
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

847 | P a g e

www.ijacsa.thesai.org

CDCA: Transparent Cache Architecture to Improve

Content Delivery by Internet Service Providers

Alwi M Bamhdi

Umm Al-Qura University, College of Computing, Al-Qunfudah, KSA

Abstract—The popularity of on-demand multimedia such as

video streaming services has been rapidly increasing the overall

Internet traffic volume in the world. As of the beginning of 2023,

almost 82% of this global Internet traffic came from video

transmission through on-demand online services, trending

towards changing the Internet paradigm from location-based to

content-based, culminating in a new paradigm of Information-

Centric Networking (ICN). ICN focuses on content distribution

based on name rather than location, allowing Internet Service

Providers (ISP) to implement local content caching systems for

faster delivery and reduced transmission delays and

unnoticeable jitter or distortions. ICN can be implemented over

a Software-Defined Networking (SDN) infrastructure. SDN

enables flexible programming and implementation of

forwarding packet rules within a network domain seamlessly.

This paper proposes a hybrid architecture that combines ICN

and SDN to create a transparent in-network caching system for

content distribution over the traditional IP network. The

architecture aims to improve the performance of Video-on-

Demand (VoD) services for customers while efficiently utilizing

network provider resources. A prototype called CDCA was

developed and evaluated in a Mininet emulation environment.

The results of the evaluation demonstrate that the CDCA hybrid

architecture to create a caching system for content distribution

enhances VoD service performance and optimizes network

resource utilization.

Keywords—Content caching; content delivery network; content

search algorithm; information-centric networking; multimedia;

network function virtualization; software defined networks

I. INTRODUCTION

The integration of the Web, ICN, SDN and NFV,
juxtaposed the archaic Internet. By combining these
technologies, there is the potential to enable seamless
placement and retrieval of multimedia content by multiple
users. The integration of these technologies allows internet
network service providers to leverage local caching
mechanisms to deliver content to multiple users
simultaneously. This unique CDCA approach of a system
represents a novel and innovative way of optimizing content
distribution and improving the overall user experience. The
specific details and benefits of this novel approach are further
elucidated in this paper.

A. Summary of the CDCA Solution

This paper presents a content delivery-based caching
framework architecture system called CDCA that typically
resides inside network providers’ premises, i.e., Internet
Service Providers (ISP), using SDN, which is completely
transparent for users, content provider applications and

network providers. Transparency is applied to all actors: the
user, the content provider and the ISP network, which
neither needs to modify any application and network
equipment. ..In essence, the SDN/NFV module within the
CDCA architecture permits forwarding data packets to the
content cache or to the content source server transparently.

The key features and advantages of the CDCA architecture
provide for in-network caching. The architecture is applicable
to any application communication protocol that follows the
client-server model and identifies content using unique logical
names, such as HTTP URLs. The combination of the SDN
control plane, Proxy, and Cache components enables the
orchestration of a distributed caching framework. CDCA
ensures that content is transparently delivered as close to the
user as possible without any modifications to communication
protocols or user clients.

CDCA is designed with horizontal scalability and high
manageability in mind, adopting the principles of the
microservice architectural pattern style that structures an
application as a collection of services. This design approach
provides elevated deployment flexibility and high levels of
availability, regardless of the network's operational state.
Content management within the architecture is driven by rule-
based policies, facilitated by distributed decision-making
mechanisms and multiple caches distributed throughout the
network. These components interact with the SDN centralized
control plane to ensure efficient content delivery. Although
this topic is relevant and interesting and outside the scope of
this paper, it will be addressed in-depth in future research
works.

CDCA is designed to be deployed and supported by the
ISP premises on the client side. In CDN architecture, the
service must be contracted and paid for by the content
provider. And also, if the CDN server is not located within the
ISP network, it will be not worth it, since it will have to pay
for the high bandwidth requested by multiple users’ content
downloads.

B. Rest of the Paper

The CDCA architecture is distinct from a traditional
Content Delivery Network (CDN) infrastructure. They are not
comparable. The unique aspects and differences of the CDCA
solution are elaborated in Section IV.

The rest of the paper is structured as follows. Section II
covers the background to the concepts and issues related to
the topic of this paper. Section III presents the literature
review of related works. Section IV presents the CDCA

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

848 | P a g e

www.ijacsa.thesai.org

architecture and in Section V the evaluation and results
from the experiments are presented. Section VI discusses
some important open issues and challenges to consider for
future research related to the CDCA architecture and its
content delivery operations, and finally, Section VII concludes
the paper.

II. BACKGROUND

It is a remarkable transformation of the Internet from its
humble beginnings as a point-to-point communication
network for users to becoming a ubiquitous and essential
infrastructure for global everyday communication. Over its
nearly 54-year history, commencing as ARPANET, the
Internet has evolved and gained popularity, becoming a highly
successful and effective communication system that continues
to rapidly advance. With the increasing volume of traffic and
the complexity of modern services such as file sharing, VoIP,
social networking, e-commerce, online gaming, and
multimedia streaming, the inadequacies of the Internet's
original design have become apparent. The architecture of the
Internet has undergone numerous amendments to
accommodate these evolving needs, resulting in a
progressively more complex system at each stage of its
development. This growing complexity poses challenges in
terms of implementation, maintenance, and management of
new networking services and applications. The costs
associated with these tasks continue to rise as the Internet
becomes more sophisticated and intricate. However,
innovation in information communication and internetworking
philosophies helps to mitigate the phenomenon of ossification
[1], whilst acknowledging the challenges posed by the
limitations of the original design and recognizing the ongoing
efforts to innovate and adapt to meet the demands of modern
communication and networking needs.

The evolving nature of Internet applications, particularly
the significant growth in video streaming services, including
both live broadcasts and on-demand content is increasing
exponentially. According to Cisco, it has seen a massive
buildup of Internet traffic in the order of 4.8 zettabytes during
2022, which is over three times the 2017 rate, led by a
combination of increased use of cloud computing, IoT device
traffic, video viewing, and the sheer number of new users
coming onboard every day. The video traffic constituted 82%
of the total Internet traffic in 2021, a substantial increase from
over 70% in 2017, excluding video exchanged through Peer-
to-Peer (P2P) file sharing [2]. The forecast indicates that
Internet video traffic will grow at a rate of more than 31% per
year, while online gaming, which is part of the audio/video
mix, is expected to grow at a rate of over 50% plus per year
until 2025. Currently, most content distribution platforms
handle content requests individually, resulting in a unicast
delivery paradigm where each user receives content from a
Content Delivery Network (CDN) infrastructure separately
[43]. However, this approach overlooks the fact that much of
the content requested by users is identical to content requested
by others just moments ago. As a result, a substantial amount
of redundant content is delivered repeatedly over the same
network segment, leading to unnecessary strain on service
providers' transmission capacity and bandwidth. This
inefficiency becomes more significant as the number of users

and unicast content continues to grow. Consequently, new
approaches are needed to improve and optimize the efficiency
of content distribution.

The ongoing modifications and improvements to the
Internet's architecture to accommodate new applications
demand faster infrastructure and versatile middleware.
However, the modern web still faces many challenges due to
incompatibilities inherited from the original design of the
Internet. The shift in user behaviour is highlighted, with
Internet users now seeking specific content (“what”) rather
than focusing on the location of that content (“where”). This
shift necessitates more than simple unicast communication for
modern web applications [44]. As a result, network
architectures need to be smarter and more flexible to support
the exponential growth resulting from the dynamic nature of
multimedia content availability and online delivery. This trend
is expected to persist in the foreseeable future. To emphasize
the magnitude of this growth, a comparison between the
content data produced in 2008 amounted to 500 exabytes
compared to the present-day zettabyte scale [3]. This example
illustrates the substantial increase in content generation and
consumption over the years. The need for smarter and more
flexible network architectures to support the dynamic nature
of content availability and delivery on the modern web is a
must with the significant growth in content data generation
and consumption.

In recent years, some proposals tried to change the current
end-to-end IP packet networking and web search engines to
innovate enhanced content-based network architecture, called
Information-Centric Networking (ICN) [4]. ICN is based on
the principle that the Internet should prioritize the data needed
by users rather than focusing on the physical location from
which the data can be retrieved. In contrast, the current
Internet architecture is host-based and was initially designed
to facilitate communication between a limited number of fixed
computers and geographically dispersed users. Although ICN
offers significant advantages, implementing it as a
replacement for the existing Internet backbone would require a
radical and impractical overhaul. Consequently, various
research efforts have focused on adapting ICN architectures to
operate within the constraints of the legacy Internet
infrastructure. One approach involves integrating ICN with
Software-Defined Networking (SDN) and the OpenFlow
protocol, allowing for the implementation of ICN concepts
while leveraging the programmability and flexibility of SDN
to make it compatible with the current Internet backbone [5]–
[8].

The concept of a "programmable network" originated as a
result of the SDN principles and architecture. The concept of a
programmable network was initially driven by the
introduction of OpenFlow, an open protocol that enables the
configuration of packet forwarding tables in switches. With
OpenFlow, network users can actively modify these tables,
providing a level of control over the network's behaviour [9].
By utilizing OpenFlow and similar technologies, a
programmable network introduces an abstraction layer for
switches, allowing the separation of the data and control
planes. In this context, the switch functions as a hardware
fabric that primarily focuses on transparently forwarding data.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

849 | P a g e

www.ijacsa.thesai.org

The policy management for handling data content is then
handled by software through the control plane functions and
mechanisms. This decoupling of data and control planes
enables greater flexibility and programmability in network
management and configuration.

Over the last few years, Network Functions Virtualization
(NFV) [10] has shown the most promising results in the
development of advanced computer networking. NFV offers a
new approach to developing network services by utilizing
programmable software and virtualization means. It replaces
traditional proprietary hardware network elements and
appliances that perform various network functions, such as
Network Address Translation (NAT), Intrusion Detection and
Prevention System (IDPS), caching, and more. With NFV,
these network functions are implemented as Virtualized
Network Functions (VNFs) using software and deployed
within Virtual Machines (VMs). This approach enables more
flexible and efficient networking and network service
deployment. By utilizing NFV, network services can be
customized according to specific business needs, allowing for
greater agility in serving the ever-changing demands of
service providers and end-users. Additionally, NFV brings
significant cost savings by eliminating the reliance on
expensive proprietary hardware and enabling more efficient
resource utilization.

III. LITERATURE REVIEW

Ooka et al. propose the OpenFlow-CCN, a system
architecture joining Content-Centric Network (CCN) and
OpenFlow mechanisms to achieve content end-to-end
forwarding [6]. In their proposal, the content names are
mapped to hierarchical structure hash values and the long
prefix matching. In an OpenFlow network, the content packet
is forwarded by a unique IP address based on the content
name hash value. The architecture was evaluated on the
Trema Controller in an OpenFlow network. Their proposal is
quite interesting because it does not impose any modification
to either the OpenFlow protocol or CCN. CDCA does not
require a CCN infrastructure because it uses a traditional IP
network.

Nguyen et al. propose an improvement in CCN caching
strategy that uses SDN [7]. They implement a wrapper
between CCNx software and OpenFlow switch to decode
and hash the content name in CCN messages into parameters
that an OpenFlow switch can forward, e.g., IP address or port
number. They argue that the large naming space offered by
these fields restricts the collision probability between two
different content names. The evaluation shows that the wrapper
does not affect forwarding performance but might have name-
space problems. CDCA does not require a CCN
infrastructure.

Chandra et al., proposed a caching architecture specifically
for HTTP on an SDN infrastructure [11]. They concluded that
while the OpenFlow protocol maintains an abstraction of
control and forwarding planes, it presents challenges when
dealing with ICN because it lacks content abstractions. In
response to this limitation, Chandra et al. proposed an
architecture that utilizes a unique Proxy and multiple caches
distributed across the OpenFlow network. In comparison to

the CDCA solution provided in this paper, it employs the
concept of deploying a Proxy to determine whether content
should be fetched from the Cache or the server and it
introduces a distributed Proxy and Cache architecture to
enhance scalability and resilience. This means that the CDCA
Cache architecture is designed to accommodate scalability and
provide better fault tolerance and resilience.

Georgopoulos et al. presented OpenCache, an in-network
caching system designed specifically for Video-on-Demand
(VoD) applications using OpenFlow technology [12].
OpenCache consists of two main components: the
OpenCache Node (OCN) and the OpenCache Controller
(OCC). The OCC is responsible for determining which videos
should be cached, while the OCN handles the storage
necessary for video caching. The experiments conducted on
OpenCache have demonstrated positive results in terms of
video start-up delay, external link usage, and video quality.
However, it is noted that these experiments were conducted
with a single video client, which may not fully represent the
behaviour and performance of OpenCache in real-world
production networks with multiple user accesses.

The CDCA concept and solution offered in this paper of
finding the Cache that is nearest to the user overcomes the
deficiencies from other comparative approaches in so far as
making Cache decisions based on user requests in an on-
demand fashion, rather than relying solely on operator
decisions.

IV. CDCA: CONTENT DELIVERY CACHE ARCHITECTURE

The CDCA architecture aligns with the SDN principle of
having a centralized control plane, which is responsible for
controlling and directing the forwarding of data packets within
the network. In this architecture, the centralized control plane
is designed to handle cacheable requests that adhere to the
client-server model, similar to the distributed content Cache
architecture embedded inside the provider datacenter [13], but
going one step further by deploying the distributed content
Cache system inside the ISP infrastructure closest to the end-
user, offering better response time and server load-balancing.
By leveraging the capabilities of the centralized control plane,
the architecture enables efficient management of cacheable
requests. The control plane can make decisions regarding
content caching based on various factors, such as user
demand, network conditions, or predefined rules. These
decisions are then communicated to the versatile device
responsible for managing the caching process. Overall, the
architecture combines the benefits of SDN's centralized
control plane with the ability to handle cacheable requests in a
client-server model. This integration allows for effective
management and optimization of caching operations within
the network.

The CDCA operational framework architecture is shown
in Fig. 1. It is based on two fundamental components: the
Proxy and the Cache. The SDN Controller identifies a
potential content flow, such as an HTTP request to a VoD
provider via the destination IP address and TCP port
information. Once identified, the content flow is redirected to
the Proxy component. Within the Proxy, the traffic of interest
(content) is mapped to the content re-director module

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

850 | P a g e

www.ijacsa.thesai.org

responsible for forwarding the content request to an
appropriate Cache instance where the content is stored. The
Cache instance can be located within the same network or
distributed across multiple locations. By redirecting the
content request to the Cache instance, the CDCA aims to
retrieve the content from the Cache instead of fetching it from
the original source, thereby reducing latency and network
traffic. This mechanism improves the overall efficiency of
content delivery by serving frequently requested content from
nearby caches. This approach enables faster and more efficient
content delivery by leveraging caching capabilities within the
network.

Note that the Proxy searches in the DHT to find if the
content is cached, then, forward the requests to the Cache or to
the Content Server. Fig. 1 illustrates the Cache-missed
example shown on the left side, and the successful Cache hit
case shown on the right side.

Fig. 1. CDCA system operational framework architecture.

The CDCA architecture implements an on-demand
caching scheme for video-on-demand (VoD) services. In this
architecture, larger content files can lead to longer transfer
delays and higher processing overhead for caching operations,
such as storing an entire file in the Cache and delivering it to
the user while small files do not need chunking. To overcome
this issue, large content files are divided into smaller parts
called content chunks. Each chunk is handled independently,
allowing for more efficient caching and delivery. This chunk-
based delivery approach is specifically designed to handle the
delivery of content in smaller segments rather than delivering
the entire file at once. All VoD providers analyzed in this
work used chunk-based delivery. This indicates that dividing
content into smaller chunks is a common practice in the
industry, likely due to the advantages it offers in terms of
caching, delivery efficiency, and user experience. By adopting
this chunk-based delivery approach and caching content
chunks on-demand, the CDCA architecture aims to optimize
the delivery of VoD content while minimizing transfer delays
and processing overhead associated with caching operations.

Chunk-based caching [45] offers several advantages over
file-based content caching. By dividing a content file into
smaller chunks, it becomes possible to deliver different
chunks from multiple caches, improving the efficiency of
content delivery. One of the key benefits of chunk-based
caching is increased storage efficiency. Instead of storing and
replacing entire content files, the caching system can focus on

individual chunks. This fine-grained approach allows for
precise caching decisions, reducing the amount of storage
required and improving overall Cache utilization. But the
distribution of chunks within the network becomes a crucial
decision in chunk-based Cache delivery since the placement of
chunks across caches can significantly impact the performance
and effectiveness of the caching system. Optimizing the
distribution of chunks involves considering factors such as
Cache proximity to users, network congestion, and popularity
of specific content chunks. Efficient chunk distribution
strategies typically enhance the caching system's ability to
serve content quickly and reduce network traffic. Techniques
such as content popularity analysis, adaptive caching
algorithms, and dynamic chunk placement are employed to
ensure effective distribution and retrieval of content chunks
from caches. Furthermore, chunk-based caching has many
advantages over file-based content caching. Different chunks
of the same content can be delivered from multiple caches.
Replacing some chunks instead of a whole content file may
increase storage inefficiency. However, careful consideration
must be given to the distribution of chunks within the network
to optimize performance and achieve efficient content
delivery.

In the CDCA architecture, the selection of caches is
determined based on either the shortest path to the content or a
set of custom rule-based policies. The forwarding decision is
made by the Proxy that may receive information from the
network management system and server state. Based on this
information, the Proxy chooses the best Cache instance. For
instance, when a content request is received by the Proxy, it
checks if the requested content is already cached in a Cache
instance. If a Cache hit occurs, meaning that the content is
present in the Cache. This allows for fast and efficient content
delivery without the need to retrieve the content from an
external source. However, if the requested content is not
present in any Cache, resulting in a missed Cache, the Proxy
will then forward the request to the nearest Cache. The closest
Cache is determined based on factors such as network
proximity or predefined routing policies. This Cache, in turn,
will request the content from the external Content Server,
retrieve and Cache the content locally, and finally serve the
user's request. This mechanism ensures that frequently
requested content is cached closer to the users, reducing the
need for content retrieval from remote servers and improving
the overall response time and user experience. By leveraging
caching and intelligent Cache selection, the architecture
minimizes the latency associated with content delivery,
optimizing the use of network resources and enhancing the
efficiency of the system. In summary, the Proxy in the CDCA
architecture determines Cache hits and misses for content
requests. Cache hits allow for direct content delivery, while
Cache misses triggering the retrieval of content from the
closest Cache or the external Content Server, enabling
efficient content caching and delivery to users.

In the CDCA architectural operating scheme, it is possible
for multiple instances of the Proxy to be deployed across the
network infrastructure “world”, where each instance is
responsible for coordinating a “Cache island”, a group of
Cache servers under same management domain. This

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

851 | P a g e

www.ijacsa.thesai.org

distributed deployment allows for efficient content delivery
and load balancing. The SDN Controller plays a crucial role in
the architecture by receiving network state information from
the network management system. Based on this information,
the SDN Controller makes forward decisions, determining the
best Proxy instance to handle a content request. The goal is to
minimize congestion, optimize transfer times, and enhance
throughput by selecting the closest Proxy to the requesting
user. Each Proxy instance is part of a Distributed Hash Table
(DHT) in the overlay network. The DHT network facilitates
the storage and retrieval of content-Cache instance mappings
throughout the entire network. This distributed approach
ensures that the mapping information is accessible and
maintained across the network, enabling efficient Cache
selection and content delivery. The Cache component,
associated with each Proxy instance, is responsible for storing
and serving cacheable objects triggered by any user's request
within the network. When a cacheable object is requested, the
Cache component determines if the object is already stored in
the Cache. If it is present, the content is served directly from
the Cache, minimizing latency. If the object is not in the
Cache, the Cache component retrieves it from the appropriate
source (e.g., external Content Server) and stores it in the
Cache for future requests. By deploying this strategy of
multiple Proxy instances, leveraging SDN-based forward
decision-making, and utilizing a DHT overlay network, the
CDCA architecture optimizes content delivery, reduces
network congestion, and enhances the overall performance of
the system.

The CDCA architecture was designed to accentuate high
level of scalability and manageability at runtime to
accommodate the dynamic nature of network environments.
To achieve this, a logically centralized platform, such as a
distributed SDN Controller system, is employed to provide
scalability and resilience at the SDN layer [14]. While the
specific analysis of the distributed SDN Controller system is
not within the scope of the paper, it serves as a foundational
component for the overall architecture.

Multiple instances of the Proxy and Cache components can
be dynamically added or removed at runtime, facilitated by a
cloud orchestration platform like OpenStack. This allows for
an elastic and flexible solution where the system can adapt to
changing demands and resource requirements. The
management system, which could be integrated with the cloud
orchestration platform, plays a vital role in monitoring the
server's response time and making decisions regarding the
deployment or termination of Proxy and Cache instances.

Similar to cloud management, the management of the
Proxy and Cache instances follows principles of scalability
and flexibility. The system can scale up or down based on the
workload and user demands, ensuring optimal performance
and resource utilization. Cloud management practices can
serve as a reference for managing the Proxy and Cache
components, but further exploration and research in this area
are needed.

Of particular note to address the scalability issues
mentioned in Section II, the CDCA architecture deploys many
Proxy and Cache instances horizontally to assure a desired

response time for any user by taking an integrated distributed
Proxy approach to solve the unique Proxy limitation of the
Chandra et al. proposal [11]. This CDCA approach directive
offers several advantages in utilizing NFV in real-time
network orchestration, particularly in optimizing runtime
processing, transfer times, and scalability. Here are some
benefits of using NFV in this context:

1) Flexibility and agility: NFV enables the virtualization

of network functions, allowing them to be deployed and scaled

as needed. This flexibility enables dynamic resource allocation

and efficient utilization of infrastructure based on the current

workload. It allows for quick deployment and adjustment of

network services, leading to improved agility in responding to

changing network demands.

2) Scalability: NFV provides scalability by allowing

network functions to be dynamically instantiated and scaled

according to the workload. During peak times, when network

traffic is high, additional instances of network functions can

be provisioned to handle the increased load, ensuring smooth

operation and optimal performance. Similarly, during low-

traffic periods, unnecessary instances can be scaled down or

deactivated, saving resources.

3) Resource optimization: NFV allows for efficient

utilization of hardware resources by consolidating multiple

network functions onto virtualized infrastructure. This

consolidation eliminates the need for dedicated hardware for

each network function, leading to cost savings and improved

resource utilization. Additionally, NFV enables the sharing of

resources among different network functions, optimizing

resource usage based on demand.

4) Faster deployment and service innovation: NFV

decouples network functions from proprietary hardware,

allowing them to run on general-purpose servers or cloud

infrastructure. This decoupling simplifies the deployment

process and reduces the time required to introduce new

services or update existing ones. It enables service providers

to rapidly deploy and scale network functions, promoting

faster innovation and time-to-market for new services.

5) Cost efficiency: NFV can result in cost savings by

reducing the need for expensive proprietary hardware

appliances. Instead, virtualized network functions can be run

on standard servers or cloud infrastructure, which are typically

more cost-effective. NFV also enables service providers to

adopt a pay-as-you-grow model, scaling their infrastructure

based on actual demand, thereby optimizing costs.

By leveraging NFV in real-time network orchestration,
service providers can achieve optimum runtime processing,
reduce transfer times, and achieve high scalability, allowing
them to efficiently handle variable network workloads and
provide a better quality of service to their users.

Overall, the CDCA architecture aims to provide a scalable
and manageable solution by exploiting distributed SDN
controllers, dynamic deployment of Proxy and Cache
instances, and integration with cloud orchestration platforms.
Future work can delve deeper into the management aspects,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

852 | P a g e

www.ijacsa.thesai.org

drawing inspiration from cloud management practices to
enhance the efficiency and effectiveness of the system.

Algorithm 1 gives the core logical idea behind the
operational aspects of the CDCA architecture, describing how
the Proxy and Cache instances work together. Both
components have a specific task in the processing of user
requests. The Proxy is responsible for identifying and deciding
where and which requests are going to be cached, while the
Cache is responsible for providing the storage resources in
order to Cache the contents according to the network policy.
The details of the operational aspects of each component are
described in the next subsections.

Algorithm 1: CDCA architecture operation

1 The user triggers a content request;

2 The SDN Controller forwards the request to the closest

Proxy cPrx;

3 cPrx checks its shared index if there is a content copy

under its domain;

4 if there is a content copy then

5 cPrx forwards the request to the Cache cCh

that holds the content copy;

6 cCh delivers the cached content to the user;

7 end

8 else

9 cPrx forwards the request to the closest Cache

cCh;

10 cCh retrieves the content from the original

Content Server;

11 cCh delivers the content to the User;

12 cCh stores the content for next User;

13 cCh notifies cPrx that a new content has

been cached;

14 cPrx updates the index;

15 end

A. Content Forwarding

The dependency on the SDN infrastructure in the CDCA
solution for content dispatching offers several advantages,
particularly in terms of efficiency and transparency. Some key
points related to this dependency:

1) Transparent request forwarding: SDN allows for the

transparent forwarding of content requests to cacheable

content and Proxy instances on the network. By leveraging the

OpenFlow protocol or similar SDN technologies, it becomes

possible to create traffic flows on the switches that map

specific TCP or UDP ports of applications. This enables the

SDN Controller to direct requests to the appropriate Cache or

Proxy without modifying the IP packet header. This

transparency ensures that the communication between clients

and the requested content or Proxy remains seamless and

unaffected.

2) Efficient traffic steering: With the help of SDN, traffic

can be efficiently steered to the desired destinations. By

leveraging the programmability and control capabilities of

SDN, the SDN Controller can dynamically analyse network

conditions, load distribution, and Cache availability to make

intelligent decisions on how to direct traffic. This enables the

system to optimize content delivery by sending requests to

Cache instances or the closest Proxy, minimizing latency and

improving overall network performance.

3) Flexibility and adaptability: The use of SDN provides

flexibility and adaptability to the solution. Since the

forwarding, behaviour of switches can be dynamically

controlled by the SDN Controller, changes in the network

topology or caching infrastructure can be easily

accommodated. New Cache instances or Proxy nodes can be

added, removed, or reconfigured without requiring changes in

the underlying network infrastructure. This flexibility allows

the solution to scale and adapt to changing demands and

evolving network conditions.

4) Enhanced network visibility and control: SDN offers

centralized network management and control, providing

enhanced visibility and control over network traffic. By

having a centralized SDN Controller, network administrators

can monitor and manage content dispatching, Cache

utilization, and overall network performance from a single

point of control. This centralized control enables efficient

decision-making and troubleshooting, leading to improved

network efficiency and performance.

Typically, the SDN infrastructure for content dispatching
brings efficiency, transparency, flexibility, and enhanced
control to the CDCA solution. By using SDN technologies
like the OpenFlow protocol, it becomes possible to
transparently forward requests to cacheable content and Proxy
instances on the network without the need to modify IP packet
headers. This enables efficient traffic steering and dynamic
adaptability, leading to improved content delivery and
network performance.

In the CDCA architecture, two approaches are used for
creating flows in the SDN switches: proactive and reactive
[15]. Here are the characteristics and considerations associated
with each approach:

1) Proactive approach: In the proactive approach, the

OpenFlow Controller configures all the necessary flows from

the users to the nearest Proxy instance before any request is

made to a server. This means that the flows are pre-installed in

the switches based on anticipated traffic patterns. The

advantage of this approach is that it avoids the need for

switches to request the Controller for each new flow, thereby

reducing forwarding delay. However, one drawback is that all

data packets are routed through the same network segment or

domain path, which can potentially lead to congestion on that

path.

2) Reactive approach: In the reactive approach, flows are

created on-demand, meaning that they are installed in the

switches only when a request is made by a user. When a

switch receives a packet for which there is no pre-installed

flow, it sends a request to the Controller, which then installs

the appropriate flow and forwards the packet accordingly.

This approach introduces some latency as switches need to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

853 | P a g e

www.ijacsa.thesai.org

contact the Controller for each new flow. However, it provides

the opportunity to use load-balancing techniques to set

alternate paths, thereby reducing congestion and improving

network performance.

In the CDCA architecture, the Controller sets a path to the
nearest Proxy instance in a reactive manner, meaning that
flows are installed on-demand as requests are made by users.
This allows for dynamic path determination based on the
current network conditions and load distribution. On the other
hand, the path from the user to the Cache or external network
is set proactively, meaning that the necessary flows are pre-
installed to optimize the forwarding of user traffic. This
proactive approach helps minimize latency and optimize link
usage. Remember that the NFV module establishes a new path
for each new user request, providing scalability and load
balancing.

By combining the proactive and reactive approaches, the
CDCA architecture aims to achieve an efficient and balanced
network operation. The reactive approach mapping users'
requests to the nearest Proxy minimizes latency by
dynamically determining the optimal path based on current
network conditions. Meanwhile, the proactive approach
setting the path from the user to the Cache or external network
to ensure efficient forwarding without switches requires the
Controller the path for each new flow [15].

It is important to note that the choice between proactive
and reactive approaches may depend on specific network
conditions, traffic patterns, and performance requirements.
Both approaches have their advantages and trade-offs, and the
decision should be made based on the specific needs and
constraints of the network deployment.

When the SDN Controller receives an HTTP request, it
sets a flow from the user to the Proxy. The forwarding is
based on the destination IP address, i.e., the Content Provider
IP, destination HTTP port (typically port 80) and the user’s IP
address to select the best Proxy to be used, e.g., closest to
the user. The Proxy element is necessary because the SDN
only analyses IP header fields, not HTTP requests. The Proxy
analyzes the HTTP GET header and checks if the content is
cached in its DHT index table. Then, it forwards, i.e., sets
the flow in network switches, to connect the user to Cache.
From this moment onwards, the user interacts only with the
Cache until a new request is done, minimizing Proxy
processing. In big content delivery, e.g., VoD services, a user
maintains a long-time connection with a Cache.

Once a request arrives at a Proxy, it performs a deep
inspection of the request to decide to which Cache this request
should be forwarded. This inspection is possible for requests
using the HTTP protocol, as the packet payload can be read by
the Proxy. However, for requests using the HTTPS protocol,
which provides encryption and security, performing deep
inspections on the packet payload is not feasible and would
risk breaching security.

When the Proxy needs to determine the path from the user
to the closest Cache, it sends a command to the SDN
Controller using a Representational State Transfer (REST)
Application Programming Interface (API). The API allows the

Proxy to communicate with the SDN Controller and provide
the necessary information to install the required flows on the
switches that belong to the network path connecting the user
to the closest Cache.

This process of sending commands to the SDN Controller
and installing flows on the switches ensures that the traffic is
directed efficiently and transparently, optimizing the content
delivery process. Fig. 2 provides an illustration of this timeline
flow process, highlighting the interactions between the Proxy,
SDN Controller, and switches in the network path as follows:

1) Content request identification: The SDN Controller

identifies content requests from users within the network.

2) Forwarding to proxy: The SDN Controller forwards

the content requests to the Proxy component responsible for

handling Cache-related operations.

3) Checking cache availability: The Proxy checks if the

requested content is already cached within the network.

4) Forwarding to cache: If the content is already cached,

the Proxy forwards the request to the appropriate Cache

instance that stores the content. This allows for direct content

delivery from the Cache to the user.

5) Flow path configuration: The SDN Controller

configures a data flow path from the Cache to the user,

establishing a direct transmission route for efficient content

delivery.

Fig. 2. Content forwarding sequence flow steps.

The CDCA approach ensures a transparent Cache handling
for users without requiring any changes to their application
implementations. The underlying transport protocol, TCP,
necessitates that both the Proxy and Cache nodes are aware of
connection handling details, as the connection state needs to
be exchanged between them by SDN Controller that knows all
Cache and clients address [16]. This awareness allows for the
seamless transfer of connections from the Proxy to the Cache.

The use of SDN in implementing a transparent forwarding
mechanism is also discussed in the work by Koulouzis et al
[17]. Their research focuses on enhancing the transfer of data-
intensive scientific applications by leveraging SDN network
programmability.

By incorporating SDN principles and applying the REST
API and SDN architecture, the CDCA architecture enables
dynamic and controlled flow management, allowing for
efficient content caching and delivery while respecting
security considerations and the limitations imposed by the
HTTPS protocol.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

854 | P a g e

www.ijacsa.thesai.org

The release of HTTP/2 introduces improvements and new
challenges to the Web. Its specification was published in May
2015 [18], and its adoption has been growing. The HTTP/2
decreases latency and improves web browsers’ load speed and
video delivery by implementing many new features [19]: (1)
compression of HTTP headers; (2) inclusion of HTTP/2 Server
Push; (3) multiplexing and pipelining of multiple requests
over a single TCP connection; and, (4) fixing of blocking
problem in HTTP/1.1. The HTTP/2 specification recommends
cryptography using TLS 1.2, but it is not mandatory. For video
streaming, HTTP/2 Server Push relieves the Proxy processing,
and the video chunks should be delivered unencrypted to
reduce the encryption overhead of video files.

The CDCA architecture supports HTTP/1.1 and HTTP/2
offering seamless smooth ambiance effect video viewing
without side effects, because the request are initiated at the
client side. In HTTP/1.1, with no Server Push, the
performance is lower than HTTP/2. In general, most of the
contemporaries, like CDCA researcher, consider encrypted
video to be unfeasible for normal viewing because each
browser would need a different crypt-key per connection.
However, if cryptography is required for whatever reasons,
CDCA system is easily capable of providing any publicly
available standard encryption/decryption module such as a
Deep Packet Inspection (DPI) module, which will be
addressed in another article.

Content identification is the initial most important task
performed in the Proxy. The architecture does not Cache all
kinds of information, but only large and reusable content, e.g.,
video and music on demand, software installers, or sizable
images.

The most important, big, and reusable content object
application on the Internet is VoD. A plethora of VoD
providers exist. All of them use similar approaches to provide
a variety of content delivery services. Most of them use Flash
and HTML5 as video player. In the CDCA experiment,
HTML5 was chosen since it is better for identifying video
characteristics. The video stream encoder is mostly
H.264/MPEG-4, and the video stream is not encrypted to
reduce server and client overhead. This fact is very important
for the CDCA architecture because there are some outstanding
security issues regarding encrypted content, which should be
readable only by the first user. And, of course, we suppose the
multimedia videos are royalty-free to permit distribution to all
users, which, in reality, might be different in business-
oriented provider networks with regard to payment to owners
of the content or to their nominated agents, such as the service
provider.

Currently, the transport protocol for video streaming on
the Internet is accomplished by using either TCP or UDP.
The delivery of live video streaming with on-the-fly
encoding, like IPTV, is mostly UDP based, but the delivery of
pre-encoded video, called VoD, essentially uses TCP [20]. In
the CDCA architecture, the focus is on VoD services over
TCP. For the evaluation, YouTube is considered since it is the
most prominent VoD portal, which handles more than several
billion video streams daily. While the YouTube site itself
operates over HTTPS, the actual video stream requests and

delivery are performed using HTTP. This allows for the
identification of unencrypted HTTP requests and the
corresponding HTTP objects are easily identified using
pattern-matching techniques [21]. It is worth noting that the
architecture is designed to handle TCP-based VoD services
and can be adapted to support other VoD providers with minor
modifications. The future intention is to analyze and adapt the
CDCA solution for various VoD platforms, applying the same
approach used for YouTube.

For instance, considering a YouTube video URL, the

web page provides the link for different formats, e.g.,

href="http://www. youtube.com/watch?v=yXc8KCxyEyQ"

for standard format,

href="http://m.youtube.com/watch?v=yXc8KCxyEyQ" for

hand-held devices, and also for specific devices, like

Android, href="android-

app://com.google.android.youtube/http/www.

youtube.com/watch?v=yXc8KCxyEyQ".

It seems that Google implements some techniques to
restrict the direct access to video in a lot of ways. It is possible
to see some interesting fields in the URLs, e.g., "?part=" and
"?range=," which permit identifying of each downloaded
chunk and storing it in the correct order. The process to
retrieve a Youtube video requires reverse engineering to
extract chunk information from the URL, a technique used by
some “Youtube downloaders”, which is very common
nowadays.

YouTube employs various mechanisms, including DNS
translation and URL redirection, to optimize the delivery of
video content. These mechanisms help distribute the video's
chunk files across multiple caching servers, allowing for load
balancing of the transmission.

The YouTube video delivery name is composed of three
key components [22]:

1) Video ID space: Each video on YouTube is assigned a

unique video ID, which serves as an identifier for the specific

video content.

2) Hierarchical logical video server: YouTube utilizes a

hierarchical logical video server structure to organize and

manage video content. This structure helps ensure efficient

content management and delivery across the platform.

3) Physical server cache hierarchy: The physical server

Cache hierarchy represents the distribution of caching servers

used by YouTube. The chunk files of the videos are stored in

these caching servers, which are strategically located to

optimize content delivery and minimize latency for users.

By employing DNS translation, URL redirection, and a
well-structured video delivery name, YouTube can efficiently
distribute and deliver video content, providing a seamless
streaming experience to its vast user base as:

a) YouTube Video Id Space: Each YouTube video

is uniquely identified using a fixed-length flat identifier

with random (nonsensical) characters, e.g., something like

yXc8KCxyEyQ.

b) Hierarchical Cache Server DNS Namespaces:

http://www/
http://m.youtube.com/watch?v=yXc8KCxyEyQ
http://www/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

855 | P a g e

www.ijacsa.thesai.org

YouTube defines multiple DNS namespaces representing a

group of logical video servers related to the video format and

resolution. The DNS namespace forms a hierarchical

structure of logical video servers that are mapped to an IP

address where the video file is stored, e.g., http://b8u-

4vge.googlevideo.com

c) Physical Cache Servers: In the case of YouTube, the

logical Cache servers are represented by a unique logical

namespace in the DNS names. However, each DNS resolution

of this namespace can map to a large set of IP addresses,

which correspond to the physical Cache servers. For example,

if we consider the hostname http://b8u-4vge.googlevideo.com,

the primary namespace represents the logical Cache server.

However, depending on factors such as the user's location and

the load balancing policy in place, multiple IP addresses can

be associated with this hostname. These IP addresses

correspond to the physical Cache servers that store and serve

the video content.

YouTube uses HTTP to deliver videos to users in order to
reduce the cryptography overheads. Even under an HTTPS
connection, the HTTP request can be easily seen. Analyzing
the URL, we can identify the video name (Video Id Space) and
the format and resolution for a specific device (Hierarchical
Cache Server DNS Namespaces). In the CDCA architecture,
the Physical Cache Server component does not give away any
useful information.

B. Proxy Design

The Proxy component acts as an intelligent intermediary
between users and Cache nodes, ensuring efficient content
delivery and load balancing within the network. It plays a
crucial role in the CDCA architecture as it handles users'
requests and ensures the delivery of the requested content to
the nearest available Cache. Its main function is to determine
the appropriate Cache node to serve the content based on a
mapping index.

When a user makes a content request, the Proxy checks
whether there is an existing copy of the requested content in
the network. If a copy is available, the Proxy forwards the
request to the Cache node that holds the content. This
minimizes the latency and improves the response time for the
user. In cases where the requested content is not available in
any Cache node, the Proxy identifies the Cache node closest to
the user and forwards the request to that node. This Cache
node becomes a aspirant for holding a copy of the requested
content. If there are multiple Cache nodes with the same
distance from the user, the Proxy employs a round-robin
operation. This load-balancing technique distributes the
requests among the Cache nodes equally, ensuring efficient
utilization of resources and preventing any single Cache node
from becoming overloaded.

Since it is possible that many Proxies exist over the
network, each Proxy instance participates in a DHT to share
the content index. This DHT serves as a Distributed
Forwarding Unit (DFU) that allows efficient content lookup
and forwarding among the proxies.

While there are multiple Proxy instances distributed

throughout the network, it is important to note that each user's
requests will always be handled by the same Proxy node
nearest to it. This selection of the closest Proxy node to the
user ensures proximity-based routing and minimizes latency in
the content delivery process.

By maintaining the user's requests consistently routed to
the same Proxy node, it offers several advantages. Firstly, it
provides a predictable and reliable user experience as the user
interacts with the system through a specific Proxy node.
Secondly, it allows the Proxy node to maintain the context and
state of the user's requests, facilitating personalized content
delivery and improving overall efficiency.

The sharing of the DHT among the Proxy instances
enables efficient content indexing and lookup. When a user
request arrives at a Proxy node, it can quickly query the DHT
to determine if the requested content is available in the
network and identify the Proxy node that holds a copy of the
content. This ensures effective content retrieval and delivery
to the user.

The forward decision is taken by the SDN Controller that
receives the network state information from the network
management system, choosing the best Proxy instance.
Because any new user’s request is processed by the SDN
Controller, it should choose the optimal Proxy on-the-fly based
on the network status. Generally, the closest Proxy will be the
perfect solution because it will have the minimum delay. It
also does not store any content and only looks at a DHT table.
However, if one Proxy processes more requests than another,
it is possible to redirect the requests to load balance the system
considering network and server status.

The Proxy and Cache instances maintain a virtual overlay
network configuration schema, which enables them to
exchange Cache states and commands seamlessly. When a
Proxy decides to forward a user's request to a Cache instance,
it sends a command to the chosen Cache, specifying the
request and the user. This command instructs the Cache to
serve the requested content to the user.

Upon sending the command, the Proxy listens for an
acknowledgment from the Cache. This acknowledgment
confirms that the content has been successfully cached by the
Cache instance. It allows the Proxy to update its index, which
maps content names to Cache instances. This updated index
enables the Proxy to efficiently forward future requests for the
same content to the same Cache instance, enhancing caching
effectiveness and reducing content retrieval latency.

Additionally, the acknowledgment may provide
information about the content's lifetime. The Cache instance
specifies the maximum duration for which the content will be
cached. Once the Cache lifetime expires, the corresponding
index entry for the content is automatically removed from the
DHT, ensuring that outdated content is not unnecessarily
stored in the network.

By maintaining an efficient and synchronized index across
Proxy and Cache instances, the architecture optimizes content
caching, improves content availability, and ensures that the
most relevant content is stored and served efficiently.

http://b8u-4vge.googlevideo.com/
http://b8u-4vge.googlevideo.com/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

856 | P a g e

www.ijacsa.thesai.org

The content caching mechanism is designed to be
transparent and efficient, allowing any Proxy to forward a
request to a Cache instance that already holds the requested
content. This means that even if a Proxy is responsible for
managing a specific Cache instance, it can still forward
requests to other Cache instances that have the desired
content.

As an example, for instance, where Proxy 'A' manages
Cache 'A' and Proxy 'B' manages Cache 'B', if a user near
Proxy 'A' requests content 'C', Proxy 'A' would handle the
request. However, since Proxy 'A' knows that Cache 'B' has a
copy of content 'C' (as indicated by the DHT index), it would
forward the user's request to Cache 'B' to fetch the content.
This behaviour enables efficient utilization of the caching
infrastructure, as any available Cache instance can serve
content to users, regardless of the Proxy managing it, thus
optimizing content retrieval and delivery, ensuring that users
can access the content efficiently from the nearest available
Cache instance. This approach enhances the overall
performance of the caching system and improves user
experience.

Usually, choosing the optimal Cache or deciding to fetch
content from an external server is most desirable in content
delivery systems. The choice between fetching content from
an in-network Cache or from an external server depends on
various factors, such as Cache proximity, network conditions,
content availability, and delivery requirements.

In the CDCA architecture, the decision of whether to fetch
content from an in-network Cache or from an external server
is not explicitly addressed. However, future works and
research can focus on developing intelligent policies or
algorithms to determine the best Cache to use within the
network or when it is more efficient to fetch content from an
external server. These policies could take into account factors
such as Cache proximity, network congestion, content
popularity, Cache availability, and other performance metrics.
By considering these factors, the system can dynamically
adapt and make better decisions based on the current network
conditions and optimize content delivery for the best user
experience.

Overall, this Proxy design scheme enhances the scalability,
reliability, and performance of the CDCA architecture.

C. Cache Design

The Cache component plays a vital role in serving user
requests and optimizing content delivery. When a request
reaches a Cache instance, it first checks its local memory
using a Hash Table for the fast lookup to see if the requested
content is already stored. If the content is found in the Cache,
it can immediately send the requested content back to the user
through the previously configured OpenFlow path. This
enables fast and efficient delivery of content from the Cache
without the need to retrieve it from the original server.

However, if the content is not available in the Cache, the
Cache acts as a Proxy and forwards the user's request to the
target server specified in the request. This behaviour is similar
to a standard client-server interaction without caching. When
the target server responds to the request, the Cache

immediately sends the response back to the user.

Additionally, the Cache performs a deep packet inspection
on the response received from the target server. This
inspection helps determine if the response is cacheable or not.
The Cache examines the nature of the protocol being used
(such as HTTP) and looks for specific headers, like the Cache-
Control header in the case of HTTP. The Cache-Control
header provides instructions to consumers (in this case, the
Cache) on how the response can be cached, including the
duration for which it can be cached or whether caching is
prohibited by the server.

When the Cache determines that the fetched content is
cacheable, it immediately notifies the Proxy that it now holds
a copy of the content. This ensures that subsequent requests
for the same content can be efficiently served from the Cache.
Additionally, the Cache may include a Cache lifetime value,
which indicates the maximum duration for which the content
should be considered valid in the Cache. The determination of
the Cache lifetime value depends on the characteristics of the
media, such as its freshness requirements or expiration
policies.

In cases where the content is deemed non-cacheable, such
as very small content that may not benefit from caching, the
Cache simply sends the response directly to the user without
storing it. This prevents unnecessary utilization of Cache
space and avoids the need for DHT updates related to that
particular content.

Setting the Cache lifetime value appropriately is crucial for
optimizing system performance. It allows balancing between
serving stale content and the overhead of fetching fresh
content from the server. The specific Cache lifetime values
and policies can be defined by the content provider according
to their own requirements and policies.

D. Cache Management

Separating the data storage layer from the control function
of Cache instances offers flexibility and scalability in the
deployment of the caching system. By decoupling these two
functions, each Cache instance can operate independently
without interfering with the others in the storage layer.

This separation allows for various deployment scenarios,
each with its own characteristics. For example, multiple Cache
instances can be deployed on different physical servers or
virtual machines, enabling distribution across different
geographical locations or network segments. Each Cache
instance can have its own storage resources, such as disk
space or memory, dedicated to serving content requests. For
instance, an ISP may deploy a number of caches over their
network, configuring 70% of the instances to use their RAM
memory while the other 30% are configured to use SSD disks.
The decision about the type of storage that will be used by the
Cache instances and where they are deployed is a decision that
must be taken by the network operator since there are many
strategical decisions involved.

The separation of data and control also enables the
implementation of different caching strategies or policies
within each Cache instance. This means that each Cache

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

857 | P a g e

www.ijacsa.thesai.org

instance can have its own set of rules and algorithms for
content eviction, replacement, or caching optimization,
tailored to specific requirements or objectives, allowing for
efficient and independent operation of each Cache instance
within the caching system.

The decision of whether to store content in memory or on
local disks within a Cache instance is an important aspect that
can significantly impact caching performance and efficiency.
Both options have their advantages and considerations.

Using an in-memory approach provides faster access to
cached content due to the high speed of memory. It is
particularly suitable for frequently accessed or hot content that
requires low-latency delivery. However, memory capacity is
typically limited compared to disk capacity, which means that
the Cache can store a smaller amount of content in memory.
This can lead to a higher likelihood of Cache eviction for less
frequently accessed or cold content, resulting in potential
Cache misses and increased latency.

On the other hand, storing content on local disks provides
a larger storage capacity, allowing the Cache to accommodate
a larger volume of content. This is advantageous for caching
less frequently accessed or larger files. Disk-based storage can
be especially useful for VoD (Video on Demand) services that
deal with pre-encoded videos, where the content size can be
substantial. However, accessing content from disks is
generally slower compared to memory, which can introduce
additional latency.

The choice between in-memory and disk-based storage
depends on various factors, including the nature of the
content, the expected workload, and the network
administrator's policy. If the network administrator prioritizes
fast access to frequently accessed content, an in-memory
approach might be preferred. Conversely, if accommodating a
larger volume of content is crucial, disk-based storage is more
suitable.

Additionally, the eviction policy is an essential
consideration in Cache design. It determines how content is
selected for eviction when the Cache reaches its capacity limit.
There are various eviction algorithms, such as LRU (Least
Recently Used), LFU (Least Frequently Used), and Random
Replacement, each with its own trade-offs in terms of Cache
efficiency and performance. The network administrator can
choose the most suitable eviction algorithm based on factors
such as content popularity, access patterns, and the desired
Cache hit rate.

The CDCA architecture is flexible such that it can be
configured to use any eviction algorithm by an open API, i.e.;
the network administrator can choose the best algorithm
according to the user’s profile. Cache eviction policies are
well discussed in Balamash [23] and Wang [24].

It is possible to use a hybrid approach when dealing with
the decision to store the content in memory or on disk. For
instance, a hybrid approach combining both memory (M1) and
disk (M2) storage can provide a balance between fast access
and larger storage capacity. This approach takes advantage of
both memory and disk to optimize caching performance.

In the hybrid approach, frequently accessed or hot data is
stored in the M1 Cache, which is the faster memory
component. This ensures that popular content is readily
available for fast retrieval and reduces latency for frequently
requested items. The M1 Cache acts as a high-speed Cache
tier that can quickly serve content without accessing the
slower disk storage.

On the other hand, less frequently accessed or cold data is
stored in the M2 Cache, which resides on a disk. The M2
Cache provides a larger storage capacity compared to
memory, allowing the Cache to accommodate a broader range
of content. Although accessing content from the M2 Cache
may introduce additional latency, the presence of frequently
accessed items in the M1 Cache minimizes the impact on
overall performance.

To optimize the hybrid approach, a managing schema
algorithm is employed to determine which data should reside
in the M1 Cache and which should be stored in the M2 Cache.
This algorithm can monitor access patterns, frequency of
requests, and other relevant metrics to make informed
decisions about data placement. For example, if a content item
in the M2 Cache starts to experience increased access
frequency, the managing schema algorithm can dynamically
promote it to the M1 Cache to improve access time.

The reconfigurability of the Cache instance is a valuable
feature that allows for dynamic adjustments and fine-tuning of
the Cache's parameters to meet changing demands and
optimize performance. By deploying the Cache instance
within a Virtual Machine (VM), it becomes possible to modify
various aspects of the Cache configuration during runtime.

One such configurable parameter is the storage capacity,
which includes both memory and disk space. As the workload
increases and the Cache approaches its capacity limit, it may
become necessary to adjust the available storage resources to
accommodate additional data. This can be achieved by
dynamically increasing the memory allocation or expanding
the disk space assigned to the Cache VM.

In addition to storage capacity, other parameters such as
eviction policies can also be tuned. The eviction policy
determines which content items are evicted from the Cache
when it reaches its capacity limit. By adjusting the eviction
policy, the Cache manager can prioritize certain content or
employ different strategies to optimize Cache utilization and
improve hit rates.

When the Cache becomes saturated and the eviction rate
surpasses a predefined threshold, the Cache manager can take
proactive measures to address the situation. This may involve
automatically attaching a new VM to distribute the caching
load, increasing the available memory to accommodate more
content in the M1 Cache, or modifying the eviction policy to
better manage the Cache's content.

The ability to make such adjustments dynamically (on-the-
fly) and in a dynamic manner allows the Cache instance to
adapt to varying workloads and optimize its performance in
real time. This flexibility ensures that the Cache can
efficiently handle increasing demands and effectively utilize
available resources, ultimately enhancing the overall

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

858 | P a g e

www.ijacsa.thesai.org

efficiency and responsiveness of the caching system.

E. Cache Policy Management

Designing a system that can cater to various business
needs and network traffic patterns requires careful
consideration of policy management. Different organizations
and network environments may have specific requirements,
priorities, and constraints that need to be taken into account.
Therefore, the system project incorporates design strategies to
enable efficient content delivery while also accommodating
complex real-world policies.

Policy management encompasses various aspects,
including caching policies, eviction policies, load balancing
policies, content placement policies, and more. These policies
define how the system operates, makes decisions, and
prioritizes tasks. By incorporating flexibility in policy
management, the system can be customized and tailored to
meet specific requirements.

One important design strategy is to provide configurable
parameters and APIs that allow administrators or users to
define and modify policies according to their needs. This
flexibility empowers organizations to adapt the system to their
unique business rules and network traffic patterns. For
example, administrators can define caching policies based on
content popularity, user preferences, or other relevant factors.

Furthermore, the system project may offer a range of pre-
defined policy templates or algorithms that serve as a starting
point for administrators to choose from. These templates can
be based on industry best practices or research findings,
providing guidance for policy selection. Administrators can
then fine-tune and customize these templates to align with
their specific requirements.

Additionally, the system may provide monitoring and
analytics capabilities to gather data on network traffic, content
usage patterns, performance metrics, and other relevant
information. This data can be used to evaluate the
effectiveness of existing policies and make informed decisions
for policy adjustments or optimizations.

By considering policy management as an integral part of
the system design, the project aimed to provide a flexible and
adaptable solution that can cater to diverse business needs and
network scenarios. This approach acknowledges that different
organizations may have unique policies and requirements, and
it offers the means to configure and manage these policies
effectively to achieve optimum performance and content
delivery outcomes.

The policy management function being performed on the
Proxy component is a logical and efficient choice. As the
decision-maker responsible for managing a set of caching
instances, the Proxy is well-positioned to handle policy
management tasks. Since all requests from a subset of network
nodes pass through the Proxy, it has the necessary visibility
and control to implement and enforce caching policies
effectively.

By extending the Proxy's content inspection capabilities, it
becomes possible to deeply analyse the content's data and
incorporate manageable aspects into the policy management

process. This allows the Proxy to make intelligent decisions
about which content should be cached based on specific
criteria or conditions.

In the current stage of proposal development and
experimentation, the system has addressed five caching
policies to provide adaptability to different workloads
commonly encountered in practice:

1) Cache everything: This policy implies caching all

content without any specific filtering or criteria. It ensures that

all requested content is stored in the Cache for future retrieval.

2) Cache only content whose name matches any given

regular expression set: This policy allows administrators to

define a set of regular expressions to match content names.

Only content with names that match these expressions will be

cached, while others will be bypassed.

3) Cache only content whose size matches certain file

criteria: This policy focuses on caching content based on their

file size. Administrators can define specific criteria (e.g.,

minimum or maximum file size) to determine which content

should be cached.

4) Cache only content served by a specific set of target

domains: This policy restricts caching to content served by

designated domains. Administrators can specify a list of target

domains, and only content from these domains will be eligible

for caching.

5) Cache-only content of a given type (audio, video, etc.):

This policy enables selective caching based on content types.

Administrators can specify the types of content (e.g., audio,

video, images) that should be cached, while excluding others.

The system utilizes a pipeline processing approach to
handle multiple sets of distinct policies in an efficient manner.
This approach allows the policies to be applied in a
combinatorial fashion, starting from the most restrictive to the
least restrictive that serves as a set of policy filters to derive an
optimal management solution.

When a request reaches the Proxy, it undergoes a deep
inspection phase to gather relevant information about the
content. Following this, the request is processed through the
policy pipeline, which consists of sequentially applying the
defined policies to determine whether the content should be
cached or not.

The policy pipeline filters the requests based on the
defined rules, allowing or denying caching of the requested
content. If a request is denied by any policy rule in the
pipeline, the Proxy sends a forward command to the Cache
instance without expecting Cache confirmation or
acknowledgment. In this case, the content will have a flag
indicating that it cannot be cached by that specific Cache
instance.

The algorithm presented in Algorithm 2 serves as an
example of how the policy pipeline operates for Caching,
determining the caching behaviour based on the policies:

1) Initialize the request

2) Perform deep inspection on the request

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

859 | P a g e

www.ijacsa.thesai.org

3) Set caching_allowed = True

4) For each policy in the policy pipeline: a. Apply the

policy rule to the request b. If the policy denies caching: - Set

caching_allowed = False - Break the pipeline loop

5) If caching_allowed is True: a. Forward the request to

the closest Cache instance to the user b. Expect Cache

confirmation/acknowledgment

6) If caching_allowed is False: a. Send a forward

command to the Cache instance b. Set the content's

“cacheability” flag to indicate no caching

By processing requests through this policy pipeline, the
system can effectively filter and determine the caching
behaviour based on the defined policies. The pipeline
approach allows for flexible and customizable policy
management, enabling administrators to derive an optimal
caching solution based on their specific requirements and
policies.

In some cases, certain requests cannot enter the processing
pipeline until they have been served by the originating server.
For example, in HTTP requests, the requester may allow the
receipt of both text and video responses, but the actual
response will determine the content type by inspecting the
ContentType header. Similarly, the content's size may not be
known until the response has been completely received.

In such cases, the same processing pipeline can be applied
at the Cache instances, but only in specific scenarios where
the request can be fully inspected and the necessary
information is available. The Cache instances can run the
policy pipeline to determine the caching behaviour based on
the received response.

It's important to note that if the Proxy's flag command
allows caching, it prevents the Cache from overriding any
previous decision made by the Proxy. This ensures that the
caching behaviour determined by the Proxy is maintained and
not altered by the Cache instances.

By allowing the processing pipeline to run at both the
Proxy and Cache instances, the system can ensure consistent
caching decisions and policies across the network, taking into
account the specific characteristics and information available
at each stage of the request-response cycle.

 Algorithm 2: Policy processing method

Data: The content request cRqst; and a set of filters

pol Fltr[]

Result: 1 if the content should be cached, 0 otherwise

1 foreach p in polFltr[] do

2 if p(cRqst) == 0 then

3 return 0;

4 end

5 end
6 return 1;

F. System Scalability

Scalability is a crucial aspect of the CDCA architectural
system, and it involves the SDN Controller, proxies, and
caches. To ensure scalability and address availability

concerns, the architecture allows for the deployment of new
instances of these components in the network on the fly. One
key factor in achieving scalability is the use of a stateless
OpenFlow control. This enables simple load balancing across
multiple Controller devices, ensuring that the control plane
can handle increasing demands and distribute the workload
effectively [9]. By distributing the control plane functionality,
scalability and redundancy are improved, as multiple
controllers can handle the control tasks in a distributed
manner. In the context of SD-ICN, scalability becomes an
even more significant concern due to the introduction of in-
network caching and content-based communication. To
address the control plane scalability challenge, Gao et al.
propose the Scalable Area-based Hierarchical Architecture
(SAHA) [25]. SAHA is designed to handle the control plane
scalability problem specific to SD-ICN environments and
provides a hierarchical architecture that enables efficient
management and scalability.

Several distributed architectures have been CDCA to
enhance OpenFlow scalability and redundancy. Examples
include Disco [26], ElastiCon [27], and Onos [28]. These
architectures aim to distribute control plane functionality,
improve scalability, and provide redundancy mechanisms to
ensure high availability.

By leveraging these scalable and distributed architectures,
the CDCA system can handle increasing demands, distribute
control tasks effectively, and provide redundancy to ensure
system availability. This enables the system to accommodate a
growing number of users, requests, and caching instances
while maintaining efficient control plane operations.

Analyzing the Proxy design, it is possible to notice that its
main idea is to simply forward the request to the appropriate
Cache, thus it relies on the DHT index to get all information it
needs about the caching state, which is spread over all Proxy
instances of the network topology. The most costly operation
that the Proxy does (determine where content was previously
cached) basically relies on a DHT lookup operation, which is
the operation that can constrain the Proxy scalability. Since the
chosen DHT implementation is in conformance with Chord
[29], a lookup operation needs just O(logN) messages to find
any key in the table and O(log2N) messages to update any key,

where N is the number of proxies deployed in the network.
While the Proxy relies on a DHT to find the appropriate Cache
to forward requests, the Cache itself is a simple solution that
only relies on a Hash Table to look up cached contents locally,
so all its operations require O(1) time. The main concern
about the Cache is simply its memory capacity, which
obviously will limit the amount of data that can be stored in
that network node.

Along with the individual characteristics of each
component, the overall architecture is also important. The
decision of using a microservice architectural pattern was
furthermore taken based on the scalability opportunities that
such design offers. Many modern systems built incloud
environments take this same direction when scalability is a
major nonfunctional requirement. The main characteristic of
microservices comes from its own definition, which states that
a microservice should do one thing, and do it well. Such an

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

860 | P a g e

www.ijacsa.thesai.org

idea allows that a system with multiple functional components
can be developed, tested and deployed separately. It makes
easy as operational actions that must be taken in response to
business and network requirements. The CDCA solution has
these characteristics, allowing, for instance; the number of
proxies, caches, or controllers can be changed over time
independently of each other to satisfy any demand.

The CDCA architecture has been designed with flexibility
in mind, and considering how the architecture’s components
could be used and reused in real-world production provider
networks. The architecture considers the business needs,
the technical issues, and the most important constraints
that concern network providers on a daily basis. As
previously mentioned, the idea to use SDN and NFV brings
several deployment possibilities, and the architecture has
been designed to accommodate these different deployment
possibilities. The network administrator can deploy the
system according to the exact business and technical needs.
The idea is to create autonomous islands responsible for
handling the in-network content caching in a specific network
segment/domain. These islands may contain several Cache
instances and few Proxy instances, each of them operating
independently, yet sharing the same data content across the
DHT index at the proxies. The network segment/domain could
be composed of any arbitrary set of users and/or network
devices, each of them sharing common features, like
geographical region, traffic patterns, etc.

V. RESULT ANALYSIS OF THE CDCA SYSTEM

The experiments have been conducted to evaluate the
effectiveness of the CDCA architecture and prototype
operational system. By conducting these experiments, one can
gain valuable insights into the performance, scalability, and
feasibility of deploying the system in real-time production
networks.

Evaluating the system in a realistic environment helps
identify any potential challenges, bottlenecks, or areas for
improvement. It also allows you to gather empirical data on
the system's performance, such as response times, caching
efficiency, and resource utilization. By conducting
experiments and gathering insights, one can refine and
optimize the CDCA architecture, ensuring that it meets the
requirements and expectations of real-world deployment
scenarios. Additionally, sharing the results of these
experiments and promoting further research and development
in this subject area can contribute to the advancement of the
field and drive innovation in content delivery networks
beyond today’s technical achievements.

In all experiments, the CDCA solution is compared against
a legacy network, i.e., a traditional Internet environment where
the content is delivered directly from the content server to the
user.

The main objective of the experiment is to evaluate the
effectiveness of the users, considering the network provider
and the content provider resources. To this extent, the first
experiment aims to analyze how long a set of users would
wait to retrieve arbitrary contents with different chunk sizes
from an external server. The second experiment aims to verify

how many data packets and bytes are exchanged within the
network provider’s infrastructure when requests for contents
with distinct sizes are performed by several users. Finally, the
third experiment checks the throughput at the content
provider’s server at different hit rates and Cache storage
capacities when requests for content with distinct sizes are
performed by many users.

A. Experimental Environment Evaluation

The evaluation of the prototype using an emulation
methodology provides a controlled and reproducible
environment to assess the performance and behavior of the
CDCA architecture. Mininet, a virtualized network platform,
was chosen as the basis for the evaluation, offering the ability
to create interconnected virtual devices such as hosts,
switches, and controllers [30].

The evaluation scenario of the topology experiments was
implemented within a c3.2xlarge Amazon EC2 VM, which
provided sufficient resources including 8 virtual CPUs, 15GB
of RAM, and 2 x 80GB of SSD storage. The virtualized
devices in Mininet communicated with each other via virtual
interfaces, enabling the execution of real protocol stacks in a
virtual network.

The network topology used in the experiment is composed
of one content server, one SDN Controller and six islands with
three users each as shown in Fig. 3. The network driver and
switching delay considered in Mininet environment are not
shown. The latency stated in the figure is only the fiber
propagation delay.

To control the traffic flow in the network, an OpenFlow
Controller was employed. The Floodlight OpenFlow
Controller was selected for its simplicity and development
flexibility, which facilitated the implementation and
management of the network environment [31]. The evaluation
took into account the latency of a 1 Gbps Ethernet board
driver (100 µs) and the switching latency in the Linux Open
vSwitch. These latency values were set to be greater than
those typically found in real network infrastructures to ensure
the worst case scenario for evaluation purposes of the results.

The flexibility of Mininet allowed configuring parameters
such as link bandwidth and delaying strategies, enabling the
emulation of various network conditions and scenarios similar
to production networks. This flexibility enhanced the accuracy
and applicability of the evaluation results.

It is worth mentioning that the evaluation utilized
OpenFlow version 1.0, as it was deemed sufficient for
assessing the CDCA architecture. Subsequent versions of
OpenFlow did not offer any new features or fields that would
significantly impact the evaluation of the proposal.

By conducting the evaluation in this controlled
environment, the researchers were able to gather data on the
performance, scalability, and feasibility of the prototype.
These insights help validate the effectiveness of the CDCA
architecture and provide valuable information for further
refinement and improvement. It has allowed for a
comprehensive assessment of the CDCA architecture's
capabilities in a realistic network setting.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

861 | P a g e

www.ijacsa.thesai.org

Fig. 3. Evaluation topology of the experiment.

The experiment involved the initiation of multiple
applications running over HTTP, encompassing a variety of
content types ranging from plain text websites to multimedia
video streams. The content response chunk sizes were varied
in the range of 10 to 3200 kilobytes.

The methodology employed in the experiment drew
inspiration from the work of Augustin et al. [32], who
extensively analysed the bandwidth usage of Web 2.0
applications. By adopting a similar approach, the experiment
aimed to evaluate the CDCA architecture's ability to handle a
diverse range of applications and their associated bandwidth
requirements. This experimental method was selected because
it demonstrated success in addressing a wide spectrum of
applications, including email and on-demand video streams.
This approach also permitted gathering meaningful statistics
and insights into the performance and efficiency of the CDCA
architecture in handling different types of content and
application scenarios. It also allowed conducting experiments
with various content response chunk sizes and a diverse set of
applications to assess the scalability, efficiency, and
effectiveness of the CDCA architecture in accommodating
different bandwidth demands and traffic patterns as well as
providing valuable insights into its performance and potential
benefits in practical deployment scenarios.

 In the experiment, each user was implemented in Java
using Apache's HTTP Client library to perform HTTP
requests. Each user was single-threaded, and all users
concurrently sent their requests.

To simulate realistic user behaviour, the Cache hit rate was
set at 70%, meaning that 70% of the requests made by the
users were expected to be found in the Cache and result in
Cache hits. The CDN’s Cache hit rate is variable and depends
on the content and user profile. The literature typically regard
CDN’s hit rate estimate to be in the range from 60% to 90%,
so an intermediate value was used. As we used emulation, the
chunks were randomly generated and the client’s hit rate was

set to 70%.

To optimize network resource utilization, each client used
HTTP pipelining, which allows multiple requests to be sent
over a single TCP connection without waiting for individual
responses. This approach maximizes the use of network
capacity by reducing the overhead of opening and closing
TCP connections for each request. Each client was configured
to have a maximum of 10 pipelined requests without
responses, meaning that a client could have several pending
requests in transit simultaneously, even though each client was
single-threaded.

The perceived delay experienced by users was measured as
a roundtrip time, starting from the moment a user sent an
HTTP request until the corresponding response was received
by the same user. This metric captured the overall time
required for a user to receive a response and reflected the
user's perceived delay in accessing the requested content.

To gather statistics on bytes and data packets, the
OpenFlow Controller was utilized. After each experiment
round, the OpenFlow Controller obtained the counter values
for each port of the OpenFlow switches through StatsRequest
messages [33]. This allowed collection of information on the
amount of data transmitted and the number of packets
exchanged within the network under realistic conditions. This
approach provided insights into the system's ability to handle
concurrent user requests, optimize network resources, and
deliver content with reduced perceived delay.

In the first experiment, caches with a capacity of 1GB
were used. This means that each Cache instance had the
ability to store up to 1GB of content. The experiment aimed to
evaluate the system's performance and effectiveness with this
limited Cache capacity.

The second experiment involved two Cache instances,
each with a capacity of 1GB. This setup allowed for a total
Cache capacity of 2GB. By increasing the number of Cache
instances, the system aimed to assess the impact of distributed
caching on performance and content availability.

In the third experiment, Cache capacities varied from 2GB
to 6GB. This range of capacities allowed the researchers to
investigate the scalability and performance of the system as
the Cache capacity increased. The experiment aimed to
understand how increasing Cache capacity influenced Cache
hit rates, perceived delay, and overall system efficiency.

In all three experiments, the caches were configured to use
the Least Frequently Used (LFU) eviction policy. LFU is a
Cache replacement policy that selects the least frequently used
content for eviction when the Cache reaches its capacity limit.
This policy is based on the assumption that content popularity
is a significant factor in Cache usage, and frequently accessed
content is more likely to be accessed again in the future.

Additionally, the caches in these experiments used an in-
memory approach, meaning that the content was stored in the
Cache's memory rather than on disk. This allowed for faster
access times but limited the overall storage capacity compared
to using disk-based storage.

The decision to use an LFU eviction policy and an in-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

862 | P a g e

www.ijacsa.thesai.org

memory approach was based on previous research by Famaey
et al. [34], which highlighted the effectiveness of popularity-
based Cache replacement strategies for Video-on-Demand
(VoD) services. Adopting LFU and an in-memory approach,
allowed them to align the experiments with existing literature
for comparison purposes and leverage the benefits of these
strategies in their system.

B. Experimental Results

In the first experiment, the user's average delay when
requesting content from a server was evaluated. Each
experiment was executed 10 times with different chunk sizes
and hit rate of 70%, showing overall results of an average of
95% confidence interval as shown in Fig. 4. It demonstrates
the effectiveness of the CDCA architecture in improving the
user's delay perception.

The graph illustrates that the CDCA architecture led to a
significant improvement in the user's delay, regardless of the
content's size. On average, the delay was reduced by nearly
75% compared to traditional approaches. This improvement
indicates that the CDCA architecture effectively optimizes
content delivery and reduces the perceived delay from the
user's perspective.

Furthermore, the result for 3200 kilobytes of contents
showed an even higher improvement of almost 80%. This
suggests that the CDCA solution not only enhances the user's
delay but also reduces network traffic. By utilizing caching
and efficient content delivery mechanisms, the CDCA
architecture minimizes the need for repeated content requests,
leading to reduced network congestion and improved overall
performance.

These findings support the effectiveness of the CDCA
architecture in improving user experience by reducing delay
and optimizing content delivery, irrespective of the content's
size.

Fig. 4. User’s observed delay with responses with different chunk sizes.

Fig. 5 displays the number of bytes transferred after the
execution of the second experiment of the sum total of the
number of bytes transferred through all switches at each
network interface within the network topology. It compares
the CDCA solution against traditional approaches. Both

values, for all content sizes, show a reduction in the number of
bytes transferred when using the CDCA solution. This
reduction can be attributed to the architecture's ability to
deliver content closer to the users through caching. By caching
content in proximity to the users, the need to transfer the same
content repeatedly over the network is minimized. This result
in a more efficient utilization of network resources and a
reduction in the overall data transferred.

Fig. 5. Sum total of the number of bytes transferred through all switches.

The results show that the CDCA architecture effectively
reduces the amount of data transferred, leading to more
efficient network resource utilization and improved Quality of
Experience (QoE) for users by reducing delay, as observed in
the previous experiment, but also optimizes the use of network
resources. The results highlight the positive impact of the
CDCA architecture by minimizing data transfer and efficiently
delivering content, the CDCA solution helps networks become
more effective, ultimately reducing operational costs
associated with bandwidth usage.

Fig. 6 and Fig. 7 show the results of the third
experiment respectively.

From Fig. 6 it can be observed that operating with 2 caches
storing 1GB of data the Cache hit rates increases and the
throughput at the server decreases. This trend indicates that
the CDCA architecture effectively reduces the number of
requests which reaches the destination server as the Cache hit
rate increases. This reduction in server requests is independent
of the chunk size of the content. The results demonstrate that
the caching mechanism of the CDCA architecture successfully
offloads traffic from the server, improving its throughput.

Fig. 7 focuses on the influence of Cache capacity on server
throughput at different Cache hit rates with response sizes of
3200 kilobytes. The graph shows that Cache capacity plays a
significant role in the server's throughput, particularly at
higher Cache hit rates. For example, at a hit rate of 40%, there
is a noticeable difference of around 30 Mb/sec in server
throughput when the Cache capacity increases by just 4GB.
This difference becomes even more significant, reaching 100
Mb/sec, as the hit rates increase to 80%. These findings
highlight the importance of Cache capacity in effectively
reducing the load on the server and improving its throughput.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

863 | P a g e

www.ijacsa.thesai.org

Fig. 6. Server throughput at different Cache hit rates and response sizes.

With a larger Cache capacity, more content can be stored
and served directly from the Cache, resulting in a reduced
burden on the server. As a result, the CDCA architecture
demonstrates its ability to alleviate the server's load and
improve its performance, especially when higher Cache hit
rates are achieved. The CDCA architecture successfully
compels caching to offload traffic from the server and
optimize its performance, leading to more efficient content
delivery and enhanced network scalability.

Fig. 7. Server throughput with different Cache hit rates and capacities.

The consistent improvement patterns observed in both
users’ QoE metrics and network metrics, regardless of the
content size, are indeed interesting findings. The CDCA
solution, by caching content near users at high speeds,
effectively reduces transmission time and improves overall
performance, regardless of the size of the content being
delivered.

This result suggests that the CDCA architecture efficiently
utilizes caching mechanisms to deliver content to users,
irrespective of the content's size. The proximity of the cached
content to the users, combined with the optimized delivery
process, minimizes the impact of content size on transmission
time. Consequently, users experience similar levels of

improvement in QoE metrics, such as reduced delay and
improved perceived performance, regardless of whether they
are accessing small or large content.

Furthermore, improvements were also observed regarding
server throughput and data transfer, reinforcing the
effectiveness and validation of the CDCA architectural
solution. By offloading traffic from the server and optimizing
content delivery through caching, the architecture efficiently
utilizes network resources, leading to reduced server load,
decreased transferred bytes, and improved overall network
operational efficiency while optimizing network performance
and resource utilization.

C. Discussion of the Results

In all three experiments, we can notice that the CDCA
architecture has been effective in reducing the user’s perceived
delay, reducing the network data transfer, and reducing
the network traffic at the content provider’s server. The
improvement on the user’s QoE is intrinsically connected to
the network data transfer reduction since fewer network
segments need to be traversed in order to serve the content
requests. As a result, if several requests are being handled by
the Cache nodes spread over the network, then fewer requests
need to be forwarded to the external content server, reducing
the amount of data exchanged.

Fig. 7 provides valuable insights into the impact of Cache
capacity on the system's performance. As the Cache capacity
increases, the hit rate improves, resulting in a higher
proportion of content being served from the Cache instead of
the content server. This reduces the load on the server and
improves overall throughput. Conversely, when the Cache
capacity is low, frequent evictions occur, leading to more
requests being forwarded to the content server. This not only
increases the load on the server but also decreases the overall
throughput, as observed in the results.

The findings suggest that the Cache capacity should be
carefully considered during system deployment. Insufficient
Cache capacity may result in higher eviction rates and
increased dependence on the content server, ultimately
affecting user experience and server performance. It is
important to allocate an appropriate amount of Cache storage
to accommodate the expected workload and ensure efficient
content caching.

Furthermore, implementing a policy that selectively caches
specific types of content, such as popular videos or audio, can
optimize Cache utilization and prevent waste of resources. By
focusing caching efforts on high-demand content, the Cache
capacity can be effectively utilized to serve the most
frequently requested content, enhancing overall performance
and reducing the strain on the system.

These insights highlight the importance of careful Cache
capacity planning and policy management in real-world
deployments. By considering the workload characteristics,
content popularity, and resource constraints, ISPs can design
caching solutions that maximize the benefits of caching while
efficiently utilizing Cache resources.

As depicted in Fig. 4 and Fig. 7, bigger content chunk

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

864 | P a g e

www.ijacsa.thesai.org

sizes and Cache storage leads to better results, indicating
that large caches improve the system’s performance.
Nowadays, storage capacity is not a considerable problem
since the ever-increasing capacity and decreasing prices of
RAM and Flash memory provide affordable storage for huge
capacity data (or files) resulting in superior overall system
performance. And also, the system performance could be
influenced by the Cache eviction policy used.

An initial approach for the ontology taxonomy utilizes four
categories: (1) Content Type, (2) Content Identification, (3)
Content Location, and (4) Content Chunk.

Content Type considers the content media type. There are
two main categories of multimedia: time-sensitive media,
e.g., video and audio, and non-time-sensitive media, e.g.,
documents and software. In the CDCA architecture, the time-
sensitive content has to be treated in a different way in order
to maintain the seamless delivery rate and guarantee the
user real-time QoE. The video and audio parameters, i.e.,
resolution and CODEC, are used to quantify the required
media rate in order to set the network provision once the end-
user file is selected, preferably through the ontology search and
found mechanism.

Content Identification is used to identify the content name,
version, date and hash. This information is important for
checking the content version to ensure that the most updated
content version is delivered to the end user.

Finally, the use of multiple SDN controllers, proxies
and caches, provides scalability by growing infrastructure
horizontally. The Proxy and Cache implementation using
a stateless microservice framework helps to meet all the
scalability requirements. However, further studies will be
necessary to determine any limitations in a large-scale
deployment.

VI. OPEN RESEARCH ISSUES, CHALLENGES AND FUTURE

R&D DIRECTIONS

The CDCA architecture provides a transparent Cache
system to improve the delivery of content objects inside an
ISP infrastructure. Although outside the scope of this paper,
there are still some open research issues that need to be
considered before the CDCA system could be safely and
practically deployed.

A. Ontology Issues

The engine should offer the end-user the ability to
find any content in a topic-specific manner, within a very short
response time. In a real-life service production environment,
it is possible for the network provider to host millions of
content objects. To find topic-specific content with the correct
version and date, it is necessary to organize the content index
in an effective and efficient way, which should be approached
through the use of some kind of dynamically updating
knowledge-based ontology and deep machine learning
techniques [35].

Several works have investigated the theory and practice
of the semantic web and CDCA ontologies to organize the
content classification [36]. However, most of these proposals
focused on classifying the content to help the end-user find

specific information, e.g., sport, business, travel, and so on.
Nevertheless, in the CDCA solution, this kind of classification
alone is not very useful because, for resourceful Cache
management, it is not relevant whether the video is about sport
or about travel, because the resolution, transmission rate and
content chunk size are far more critical and significant for the
optimization, sustainability and scalability. This does not mean
that the content sought by the end-user is not important, but
the selected optimum delivery of cached parts is the main
consideration. The twin objectives of optimal seeking and
delivery are crucial in formulating ontology.

Content-Location is important for finding the best
geographic content distribution location point in order to
improve the content QoE and the load balancing criteria during
transmission.

The Content Chunk defines how the content chunk is
divided and organized to improve the overall delivery and
system performance. The content chunk is an atomic particle
and it is the main element in the design of the CDCA
architecture. The definition of its length is important to satisfy
optimum delivery and system performance.

 In a content-based network, the same content may have
different names due to various reasons such as alternate
naming strategies, load balancing, content distribution
strategies, or user location-based routing. This can result in
duplicate copies of the same content being stored in caches,
leading to wastage of memory and storage resources.

To address this issue and avoid unnecessary hosting and
caching of duplicate content, a hash mechanism can be
employed. By calculating a hash value based on the content's
data, such as using hash functions like MD5 or SHA-1, it
becomes possible to determine whether multiple requests refer
to identical content or not. The hash value serves as a unique
identifier for the content, regardless of its name or location.

When a request is received, the system can calculate the
hash value of the requested content and compare it with the
existing Cache entries. If a matching hash value is found, it
indicates that the content is already cached, and there is no
need to store another copy. Instead, the existing cached copy
can be retrieved and served to the requesting user.

By using a hash mechanism, the CDCA architecture can
effectively identify and eliminate duplicate copies of content,
thereby optimizing memory and storage resources in caches. It
ensures that only one copy of the content is stored, regardless
of the different names or variations associated with it due to
load balancing or other factors. This approach helps in
reducing storage overhead and improving the overall
efficiency of the content delivery system.

B. Optimization Issues

Although the CDCA architecture shows improvements in
the response time of content requests and in the reduction
of traffic from an external content provider, many aspects
can be improved, as discussed in Section IV-C. We also
envisage that it is possible to improve the content inspection
algorithm to optimize searching and the application of a
load-balancing mechanism. Although the system seems to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

865 | P a g e

www.ijacsa.thesai.org

be scalable, further studies are necessary to determine any
limitations in a large-scale system.

As noted earlier, the CDCA architecture utilized
OpenFlow 1.0 because more recent versions do not offer
any new field to improve the CDCA system. However, if a
future version of the OpenFlow protocol implements matches
in the HTTP Content-Type field, it will be able to forward
certain specific MIME requests, for example, “video/mp4”,
direct to the Cache, avoiding the need for a Proxy. Even so,
the content lookup should be done by the OpenFlow
Controller instead of the Proxy. The lookup inside the switch
diverges from the OpenFlow philosophy to maintain
simplicity.

The issues mentioned in Section IV-C can be resolved
by the configurable architecture. The configurable software
approach means that the network administrator can deploy
new VMs or adjust VM configuration, i.e., allocate memory
and disk capacity when needed. This function can be
accomplished by a cloud management and orchestration
system. The CDCA prototype provides an open API that
offers the capacity to change the eviction algorithm on-the-fly.
The evaluation utilized the Least Frequently Used (LFU)
eviction algorithm over RAM memory, as described in
Section IV-D. In future research work it will compare the
system behavior using various cache policies.

A critical issue, that should be investigated in the future, is
the popularity prediction of User Generated Content (UGC).
This is a valuable tool for content providers and advertisers.
As the cached content is delivered inside the own ISP, the
content provider could not get access to the user’s profile. An
interesting approach is proposed by Figueiredo et al [37].

It tackles the popularity prediction trend of a UGC
object as early as possible to infer the user behavior. The
results obtained by using YouTube datasets show an
improvement of 38% in classification effectiveness, compared
to the baseline approaches. Using this approach, the ISP can
collect the user’s information and notify the content provider.

C. Security Issues

The CDCA system deployment within an ISP opens an
opportunity with varying degrees of risk for external and
internal security attacks of various kinds. It is possible that
the CDCA critical infrastructure is susceptible to Distributed
Denial of Service (DDoS) attacks affecting server provision
and slowing down (or completely shutting down) the service,
thereby frustrating the end user [38]. The distributed and open
structure of a Cache system and its associated services can
make it an attractive target for potential cyber-attacks. As
with any system connected to the Internet, it is important to
consider security measures to protect against intruders and
mitigate the risks associated with cyber-attacks. These
intruders can masquerade and manipulate various types of
multimedia content, and therefore a supporting set of safety
measures and security mechanisms and services would be
needed to prevent intrusions and breaches. This would require
a versatile, collaborative Intrusion Detection and Prevention
System (IDPS) which must be flexible enough to guarantee
smooth optimized streaming throughput flows with near-zero

(minimum) glitches.

Given the openness, and transparent nature of the mix-
mode multimedia content delivery caching SDN architecture,
traditional IDPS mechanisms would be fundamentally
inefficient and ineffective [39]. In particular, it would be
extremely difficult to detect intrusions in transparent
multimedia content, hence preventing subsequent intrusions
without employing a smart IDPS. It must involve advanced
machine learning and computational intelligence techniques
and the use of the five fundamental principles of autonomic
self-management computing, knowledge base and ontology,
risk management, fuzzy theory, and advanced artificial
intelligence techniques [40] to leverage and satisfy the
detection and prevention securi ty capabili t ies of a
Cache system. By incorporating these advanced techniques
and concepts, the Cache system can enhance its ability to
detect and prevent cyber-attacks, improve threat response
mechanisms, and optimize overall security operations [41]
[42]. However, it's important to consider the specific
requirements and constraints of the Cache system via proper
risk assessment and adapt these techniques accordingly to
achieve effective and efficient operational and security
outcomes.

HTTP/2 includes encryption as an optional facility. It is
not mandatory because encryption can result in unnecessary
jitter and distortion of the smooth viewing flow of videos.
Many experts consider encryption unfeasible for ordinary
large run-of-the-mill content delivery of videos. However,
when and where cryptography is required, we also observe
other major safety measures (security, privacy, trust, ID
management, Digital Rights Management (DRM), digital
blockchaining (virtual currencies), audit, digital forensic, non-
copyediting, copyright infringement, permission to use,
royalties, payments, etc.), and in particular issues related to
the hiding of secret information using steganography will have
to go beyond HTTP/2 specification. The complexities of these
sets of safety measures are best accommodated by a
comprehensive ontology.

D. Copyright Infringement and Payment Issues

Another issue of importance and concern is that the CDCA
architecture considers all content to be public without any
restriction to distribution, which, however, makes the CDCA
architecture unsuitable to deliver protected and paid content,
such as required by some VoDs. Another example would be
the rights of the content owner or their agent to be paid for
documentaries, films, or music. Such content should typically
be encrypted and the VoD provider can provide a temporary
digital security key to the subscriber to decrypt the content for
a certain period of time based on a payment scheme and
without allowing copying of the content for further illegal
distribution. This can be potentially achieved by activating the
signature timeout period in conjunction with monitoring if the
user attempts to copy the content. After this expiry period,
the key is invariably disallowed, requiring the subscriber to
renew the key to access the content. Implementing these
security and protection measures requires careful
consideration of technical, legal, and business aspects. It
involves collaboration between content providers, payment
service providers, DRM vendors, and security experts to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

866 | P a g e

www.ijacsa.thesai.org

design and deploy a comprehensive and effective solution.
This suggested scenario requires intensive research to fully
define and design a secure payment mechanism that also
curtails illegal copying, as well as verify and validate the
mechanism for business deployment.

VII. CONCLUSION AND FUTURE WORK

This research has described a content-based transparent
caching architecture in SDN. It provides a highly available,
reliable and scalable caching of named content on SDN-based
ISP networks, independent of specific underlying applications
and middleware protocols. The research has also
demonstrated that the caching mechanisms are driven by
business policy needs and can be d e p l o y e d i n any
networks, using the NFV approach and the microservice-
based framework architecture. One notable aspect of the
CDCA architecture is its support for the HTTP protocol,
which remains the primary protocol for content delivery over
the Internet. Rather than replacing HTTP, the system
complements it by introducing transparent caching
mechanisms that enhance content delivery and improve QoE
for users.

The experimental evaluation conducted in the research
demonstrates the effectiveness of the CDCA system. It shows
improvements in user QoE and various QoS network metrics
related to delivery times and scalability. This validation
reinforces the benefits of the architecture and its potential to
enhance content delivery in real-world network scenarios.

The CDCA architectural system has some important
outstanding issues that should be addressed in future research
and development work. At present, there is no effort by
content providers and related industry players to develop a
standardized naming scheme for content, which is crucial for
efficient and optimum search and delivery of content, as well
as for avoiding duplication of names and content hosted all
throughout the provider network. In addition, the new naming
scheme should avoid the same content with different names
being downloaded multiple times. It is important for content
providers and industry players to recognize the significance of
a standardized naming scheme and work toward its
development and adoption.

In future research work, the intent is to address many of
the issues mentioned in the previous section. In addition,
further research work is planned to perform analyses of
several other video content providers, other than YouTube, to
adapt the CDCA solution, if necessary. Another critical
issue, which will b e investigated, is the popularity prediction
of UGC, which is a valuable tool for content providers and
advertisers for revenue generation.

Finally, another area for future work involves system
security. In the CDCA architecture, the ISP acts as a content
provider, and it could suffer external and internal DDoS
attacks, affecting servers slowing/shutting down the service
and frustrating users. Further, multimedia content could be
manipulated for illegal cybercrime activities, which should be
avoided through the proper implementation of safety
measures. Traditional IDPS is largely inefficient for the CDCA
environment due to its architecture and virtualization. A new

IDPS paradigm should be designed to achieve a high level of
security health in the service provider network. In addition, we
have highlighted issues related to secure payment and royalty
awarding schemes for content that is primarily declared as
public but that requires payment to intellectual property
owners or their agents. Property rights issues also involve
various safety measures. These system security challenges
require creative solutions and therefore offer opportunities for
further research.

ACKNOWLEDGMENT

I sincerely wish to thank Alex F R Trajano, Ahmed Patel,
and Marcial P Fernandez for allowing the use of their
experimental data and for their valuable guidance throughout
this study and research work, including proofreading this
paper.

REFERENCES

[1] J. S. Turner and D. E. Taylor, “Diversifying the Internet,” in IEEE
Global Telecommunications Conference (GLOBECOM 2005), vol. 2,
IEEE. Institute of Electrical & Electronics Engineers (IEEE), Dec 2005,
pp. 760–766.

[2] Cisco, “Cisco visual networking index: Forecast and methodology,
2016-2021 white paper,” [Online]. Available:
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/complete-white-paper-c11-481360.html

[3] J. F. Gantz, D. Reinsel, C. Chute, W. Schlichting, J. Mcarthur, S.
Minton, I. Xheneti, A. Toncheva, and A. Manfrediz, “The expanding
digital universe: A forecast of worldwide information growth through,”
Information and Data 2007, pp. 1–21, 2010.

[4] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,
“A survey of information-centric networking,” IEEE Communications
Magazine, vol. 50, no. 7, pp. 26–36, July 2012.

[5] L. Veltri, G. Morabito, S. Salsano, N. Blefari-Melazzi, and A. Detti,
“Supporting information-centric functionality in software defined
networks,” in IEEE International Conference on Communications
(ICC2012). IEEE, 2012, pp. 6645–6650.

[6] A. Ooka, S. Ata, T. Koide, H. Shimonishi, and M. Murata, “Openflow-
based content-centric networking architecture and router
implementation,” in Future Network and Mobile Summit
(FutureNetworkSummit 2013). IEEE, July 2013, pp. 1–10.

[7] X. N. Nguyen, D. Saucez, and T. Turletti, “Efficient caching in content-
centric networks using openflow,” in Proceedings IEEE INFOCOM
2013, April 2013, pp. 1–2.

[8] D. Syrivelis, G. Parisis, D. Trossen, P. Flegkas, V. Sourlas, T. Korakis,
and L. Tassiulas, “Pursuing a software defined information-centric
network,” in European Workshop on Software Defined Networking
(EWSDN2012). IEEE, Oct 2012, pp. 103–108.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, Mar 2008.

[10] M. Ciosi et al., “Network functions virtualisation: an introduction,
benefits, enablers, challenges and call for action, introductory white
paper,” in “SDN and OpenFlow World Congress”, 2012, pp. 152–160.

[11] A. Chanda and C. Westphal, “A content management layer for software-
defined information centric networks,” in Proceedings of the 3rd ACM
SIGCOMM workshop on Information-centric networking, ACM. ACM,
2013, pp. 47–48.

[12] P. Georgopoulos, M. Broadbent, B. Plattner, and N. Race, “Cache
as a service: leveraging sdn to efficiently and transparently support
video-on-demand on the last mile,” in 23rd International Conference on
Computer Communication and Networks (ICCCN2014). IEEE, Aug
2014, pp. 1–9.

[13] A. F. Trajano and M. P. Fernandez, “Two-phase load balancing of in-
memory key-value storages using network functions virtualization

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

867 | P a g e

www.ijacsa.thesai.org

(nfv),” Journal of Network and Computer Applications, vol. 69, pp. 1–
13, Jul 2016.

[14] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann,
“Logically centralized?: State distribution trade-offs in software defined
networks,” in Proceedings of the First Workshop on Hot Topics in
Software Defined Networks, ser. HotSDN ’12, ACM. New York, NY,
USA: ACM, 2012, pp. 1–6.

[15] M. P. Fernandez, “Comparing openflow Controller paradigms scalability:
Reactive and proactive,” in IEEE 27th International Conference
on Advanced Information Networking and Applications (AINA2013).
IEEE, March 2013, pp. 1009–1016.

[16] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode, “Migratory tcp:
Connection migration for service continuity in the internet,” in
Distributed Computing Systems, 2002. Proceedings. 22nd International
Conference on. IEEE, 2002, pp. 469–470.

[17] S. Koulouzis, A. S. Belloum, M. T. Bubak, Z. Zhao, M. Živković, and C.
T. de Laat, “SDN-aware federation of distributed data,” Future
Generation Computer Systems, vol. 56, pp. 64–76, March 2016.

[18] M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer Protocol
Version 2 (HTTP/2),” RFC 7540 (Proposed Standard), Internet
Engineering Task Force, May 2015.

[19] S. Wei and V. Swaminathan, “Low latency live video streaming over
http 2.0,” in Proceedings of Network and Operating System Support on
Digital Audio and Video Workshop, ser. NOSSDAV ’14. New York,
NY, USA: ACM, 2014, pp. 37:37–37:42.

[20] S. Alcock and R. Nelson, “Application flow control in YouTube video
streams,” ACM SIGCOMM Computer Communication Review, vol. 41,
no. 2, p. 24, apr 2011.

[21] T. Hoßfeld, R. Schatz, and U. R. Krieger, “QoE of Youtube video
streaming for current internet transport protocols,” in Measurement,
Modelling, and Evaluation of Computing Systems and Dependability and
Fault Tolerance. Bamberg, Germany: Springer International Publishing,
2014, pp. 136–150.

[22] V. K. Adhikari, S. Jain, and Z.-L. Zhang, “Where do you"tube"?
Uncovering youtube server selection strategy,” in Proceedings of 20th
International Conference on Computer Communications and Networks
(ICCCN2011). IEEE, 2011, pp. 1–6.

[23] A. Balamash and M. Krunz, “An overview of web caching replacement
algorithms,” IEEE Communications Surveys & Tutorials, vol. 6, no. 2,
pp. 44–56, 2004.

[24] J. Wang, “A survey of web caching schemes for the internet,” ACM
SIGCOMM Computer Communication Review, vol. 29, no. 5, pp. 36–46,
1999.

[25] S. Gao, Y. Zeng, H. Luo, and H. Zhang, “Scalable control plane for
intra-domain communication in software defined information centric
networking,” Future Generation Computer Systems, vol. 56, pp. 110
– 120, March 2016.

[26] K. Phemius, M. Bouet, and J. Leguay, “Disco: Distributed multi-domain
sdn controllers,” in IEEE Network Operations and Management
Symposium (NOMS2014). IEEE, May 2014, pp. 1–4.

[27] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Towards an elastic distributed sdn Controller,” ACM SIGCOMM
Computer Communication Review, vol. 43, no. 4, pp. 7–12, 2013.

[28] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards
an open, distributed sdn os,” in Proceedings of the Third Workshop on
Hot Topics in Software Defined Networking, ser. HotSDN ’14, ACM.
New York, NY, USA: ACM, 2014, pp. 1–6.

[29] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
SIGCOMM Comput. Commun. Rev., vol. 31, no. 4, pp. 149–160, Aug.
2001.

[30] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the Ninth
ACM SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets ’10.
New York, NY, USA: ACM, 2010, pp. 19:1–19:6.

[31] D. Erickson, “Floodlight Java based OpenFlow Controller,” [Online].
Available: http://floodlight.openflowhub. org/

[32] B. Augustin and A. Mellouk, “On Traffic Patterns of HTTP
Applications,” in IEEE Global Telecommunications Conference
(GLOBECOM 2011), Dec 2011, pp. 1–6.

[33] N. L. M. Van Adrichem, C. Doerr, and F. Kuipers, “Opennetmon:
Network monitoring in OpenFlow Software-Defined Networks,” in
IEEE Network Operations and Management Symposium (NOMS’2014).
IEEE, May 2014, pp. 1–8.

[34] J. Famaey, F. Iterbeke, T. Wauters, and F. De Turck, “Towards a
predictive Cache replacement strategy for multimedia content,” Journal
of Network and Computer Applications, vol. 36, no. 1, pp. 219–227,
2013.

[35] N. Talpur, S. J. Abdulkadir, H. Alhussian, M. H. Hasan, N. Aziz, A.
Bamhdi. A comprehensive review of deep neuro-fuzzy system
architectures and their optimization methods. Neural Comput & Applic
34, 1837–1875 (2022). https://doi.org/10.1007/s00521-021-06807-9.

[36] S. Dumais and H. Chen, “Hierarchical classification of web content,”
in Proceedings of the 23rd annual international ACM SIGIR conference
on Research and development in information retrieval, ser. SIGIR ’00,
ACM. New York, NY, USA: ACM, 2000, pp. 256–263.

[37] F. Figueiredo, J. M. Almeida, M. A. Gonçalves, and F. Benevenuto,
“TrendLearner: Early prediction of popularity trends of user generated
content,” Information Sciences, vol. 349-350, pp. 172–187, July 2016.

[38] Tiago Linhares, Ahmed Patel, Ana Luiza Barros and Marcial Fernandez.
2023. SDNTruth: Innovative DDoS Detection Scheme for
Software‑Defined Networks (SDN). Journal of Network and Systems
Management, (2023) 31:55, (online) https://doi.org/10.1007/s10922-
023-09741-4

[39] A. Patel, M. Taghavi, K. Bakhtiyari, and J. C. Júnior, “An intrusion
detection and prevention system in cloud computing: A systematic
review,” Journal of Network and Computer Applications, vol. 36, no. 1,
pp. 25–41, Jan 2013.

[40] N. Talpur, S. J. Abdulkadir, H. Alhussian, M. H. Hasan, N. Aziz, A.
Bamhdi. “Deep Neuro-Fuzzy System application trends, challenges, and
future perspectives: a systematic survey.” Artificial Intelligence Review.
13:1-49. (2023). https://doi.org/10.1007/s10462-022-10188-3.

[41] A. Patel, H. Alhussian, J. M. Pedersen, B. Bounabat, J. C. Júnior, and
S. Katsikas, “A nifty collaborative intrusion detection and prevention
architecture for smart grid ecosystems,” Computers & Security, vol. 64,
pp. 92–109, January 2017

[42] A. M. Bamhdi. FLORA: Fuzzy Logic - Objective Risk Analysis for
Intrusion Detection and Prevention IJCSNS International Journal of
Computer Science and Network Security, VOL.23 No.5, pp.179-192
May 2023. https://doi.org/10.22937/IJCSNS.2023.23.5.20

[43] Leyva-Mayorga, Israel, et al. "Network-coded cooperation and multi-
connectivity for massive content delivery." IEEE Access 8 (2020): pp
15656-15672.

[44] Cisco Annual Internet Report (2018–2023) White Paper. Available:
https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html

[45] Hong, Dohy, Danny De Vleeschauwer, and Francois Baccelli. "A chunk-
based caching algorithm for streaming video." NET-COOP 2010-4th
Workshop on Network Control and Optimization. 2010.

http://floodlight.openflowhub/

