiveness of the CDCA 
architecture in improving user experience by reducing delay 
and optimizing content delivery, irrespective of the content's 
size. 

 

Fig. 4. User’s observed delay with responses with different chunk sizes. 

Fig. 5 displays the number of bytes transferred after the 
execution of the second experiment of the sum total of the 
number of bytes transferred through all switches at each 
network interface within the network topology. It compares 
the CDCA solution against traditional approaches. Both 

values, for all content sizes, show a reduction in the number of 
bytes transferred when using the CDCA solution. This 
reduction can be attributed to the architecture's ability to 
deliver content closer to the users through caching. By caching 
content in proximity to the users, the need to transfer the same 
content repeatedly over the network is minimized. This result 
in a more efficient utilization of network resources and a 
reduction in the overall data transferred. 

 

Fig. 5. Sum total of the number of bytes transferred through all switches. 

The results show that the CDCA architecture effectively 
reduces the amount of data transferred, leading to more 
efficient network resource utilization and improved Quality of 
Experience (QoE) for users by reducing delay, as observed in 
the previous experiment, but also optimizes the use of network 
resources. The results highlight the positive impact of the 
CDCA architecture by minimizing data transfer and efficiently 
delivering content, the CDCA solution helps networks become 
more effective, ultimately reducing operational costs 
associated with bandwidth usage. 

Fig. 6 and Fig. 7 show the results of the third 
experiment respectively.  

From Fig. 6 it can be observed that operating with 2 caches 
storing 1GB of data the Cache hit rates increases and the 
throughput at the server decreases. This trend indicates that 
the CDCA architecture effectively reduces the number of 
requests which reaches the destination server as the Cache hit 
rate increases. This reduction in server requests is independent 
of the chunk size of the content. The results demonstrate that 
the caching mechanism of the CDCA architecture successfully 
offloads traffic from the server, improving its throughput. 

Fig. 7 focuses on the influence of Cache capacity on server 
throughput at different Cache hit rates with response sizes of 
3200 kilobytes. The graph shows that Cache capacity plays a 
significant role in the server's throughput, particularly at 
higher Cache hit rates. For example, at a hit rate of 40%, there 
is a noticeable difference of around 30 Mb/sec in server 
throughput when the Cache capacity increases by just 4GB. 
This difference becomes even more significant, reaching 100 
Mb/sec, as the hit rates increase to 80%. These findings 
highlight the importance of Cache capacity in effectively 
reducing the load on the server and improving its throughput. 
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Fig. 6. Server throughput at different Cache hit rates and response sizes. 

With a larger Cache capacity, more content can be stored 
and served directly from the Cache, resulting in a reduced 
burden on the server. As a result, the CDCA architecture 
demonstrates its ability to alleviate the server's load and 
improve its performance, especially when higher Cache hit 
rates are achieved. The CDCA architecture successfully 
compels caching to offload traffic from the server and 
optimize its performance, leading to more efficient content 
delivery and enhanced network scalability. 

 

Fig. 7. Server throughput with different Cache hit rates and capacities. 

The consistent improvement patterns observed in both 
users’ QoE metrics and network metrics, regardless of the 
content size, are indeed interesting findings. The CDCA 
solution, by caching content near users at high speeds, 
effectively reduces transmission time and improves overall 
performance, regardless of the size of the content being 
delivered. 

This result suggests that the CDCA architecture efficiently 
utilizes caching mechanisms to deliver content to users, 
irrespective of the content's size. The proximity of the cached 
content to the users, combined with the optimized delivery 
process, minimizes the impact of content size on transmission 
time. Consequently, users experience similar levels of 

improvement in QoE metrics, such as reduced delay and 
improved perceived performance, regardless of whether they 
are accessing small or large content. 

Furthermore, improvements were also observed regarding 
server throughput and data transfer, reinforcing the 
effectiveness and validation of the CDCA architectural 
solution. By offloading traffic from the server and optimizing 
content delivery through caching, the architecture efficiently 
utilizes network resources, leading to reduced server load, 
decreased transferred bytes, and improved overall network 
operational efficiency while optimizing network performance 
and resource utilization. 

C. Discussion of the Results 

In all three experiments, we can notice that the CDCA 
architecture has been effective in reducing the user’s perceived 
delay, reducing the network data transfer, and reducing 
the network traffic at the content provider’s server. The 
improvement on the user’s QoE is intrinsically connected to 
the network data transfer reduction since fewer network 
segments need to be traversed in order to serve the content 
requests. As a result, if several requests are being handled by 
the Cache nodes spread over the network, then fewer requests 
need to be forwarded to the external content server, reducing 
the amount of data exchanged. 

Fig. 7 provides valuable insights into the impact of Cache 
capacity on the system's performance. As the Cache capacity 
increases, the hit rate improves, resulting in a higher 
proportion of content being served from the Cache instead of 
the content server. This reduces the load on the server and 
improves overall throughput. Conversely, when the Cache 
capacity is low, frequent evictions occur, leading to more 
requests being forwarded to the content server. This not only 
increases the load on the server but also decreases the overall 
throughput, as observed in the results. 

The findings suggest that the Cache capacity should be 
carefully considered during system deployment. Insufficient 
Cache capacity may result in higher eviction rates and 
increased dependence on the content server, ultimately 
affecting user experience and server performance. It is 
important to allocate an appropriate amount of Cache storage 
to accommodate the expected workload and ensure efficient 
content caching. 

Furthermore, implementing a policy that selectively caches 
specific types of content, such as popular videos or audio, can 
optimize Cache utilization and prevent waste of resources. By 
focusing caching efforts on high-demand content, the Cache 
capacity can be effectively utilized to serve the most 
frequently requested content, enhancing overall performance 
and reducing the strain on the system. 

These insights highlight the importance of careful Cache 
capacity planning and policy management in real-world 
deployments. By considering the workload characteristics, 
content popularity, and resource constraints, ISPs can design 
caching solutions that maximize the benefits of caching while 
efficiently utilizing Cache resources. 

As depicted in Fig. 4 and Fig. 7, bigger content chunk 
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sizes and Cache storage leads to better results, indicating 
that large caches improve the system’s performance. 
Nowadays, storage capacity is not a considerable problem 
since the ever-increasing capacity and decreasing prices of 
RAM and Flash memory provide affordable storage for huge 
capacity data (or files) resulting in superior overall system 
performance. And also, the system performance could be 
influenced by the Cache eviction policy used. 

An initial approach for the ontology taxonomy utilizes four 
categories: (1) Content Type, (2) Content Identification, (3) 
Content Location, and (4) Content Chunk. 

Content Type considers the content media type. There are 
two main categories of multimedia: time-sensitive media, 
e.g., video and audio, and non-time-sensitive media, e.g., 
documents and software. In the CDCA architecture, the time-
sensitive content has to be treated in a different way in order 
to maintain the seamless delivery rate and guarantee the 
user real-time QoE. The video and audio parameters, i.e., 
resolution and CODEC, are used to quantify the required 
media rate in order to set the network provision once the end-
user file is selected, preferably through the ontology search and 
found mechanism. 

Content Identification is used to identify the content name, 
version, date and hash. This information is important for 
checking the content version to ensure that the most updated 
content version is delivered to the end user. 

Finally, the use of multiple SDN controllers, proxies 
and caches, provides scalability by growing infrastructure 
horizontally. The Proxy and Cache implementation using 
a stateless microservice framework helps to meet all the 
scalability requirements. However, further studies will be 
necessary to determine any limitations in a large-scale 
deployment. 

VI. OPEN RESEARCH ISSUES, CHALLENGES AND FUTURE 

R&D DIRECTIONS 

The CDCA architecture provides a transparent Cache 
system to improve the delivery of content objects inside an 
ISP infrastructure. Although outside the scope of this paper, 
there are still some open research issues that need to be 
considered before the CDCA system could be safely and 
practically deployed. 

A. Ontology Issues 

The engine should offer the end-user the ability to 
find any content in a topic-specific manner, within a very short 
response time. In a real-life service production environment, 
it is possible for the network provider to host millions of 
content objects. To find topic-specific content with the correct 
version and date, it is necessary to organize the content index 
in an effective and efficient way, which should be approached 
through the use of some kind of dynamically updating 
knowledge-based ontology and deep machine learning 
techniques [35]. 

Several works have investigated the theory and practice 
of the semantic web and CDCA ontologies to organize the 
content classification [36]. However, most of these proposals 
focused on classifying the content to help the end-user find 

specific information, e.g., sport, business, travel, and so on. 
Nevertheless, in the CDCA solution, this kind of classification 
alone is not very useful because, for resourceful Cache 
management, it is not relevant whether the video is about sport 
or about travel, because the resolution, transmission rate and 
content chunk size are far more critical and significant for the 
optimization, sustainability and scalability. This does not mean 
that the content sought by the end-user is not important, but 
the selected optimum delivery of cached parts is the main 
consideration. The twin objectives of optimal seeking and 
delivery are crucial in formulating ontology. 

Content-Location is important for finding the best 
geographic content distribution location point in order to 
improve the content QoE and the load balancing criteria during 
transmission. 

The Content Chunk defines how the content chunk is 
divided and organized to improve the overall delivery and 
system performance. The content chunk is an atomic particle 
and it is the main element in the design of the CDCA 
architecture. The definition of its length is important to satisfy 
optimum delivery and system performance. 

 In a content-based network, the same content may have 
different names due to various reasons such as alternate 
naming strategies, load balancing, content distribution 
strategies, or user location-based routing. This can result in 
duplicate copies of the same content being stored in caches, 
leading to wastage of memory and storage resources. 

To address this issue and avoid unnecessary hosting and 
caching of duplicate content, a hash mechanism can be 
employed. By calculating a hash value based on the content's 
data, such as using hash functions like MD5 or SHA-1, it 
becomes possible to determine whether multiple requests refer 
to identical content or not. The hash value serves as a unique 
identifier for the content, regardless of its name or location. 

When a request is received, the system can calculate the 
hash value of the requested content and compare it with the 
existing Cache entries. If a matching hash value is found, it 
indicates that the content is already cached, and there is no 
need to store another copy. Instead, the existing cached copy 
can be retrieved and served to the requesting user. 

By using a hash mechanism, the CDCA architecture can 
effectively identify and eliminate duplicate copies of content, 
thereby optimizing memory and storage resources in caches. It 
ensures that only one copy of the content is stored, regardless 
of the different names or variations associated with it due to 
load balancing or other factors. This approach helps in 
reducing storage overhead and improving the overall 
efficiency of the content delivery system. 

B. Optimization Issues 

Although the CDCA architecture shows improvements in 
the response time of content requests and in the reduction 
of traffic from an external content provider, many aspects 
can be improved, as discussed in Section IV-C. We also 
envisage that it is possible to improve the content inspection 
algorithm to optimize searching and the application of a 
load-balancing mechanism. Although the system seems to 
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be scalable, further studies are necessary to determine any 
limitations in a large-scale system. 

As noted earlier, the CDCA architecture utilized 
OpenFlow 1.0 because more recent versions do not offer 
any new field to improve the CDCA system. However, if a 
future version of the OpenFlow protocol implements matches 
in the HTTP Content-Type field, it will be able to forward 
certain specific MIME requests, for example, “video/mp4”, 
direct to the Cache, avoiding the need for a Proxy. Even so, 
the content lookup should be done by the OpenFlow 
Controller instead of the Proxy. The lookup inside the switch 
diverges from the OpenFlow philosophy to maintain 
simplicity. 

The issues mentioned in Section IV-C can be resolved 
by the configurable architecture. The configurable software 
approach means that the network administrator can deploy 
new VMs or adjust VM configuration, i.e., allocate memory 
and disk capacity when needed. This function can be 
accomplished by a cloud management and orchestration 
system. The CDCA prototype provides an open API that 
offers the capacity to change the eviction algorithm on-the-fly. 
The evaluation utilized the Least Frequently Used (LFU) 
eviction algorithm over RAM memory, as described in 
Section IV-D. In future research work it will compare the 
system behavior using various cache policies. 

A critical issue, that should be investigated in the future, is 
the popularity prediction of User Generated Content (UGC). 
This is a valuable tool for content providers and advertisers. 
As the cached content is delivered inside the own ISP, the 
content provider could not get access to the user’s profile. An 
interesting approach is proposed by Figueiredo et al [37]. 

It tackles the popularity prediction trend of a UGC 
object as early as possible to infer the user behavior. The 
results obtained by using YouTube datasets show an 
improvement of 38% in classification effectiveness, compared 
to the baseline approaches. Using this approach, the ISP can 
collect the user’s information and notify the content provider. 

C. Security Issues 

The CDCA system deployment within an ISP opens an 
opportunity with varying degrees of risk for external and 
internal security attacks of various kinds. It is possible that 
the CDCA critical infrastructure is susceptible to Distributed 
Denial of Service (DDoS) attacks affecting server provision 
and slowing down (or completely shutting down) the service, 
thereby frustrating the end user [38]. The distributed and open 
structure of a Cache system and its associated services can 
make it an attractive target for potential cyber-attacks. As 
with any system connected to the Internet, it is important to 
consider security measures to protect against intruders and 
mitigate the risks associated with cyber-attacks. These 
intruders can masquerade and manipulate various types of 
multimedia content, and therefore a supporting set of safety 
measures and security mechanisms and services would be 
needed to prevent intrusions and breaches. This would require 
a versatile, collaborative Intrusion Detection and Prevention 
System (IDPS) which must be flexible enough to guarantee 
smooth optimized streaming throughput flows with near-zero 

(minimum) glitches. 

Given the openness, and transparent nature of the mix-
mode multimedia content delivery caching SDN architecture, 
traditional IDPS mechanisms would be fundamentally 
inefficient and ineffective [39]. In particular, it would be 
extremely difficult to detect intrusions in transparent 
multimedia content, hence preventing subsequent intrusions 
without employing a smart IDPS. It must involve advanced 
machine learning and computational intelligence techniques 
and the use of the five fundamental principles of autonomic 
self-management computing, knowledge base and ontology, 
risk management, fuzzy theory, and advanced artificial 
intelligence techniques [40] to leverage and satisfy the 
detection and prevention securi ty capabili t ies of a 
Cache system. By incorporating these advanced techniques 
and concepts, the Cache system can enhance its ability to 
detect and prevent cyber-attacks, improve threat response 
mechanisms, and optimize overall security operations [41] 
[42]. However, it's important to consider the specific 
requirements and constraints of the Cache system via proper 
risk assessment and adapt these techniques accordingly to 
achieve effective and efficient operational and security 
outcomes. 

HTTP/2 includes encryption as an optional facility. It is 
not mandatory because encryption can result in unnecessary 
jitter and distortion of the smooth viewing flow of videos. 
Many experts consider encryption unfeasible for ordinary 
large run-of-the-mill content delivery of videos. However, 
when and where cryptography is required, we also observe 
other major safety measures (security, privacy, trust, ID 
management, Digital Rights Management (DRM), digital 
blockchaining (virtual currencies), audit, digital forensic, non-
copyediting, copyright infringement, permission to use, 
royalties, payments,  etc.), and in particular issues related to 
the hiding of secret information using steganography will have 
to go beyond HTTP/2 specification. The complexities of these 
sets of safety measures are best accommodated by a 
comprehensive ontology. 

D. Copyright Infringement and Payment Issues 

Another issue of importance and concern is that the CDCA 
architecture considers all content to be public without any 
restriction to distribution, which, however, makes the CDCA 
architecture unsuitable to deliver protected and paid content, 
such as required by some VoDs. Another example would be 
the rights of the content owner or their agent to be paid for 
documentaries, films, or music. Such content should typically 
be encrypted and the VoD provider can provide a temporary 
digital security key to the subscriber to decrypt the content for 
a certain period of time based on a payment scheme and 
without allowing copying of the content for further illegal 
distribution. This can be potentially achieved by activating the 
signature timeout period in conjunction with monitoring if the 
user attempts to copy the content. After this expiry period, 
the key is invariably disallowed, requiring the subscriber to 
renew the key to access the content. Implementing these 
security and protection measures requires careful 
consideration of technical, legal, and business aspects. It 
involves collaboration between content providers, payment 
service providers, DRM vendors, and security experts to 
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design and deploy a comprehensive and effective solution. 
This suggested scenario requires intensive research to fully 
define and design a secure payment mechanism that also 
curtails illegal copying, as well as verify and validate the 
mechanism for business deployment. 

VII. CONCLUSION AND FUTURE WORK 

This research has described a content-based transparent 
caching architecture in SDN. It provides a highly available, 
reliable and scalable caching of named content on SDN-based 
ISP networks, independent of specific underlying applications 
and middleware protocols. The research has also 
demonstrated that the caching mechanisms are driven by 
business policy needs and can be d e p l o y e d  i n  any 
networks, using the NFV approach and the microservice-
based framework architecture.  One notable aspect of the 
CDCA architecture is its support for the HTTP protocol, 
which remains the primary protocol for content delivery over 
the Internet. Rather than replacing HTTP, the system 
complements it by introducing transparent caching 
mechanisms that enhance content delivery and improve QoE 
for users. 

The experimental evaluation conducted in the research 
demonstrates the effectiveness of the CDCA system. It shows 
improvements in user QoE and various QoS network metrics 
related to delivery times and scalability. This validation 
reinforces the benefits of the architecture and its potential to 
enhance content delivery in real-world network scenarios. 

The CDCA architectural system has some important 
outstanding issues that should be addressed in future research 
and development work. At present, there is no effort by 
content providers and related industry players to develop a 
standardized naming scheme for content, which is crucial for 
efficient and optimum search and delivery of content, as well 
as for avoiding duplication of names and content hosted all 
throughout the provider network. In addition, the new naming 
scheme should avoid the same content with different names 
being downloaded multiple times. It is important for content 
providers and industry players to recognize the significance of 
a standardized naming scheme and work toward its 
development and adoption. 

In future research work, the intent is to address many of 
the issues mentioned in the previous section. In addition, 
further research work is planned to perform analyses of 
several other video content providers, other than YouTube, to 
adapt the CDCA solution, if necessary. Another critical 
issue, which will b e  investigated, is the popularity prediction 
of UGC, which is a valuable tool for content providers and 
advertisers for revenue generation. 

Finally, another area for future work involves system 
security. In the CDCA architecture, the ISP acts as a content 
provider, and it could suffer external and internal DDoS 
attacks, affecting servers slowing/shutting down the service 
and frustrating users. Further, multimedia content could be 
manipulated for illegal cybercrime activities, which should be 
avoided through the proper implementation of safety 
measures. Traditional IDPS is largely inefficient for the CDCA 
environment due to its architecture and virtualization. A new 

IDPS paradigm should be designed to achieve a high level of 
security health in the service provider network. In addition, we 
have highlighted issues related to secure payment and royalty 
awarding schemes for content that is primarily declared as 
public but that requires payment to intellectual property 
owners or their agents. Property rights issues also involve 
various safety measures. These system security challenges 
require creative solutions and therefore offer opportunities for 
further research. 
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