
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

893 | P a g e

www.ijacsa.thesai.org

Hybrid Integrated Aquila Optimizer for Efficient

Service Composition with Quality of Service

Guarantees in Cloud Computing

Xiaofei Liu1*

School of Computer and Information, Anqing Normal University

Anqing 246133, Anhui, China

Abstract—The prompt evolution of cloud computing

technology has given rise to the emergence of countless cloud-

based services. However, guaranteeing Quality of Service (QoS)

awareness in service composition poses a substantial difficulty in

cloud computing. A solitary service cannot effectively handle the

complicated requests and varied demands of real-world

situations. In some instances, one service alone may not be

enough to fulfill users' particular requirements, prompting the

integration of several services to satisfy these needs. As an NP-

hard problem, service composition has been addressed using

many metaheuristic algorithms. In this context, the proposed

methodology presents a new blended technique, referred to as

Integrated Aquila Optimizer (IAO), which amalgamates

conventional Aquila Optimizer (AO) and Particle Swarm

Optimization (PSO) algorithm. The central objective of this

hybridization is to tackle the shortcomings confronted by both

AO and PSO algorithms. Specifically, these algorithms are

known to get stuck in local search areas and show limited

solution variety. To address these challenges, the proposed

method introduces a novel transition mechanism that facilitates

suitable adjustments between the search operators, ensuring

continual improvements in the solutions. The transition

mechanism allows the algorithm to switch between AO and PSO

when any of them gets stuck or when the diversity of solutions

decreases. This adaptability enhances the overall performance

and effectiveness of the hybrid approach. The proposed IAO

method is exhaustively tested through experiments conducted

using the Cloudsim simulation platform. The numerical findings

confirm the effectiveness of the suggested approach regarding

dependability, accessibility, and expenses, which are essential

factors of cloud computing.

Keywords—Cloud computing; service composition; Particle

Swarm Optimization; Aquila optimizer

I. INTRODUCTION

Cloud computing is a prevalent method for providing on-
demand resources and services. Its pay-as-you-go strategy has
attracted considerable attention from businesses and research
institutions, particularly in areas that require substantial and
intricate computing tasks, such as aerospace, bioinformatics,
and physics [1]. Elastic computing capabilities are provided to
cloud users through cloud computing, encapsulating these
capabilities as Virtual Machines (VMs) deployed on Physical
Hosts (PHs) controlled by the management center. These
resources are fabricated and made accessible to users based on
their availability and the required quality parameters [2]. Cloud

computing has become a popular choice for large institutions
and IT companies for its reliability, cost-effectiveness, and
security. The rise of dependable and credible cloud providers
has greatly diminished concerns about embracing this method
[3, 4].

However, two significant challenges must be addressed
regarding service accessibility and efficient allocation
prospects. Predicting all the necessary services, particularly in
software services, is a challenging task [5]. To tackle this issue,
providing simple and fundamental services that can be
combined to form more complex services is essential [6].
Different service providers can contribute to these building
block services, making it easier to address the diverse needs of
users. The second hurdle is selecting the ideal combination of
mandatory and individual services, each supplied by different
suppliers with variable quality of service (QoS) features [7].
This involves optimizing the formation of complex services
while considering a vast number of similar single services
offered by different providers. As an NP-hard problem, this
presents a formidable computational challenge. Service
composition has emerged as one of the most effective
approaches proposed and utilized by cloud providers and
researchers alike. This approach simultaneously resolves both
of the aforementioned challenges. This technique aims to
ensure service user satisfaction by choosing appropriate
services from a pool, adhering to service composition
restrictions, analyzing important QoS metrics, and accounting
for the unpredictable nature of changing service features and
network conditions [8].

The integration of the Internet of Things (IoT), machine
learning, deep learning, and neural networks represents a
transformative paradigm in addressing the complex challenges
of cloud service composition. IoT devices generate vast
amounts of data, often in diverse formats and characteristics [9-
11]. Machine learning techniques provide the ability to extract
valuable insights from this data, facilitating intelligent
decision-making in the cloud service composition process [12,
13]. Deep learning, a subset of machine learning, excels at
handling complex, unstructured data, such as images, text, and
speech, enabling the automatic recognition of patterns and
correlations in the cloud service context [14, 15]. Neural
networks, inspired by the human brain's interconnected
neurons, offer powerful tools for modeling and optimizing the
intricate relationships between various cloud services,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

894 | P a g e

www.ijacsa.thesai.org

enhancing the accuracy of service composition while adapting
to dynamic and unpredictable conditions [16, 17].

Meta-heuristic algorithms are vital to solving complicated
challenges associated with cloud service composition. These
algorithms, known for their adaptability and problem-solving
versatility, offer effective strategies to optimize the selection
and arrangement of diverse cloud-based services, ensuring QoS
requirements are met, and performance is maximized within
complex cloud computing environments. By efficiently
navigating the vast solution spaces, meta-heuristic algorithms
contribute significantly to achieving optimal service
combinations, which are essential for fulfilling the dynamic
and multifaceted demands of cloud users [18]. This paper
proposes a swarm intelligence-based method for service
composition in cloud computing called Integrated Aquila
Optimizer (IAO). IAO merges the traditional AO and Particle
Swarm Optimization (PSO) algorithms to overcome their
individual constraints. Specifically, IAO addresses the issues of
having low solution diversity and being stuck in local search
areas. The proposed method incorporates a new transition
mechanism to maintain improvements and enhance
performance. This mechanism enables appropriate transitions
between search operators, allowing the algorithm to switch
between AO and PSO when any algorithm becomes stuck or
solution diversity decreases. This paper contributes the
following:

 QoS criteria determine the optimal selection of services.
This ensures that the user's objectives are met
effectively.

 Reductions in response times and cost-of-service
choices lead to faster service composition.

 Power consumption is decreased compared to other
metaheuristic algorithms.

The rest of the paper in arranged in the following manner.
Section ii reviews the related work. Section III explains the
problem statement. Section IV discusses the proposed method.
Simulation results are reported in Section V. Finally, Section
VI concludes the paper and suggests some hints for upcoming
research.

II. RELATED WORK

Bao, et al. [19] proposed a new approach called the
Evolutionary Multitasking Algorithm for Cloud Computing
Service Composition Problem (EMA-CCSC). EMA-CCSC
stands out due to its capacity to optimize two service
composition tasks concurrently, unlike traditional solvers that
handle composite service requests one at a time after pooling
them in a waiting queue. This enhanced optimization capability
allows EMA-CCSC to handle a greater number of tasks more
quickly, leading to improved efficiency. To evaluate the
performance of EMA-CCSC, the researchers conducted
experiments using the QWS dataset. They resolved a series of
randomly generated service composition tasks varying in size
and structure. Experiments suggest that EMA-CCSC is
superior to other algorithms with varying properties. Notably,
EMA-CCSC achieves this performance while spending only
half of its computational expenses. Qi, et al. [20] introduce

models for evaluating Quality of Service (QoS) and propose a
mathematical model for optimizing Web service composition
regarding QoS. Additionally, a knowledge-driven differential
evolution process is presented for optimizing Web service
composition. By incorporating structural knowledge, this
algorithm significantly enhances the convergence velocity. The
research includes simulation experiments and an evaluation
methodology, with results demonstrating that KDE
(knowledge-based differential evolution) outperforms the PSO
algorithm and original differential evolution for Web service
composition.

Hosseinzadeh, et al. [21] have presented a novel integrated
approach termed the Artificial Neural Network-based Particle
Swarm Optimization (ANN-PSO) Algorithm, which is tailored
to augment the Quality of Service (QoS) attributes within
cloud-edge computing. The crux of their contribution lies in
introducing a formal verification technique that employs
labeled transition systems to evaluate crucial linear temporal
logic equations systematically. This verification process
bolsters the efficacy of candidate composite services and
optimizes various QoS parameters within the context of the
hybrid algorithm. The outcomes of the experiment exhibit the
exceptional effectiveness of the proposed model, highlighted
by its minimal verification time, low memory consumption,
and capability to ensure critical specifications based on Linear
Temporal Logic (LTL) formulas. Furthermore, they noted that
the recommended model exceeds other service composition
algorithms, attaining the ideal timing, reliability, and cost.
Souri, et al. [22] introduced a hybrid formal verification
approach to evaluate service composition in multi-cloud
environments. The objective was to enhance the ultimate
service configuration by reducing the number of cloud vendors
involved while maintaining a high QoS. Their method involved
a behavioral model to analyze request flow, selection of
services, and combination within a varied cloud situation. The
suggested procedure utilized model checking using Multi-
Labeled Transition Systems (MLTS) and process algebra using
Pi-Calculus to perform the analysis of service composition.
These techniques were employed to monitor performance
characteristics to measure the quality of service. The authors
conducted experiments to validate the feasibility of their
proposed approach, utilizing performance evaluations and
confirmation setups. The experimental results demonstrated the
effectiveness and viability of the approach in achieving
optimized multi-cloud service composition with reliable QoS
standards.

Wang and Liu [23] introduced an inventive approach by
fusing the firefly optimization algorithm (FOA) with fuzzy
logic, presenting a methodology adept at effectively
harmonizing multiple QoS parameters while adhering to
connectivity limitations in service composition. The crux of
their contribution lies in the introduction of a novel metric,
termed the model maturity metric, designed to assess the
lifecycle of simulation models across various cloud scenarios.
This study dynamically computes the maturity score for the
amalgamated model, factoring in the collaborative
relationships between model services. The authors further
devised a new algorithm that integrates FOA and fuzzy logic to
optimize and synthesize cloud model services. Empirical

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

895 | P a g e

www.ijacsa.thesai.org

findings underscored the efficacy of the proposed technique. It
showcased a superior performance compared to previous
methodologies in key aspects like energy consumption,
availability, and response time. This substantiates the
efficiency of the suggested approach in significantly enhancing
the Quality of Service (QoS) within the realm of cloud service
composition. Mohapatra, et al. [24] introduced a Multi-Criteria
Decision-Making methodology that employs the Simple
Additive Weighting (SAW) technique. This methodology
assists customers in determining the preferable cloud service
from a range of available services based on their individual
satisfaction criteria.

Additionally, they proposed an enhanced approach called
Eagle Strategy with Whale Optimization algorithm (ESWOA).
This enhanced technique helps balance local and global
optima, ensuring efficient optimization of cloud services. The
system proposes time-saving, dependable, and trustworthy
cloud services from the available pool by combining these
methodologies. This recommendation system aids customers in
finding the appropriate cloud services to satisfy their specific
demands.

III. PROBLEM STATEMENT

Service composition identifies the most suitable set of
Cloud-based Services (CSs) from an array of available services
to enhance user experience while adhering to QoS constraints.
In Fig. 1, the formal definition of service composition is
presented. It assumes that from a total of m candidate services
available in the cloud, n services (𝑋1, 𝑋2,⋯, 𝑋𝑛) must be
combined to achieve the desired QoS and meet the user's
requirements. There are various ways to combine a set of
services, but evaluating all possible combinations and selecting
the optimal method is time-consuming. This paper addresses
the service combining issue using IAO. The system model for
cloud service composition consists of several key components,
including Cloud Providers (CPs), service requirements, QoS
constraints, and types of composite service profiles. Different
CP partners must collaborate and work together in a supply
chain format to meet all service requirements. This
collaboration allows them to leverage their unique strengths
and capabilities, creating an optimal package of services that
fulfills the customer's needs and ensures the highest QoS.
Effective communication and coordination among CP partners
are essential for a successful collaboration. CPs may offer
multiple services, each involving one or more CPs. To meet the
complex needs of customers, services from different
commercial independent cloud platforms can be combined
through mutual communication. This flexibility in combining
services from various sources enhances the ability to satisfy
customers' diverse and evolving requirements effectively.

In QoS-aware service composition, the cloud user initially
provides a list of abstract services that describe the application
requirements for a specific task. The cloud provider then
composes these abstract services into a concrete and executable
workflow, which is deployed within the cloud environment.
The cloud provider considers the user's specified QoS
constraints throughout this composition process, such as
performance, reliability, and cost. These constraints play a
crucial role in ensuring that the composed services meet the

user's needs while optimizing the resulting workflow's cost,
performance, and reliability. To achieve this optimization, the
cloud provider evaluates and weighs the different QoS
requirements against each other. By doing so, they can make
informed decisions to select the most suitable composition of
services that best aligns with the user's goals and fulfills the
specified QoS constraints. Consider a set of n customer service
requirements represented as R = (R1, R2, ..., Ri, Rn) (1 ≤ i ≤ n).
Each abstract service Si (1 ≤ i ≤ n) can satisfy a specific
requirement Ri in a particular order, adhering to the user's
preferences and priorities for service composition. Cloud pools
offer services catering to clients' diverse needs from numerous
providers, aiming to boost their profitability. As client needs
can be complex, they may require the compilation and
orchestration of multiple services. Service composition aims to
combine and organize these various services into a formalized
workflow that efficiently processes client requests. Figure 2
illustrates the process of composing a cloud service, where n
tasks represent the client's request. Each workflow task is
matched with candidate services during service discovery. An
optimization algorithm is employed to select the most suitable
services to create a coherent path that fulfills the client's
requirements.

Fig. 1. Service composition model.

A workflow in this context represents a client request
comprising n tasks and a list of m candidate services. These
workflows are represented using directed acyclic graphs
(DAGs) with five tuples. V = (T1, T2, ..., Tn) represents the
workflow of n tasks, and each task includes a list of candidate

services denoted as (𝑆1
1, 𝑆2

2, … , 𝑆𝑛
𝑚), where 𝑆𝑖

𝑗
 (1 ≤ i ≤ n, 1 ≤ j ≤

m) represents the jth service for the ith task. An association
between the services and QoS parameters is represented by E.
The QoS parameters for the jth service are denoted as

(𝑃1,𝑖
1 , 𝑃2,𝑖

2 , … , 𝑃𝑄,𝑛
𝑚 , where 𝑃𝑟,𝑖

𝑗
(1 ≤ 𝑟 ≤ 𝑄) represents the rth

QoS parameter for the jth service. Here, C represents the values
of the QoS parameters, represented as 𝐶 = (𝐶1, 𝐶2, … , 𝐶𝑄) .

The workflow patterns can be loop, conditional, parallel, or
sequential, and they are denoted as P. Q denotes the number of
QoS parameters in the system. Furthermore, W represents the
clients' QoS desires, represented as 𝑊 = (𝑊1, 𝑊2, … , 𝑊𝑄) ,

indicating the specific values and priorities the clients require
for the QoS parameters.

In the given formulation, there are multiple potential
solutions in the form of infinite paths, with a total of less than

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

896 | P a g e

www.ijacsa.thesai.org

m solutions. However, the results obtained from optimization
algorithms reveal that only one solution stands out as the best
among all others. Hence, the service composition problem can
be seen as a multi-objective optimization problem, as the goal
is to find a single optimal solution. In the context of mobile
cloud computing environments, the battery life of mobile
devices is a critical factor. Therefore, three QoS factors,
namely cost, response time, and energy, play a significant role
in determining the optimal service composition. These QoS
parameters are further divided into positive and negative
factors. Positive factors, such as availability and throughput,
are most beneficial to users when their values increase. On the
other hand, negative factors, such as energy consumption and
response time, benefit the user when their values are decreased.
Optimization algorithms are employed to calculate the
solution's fitness based on the following formula, which

considers the various QoS parameters and their effect on user
satisfaction.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
= 𝑊1. 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡𝑖𝑚𝑒0
+ 𝑊2. 𝐸𝑛𝑒𝑟𝑔𝑦 + 𝑊3. 𝐶𝑜𝑠𝑡

(1)

In Eq. (1), the values of W1, W2, and W3 are constrained to
range from 0 to 1, and their sum is equal to 1. The proposed
algorithm aims to select a composite service that yields the
lowest fitness value. Table I illustrate the existing QoS factors,
calculated using sum and product operations and then
normalized to fall from 0 to 1. This normalization process
ensures that all the QoS factors are on a comparable scale,
allowing the algorithm to make a fair assessment and selection
of the composite service with the most favorable QoS
attributes.

TABLE I. QOS AGGREGAATION FORMULAS AND WORKFLOW PATTERNS

QoS parameter Loop Fork Branch Sequential

Cost

Energy consumption

Response time

IV. INTEGRATED AQUILA OPTIMIZER FOR SERVICE

COMPOSITION

A. Aquila Optimizer

The Aquila Optimization (AO) algorithm draws inspiration
from the hunting behaviors of the Aquila (eagle) during its
pursuit of prey. The hunting process involves four steps:
expanded exploration, narrowed exploration, expanded
exploitation, and narrowed exploitation. To transition from the
exploration stage to the exploitation stage, the AO algorithm
incorporates various behaviors. In the initial two-thirds of
iterations, the algorithm replicates the exploration phase,
followed by the emulation of the exploitation phase in the
concluding one-third of iterations. Mathematically, the AO
algorithm can be described as follows:

Initializing: A total of N solutions are strategically
distributed within a D-dimensional exploration domain,
delimited by a predetermined range denoted as [L, U]. This
allocation is accomplished through the utilization of Eq. (2),
where Xi,j denotes the value in the jth dimension of the ith
solution. Here, Lj and Uj signify the lower and upper boundary
values pertaining to the jth dimension within the exploration
space, while r signifies a randomly generated value within the
range of 0 to 1. The spatial coordinates of these solutions are
meticulously recorded in a matrix denoted as XN×D.
Subsequently, the fitness value for each individual solution is
computed through the function f(Xi).

𝑋𝑖,𝑗 = 𝐿𝑗 + 𝑟 × (𝑈𝑗 − 𝐿𝑗) (2)

Expanded exploration: An Aquila, or eagle, employs a
distinct strategy for locating potential prey by identifying
regions of interest and strategically selecting optimal hunting
locations through a combination of high soaring and vertical
stooping. This behavior enables the bird to survey the search
area from elevated vantage points, aiding in the estimation of
potential prey locations. The AO algorithm simulates this
approach to expand exploration, as captured by Eq. (3). This
simulation occurs when the ongoing iteration count is less than
two-thirds of the total maximum iterations, and a randomly
generated value falls below 0.5. Within Eq. (3), X1(iter + 1)
corresponds to the solution generated from the prime method,
intended for utilization in the subsequent iteration. Xbest(iter)
designates the best solution discovered up to the current
iteration, serving as an approximation of the prey's position.

The term (1 −
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
) is employed to regulate the extent of

exploration based on the progression of iterations. Here, iter
denotes the current iteration count, and MaxIter represents the
total number of iterations. In the iterth iteration, XM(iter)
represents the mean of the presently available solutions,
computed using Eq. (4). This mean value acts as a guide for the
exploration process, providing a directional influence for the
algorithm as it navigates the search space in pursuit of the
optimal solution.

𝑋1(𝑖𝑡𝑒𝑟 + 1) = 𝑋𝑏𝑒𝑠𝑡(𝑖𝑡𝑒𝑟) × (1 −
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
)

+ (𝑋𝑀(𝑖𝑡𝑒𝑟) − 𝑋𝑏𝑒𝑠𝑡(𝑖𝑡𝑒𝑟) × 𝑟)

(3)

𝑋𝑀(𝑖𝑡𝑒𝑟) =
1

𝑁
∑ 𝑋𝑖(𝑖𝑡𝑒𝑟), ∀𝑗 = 1,2, … , 𝐷

𝑁

𝑖=1

(4)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

897 | P a g e

www.ijacsa.thesai.org

In Eq. (4), the variable N denotes the total number of
solutions within the population, while D signifies the
dimensionality of the search space.

Narrowed exploration: The hunting behavior of the Aquila,
referred to as "contour flight" or "short glide attack," involves
the bird hovering over its intended prey, descending swiftly
upon spotting the prey from an elevated position. This tactic
allows the Aquila to explore a designated region with precision
thoroughly. The AO algorithm emulates this focused
exploration strategy through Eq. (5), enacted when the ongoing
iteration count remains less than two-thirds of the maximum
iterations and a randomly generated value exceeds 0.5. In Eq.
(5), X2(iter + 1) represents the solution generated by the
narrowed exploration technique. XR(iter) denotes a solution
randomly selected from the entire set of solutions during the
iter-th iteration.

Additionally, Levy(D) signifies the Levy flight distribution
function, calculated via Eq. (6). The Levy flight distribution
function, as defined in Eq. (6), exerts an influence on the
movement of solutions during the narrowed exploration phase.
By introducing controlled random deviations, this distribution
facilitates dynamic and efficient exploration of the search
space. This stochastic behavior enables the algorithm to focus
on specific areas of interest during the narrowed exploration
phase, potentially leading to the discovery of promising
solutions.

𝑋2(𝑖𝑡𝑒𝑟 + 1) = 𝑋𝑏𝑒𝑠𝑡(𝑖𝑡𝑒𝑟) × 𝐿𝑒𝑣𝑦(𝐷) + 𝑋𝑅(𝑖𝑡𝑒𝑟)
+ (𝑦 − 𝑥) × 𝑟

(5)

𝐿𝑒𝑣𝑦(𝐷) = 𝑠 ×
𝑢 × 𝜎

|𝜐|
1
𝛽

, 𝜎 = (
Γ(1 + 𝛽) × sin (

𝜋𝛽
2

)

Γ(
1 + 𝛽

2
) × β × 2(

𝛽−1
2

)
)

(6)

Eq. (6) delineates the parameter values as follows: β = 1.5
and s = 0.01. In addition, the variables u and v are integer
values randomly generated within the range of 0 to 1. Moving
to Eq. (5), the spiral pattern is depicted through the variables y
and x, which are computed using Eq. (7). Eq. (7) relies on the
calculations of the variables r and θ. The value of r is
established using Eq. (8), while the value of θ is computed
through Eq. (9). In Eq. (8) and Eq. (9), the number of search
cycles is determined by the random number r1, which assumes
values between 1 and 20. D1 denotes an integer value ranging
from 1 to D, where D signifies the dimensionality of the search
space. U is a constant set to 0.0056, and ω is another constant
established at 0.005. These parameters collectively contribute
to the computation of the spiral form in Eq. (7), playing a
pivotal role in shaping the movement and exploration patterns
of solutions during the narrowed exploration phase within the
framework of the AO algorithm.

𝑦 = 𝑝 × cos(𝜃) , 𝑥 = 𝑝 × sin (𝜃) (7)

𝑝 = 𝑟1 + 𝑈 × 𝐷1 (8)

𝜃 = −𝜔 × 𝐷1 + 𝜃1, 𝜃1 =
3 × 𝜋

2

(9)

Expanded exploitation: Aquila adopts the "low-flying
descent attack" tactic to capture its target in the expanded

exploitation phase. After carefully identifying the prey zone,
the Aquila prepares to descend and attack. It descends
vertically and executes the first strike to gauge how the prey
would respond. The AO algorithm simulates this low-flying
descent attack behavior using Eq. (10). It is performed when
the current iteration is greater than two-thirds of the maximum
iterations and a randomly generated value is less than 0.5. Eq.
(10) introduces X3(iter + 1) as the solutions generated through
the expanded exploitation approach. The parameters governing
exploitation adjustment, α and δ, are both fixed at a value of
0.1. These parameters play a role in fine-tuning the exploration
and exploitation balance during the expanded exploitation
stage. The values of α and δ help control the level of
exploitation, influencing how the algorithm explores the
promising regions discovered earlier and refines the solutions
to find the optimal solution more effectively.

𝑋3(𝑖𝑡𝑒𝑟 + 1) = (𝑋𝑏𝑒𝑠𝑡(𝑖𝑡𝑒𝑟) − 𝑋𝑀(𝑖𝑡𝑒𝑟)) × 𝛼 − 𝑟

+ ((𝑈 − 𝐿) × 𝑟 + 𝐿) × 𝛿

(10)

Narrowed exploitation: In the narrower exploitation phase,
the Aquila adopts a "walking and grabbing the prey" strategy,
characterized by a randomized approach towards the prey
followed by an attack. This action is executed when the current
iteration is greater than two-thirds of the maximum iterations
and a randomly generated value is greater than 0.5. This
behavior is simulated using Eq. (11). In Eq. (11), X4(iter + 1)
signifies the fourth search solution generated, X(iter) denotes
the current solution during the iterth iteration, and a quality
function referred to as QF is computed using Eq. (12) to
regulate and balance the search strategy. To determine the
values of G1 and G2, which represent the Aquila's prey tracking
movements, Eq. (13) and Eq. (14) are utilized.

𝑋4(𝑖𝑡𝑒𝑟 + 1) = 𝑄𝐹(𝑖𝑡𝑒𝑟) × 𝑋𝑏𝑒𝑠𝑡(𝑖𝑡𝑒𝑟)
− (𝐺1 × 𝑋(𝑖𝑡𝑒𝑟) × 𝑟) − 𝐺2

× 𝐿𝑒𝑣𝑦(𝐷) + 𝑟 × 𝐺1

(11)

𝑄𝐹(𝑖𝑡𝑒𝑟) = 𝑡
2×𝑟−1

(1−𝑀𝑎𝑥𝐼𝑡𝑒𝑟)2

(12)

𝐺1 = 2 × 𝑟 − 1 (13)

𝐺2 = 2 × (1 −
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
)

(14)

B. Particle Swarm Optimization

PSO is an intelligent, biologically inspired algorithm that
draws its origins from the study of avian predatory behavior.
At its core, PSO operates on the principle of identifying
optimal solutions through collaborative interaction and the
exchange of information among individual members within a
group. In PSO, each individual is represented as a bird, and
their positions and speeds are treated as independent variables.
The objective function value at each location is related to the
food density, and the goal is to find the optimal location with
the highest food density, which corresponds to the optimal
solution to the problem. Each bird adjusts its search direction
and speed based on the difference between its historical best
position and the best position found by the entire population.
By continuously updating their positions and speeds and
sharing information with each other, the bird swarm gradually

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

898 | P a g e

www.ijacsa.thesai.org

converges toward the optimal population location. This
collective effort leads to finding the optimal solution called
problem convergence.

Within the realm of optimization, the PSO algorithm is
often conceptualized as a stochastic search challenge occurring
in a D-dimensional space. The central aim is to optimize a
given objective function. In this D-dimensional environment, a
population of n particles are denoted as pi = (pi1, pi2, ..., piD)T,
where each ith particle is composed of a d-dimensional position
vector xi = (xi1, xi2, ..., xid)T and a velocity vector vi = (vi1, vi2,
..., vid)T. The PSO algorithm commences with each particle
initiating its search within the D-dimensional space, leveraging
an initial set of randomized particles. Through a series of
iterative updates, the particle embarks on a quest to identify an
optimal solution. During this continuous exploration, the
particle maintains its present optimal position, pi = (pi1, pi2, ...,
pid)T, representing its local optimum, and its velocity vi = (vi1,
vi2, ..., vid)T. The global optimal solution, pg = (pg1, pg2, ...,
pgd)T, signifies the finest solution collectively discovered by
the entire particle swarm during optimization. In each iteration,
the particle refines its position and velocity by considering two
distinct "optimal solutions": its local best position and the
global best position. By updating its position and velocity
using the specified equations outlined in Eq. (15) and Eq. (16),
the particle navigates towards its local best position while
being influenced by the superior global best position identified
by the swarm as a whole. The PSO algorithm recurrently
applies these updates, fostering the gradual convergence of

particles towards the global optimal solution. This iterative
process orchestrates the collective efforts of particles,
ultimately yielding optimization of the objective function and
culminating in the discovery of the paramount solution for the
given optimization quandary.

𝑣𝑖𝑑(𝑡 + 1) = 𝜔𝑣𝑖𝑑(𝑡) + 𝑐1𝑟1(𝑝𝑖𝑑(𝑡) − 𝑥𝑖𝑑(𝑡))

+ 𝑐2𝑟2(𝑝𝑔𝑑(𝑡) − 𝑥𝑖𝑑(𝑡))

(15)

𝑥𝑖𝑑(𝑡 + 1) = 𝑥(𝑡) + 𝑣𝑖𝑑(𝑡 + 1), 𝑖 = 1,2, … , 𝑁; 𝑑
= 1,2, … , 𝐷

(16)

C. Proposed IAO Algorithm

The IAO incorporates two main search methods, namely
the Aquila Optimizer and Particle Swarm Optimizer, to
enhance its search capabilities. A novel transition mechanism
(TM) is employed to balance the search process and preserve
the diversity of solutions. This transition mechanism, as shown
in Eq. (17), aims to prevent the algorithm from getting trapped
in local optima and improve the quality of the candidate
solutions. By combining the strengths of both the Aquila
Optimizer and Particle Swarm Optimizer and using the
transition mechanism, the proposed IAO method aims to
achieve more robust and efficient optimization performance.

𝑇𝑀 =
1

2
𝑆𝑖𝑛 (𝜋 + 2𝜋 ×

𝑡

𝑇
) + 𝑟𝑎𝑛𝑑

(17)

Fig. 2. The flowchart of the proposed method.

Fig. 2 illustrates the general procedure of the proposed IAO
method. The method begins by initializing the solutions and

defining the required parameters, including the transition
parameter (TM). The TM is crucial in determining the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

899 | P a g e

www.ijacsa.thesai.org

optimization process used in each iteration. During the
optimization process, if the value of the TM is greater than the
current iteration number (t), the algorithm utilizes the Aquila
Optimizer's operators for updating the solutions. On the other
hand, if the TM is less than or equal to the current iteration
number (t), the Particle Swarm Optimizer's operators are
employed for updating the solutions. By dynamically switching
between the two search methods based on the TM, the
proposed IAO method enhances the diversity of the solutions.
It avoids getting trapped in specific search areas, especially
local search areas. This approach allows the algorithm to
balance exploration and exploitation effectively, leading to
improved overall performance and better convergence toward
the optimal solution.

V. SIMULATION

To assess the superiority of the IAO method in solving
large-scale cloud service composition problems, its
performance is compared with several other algorithms:
Genetic Algorithm (GA), Max-Min Ant System (MMAS),
Artificial Bee Colony (ABC), and PSO. The comparison is
conducted using two large-scale problems denoted by the task
scale T(n, m), where n represents the number of subtasks equal
to 30, m represents the number of candidate services for each
subtask, with m ∈ {100, 300}. For instance, T(30, 300)
indicates 30 subtasks and 300 candidate services. In this
comparison, the QoS evaluation index is normalized.

Fig. 3 and Fig. 4 present the box plots of the average QoS
fitness values obtained from the experimental data for each
cloud service composition problem scale. These box plots
allow for a visual comparison of the performance of different
algorithms, showcasing the distribution and variation in their
average fitness values. Fig. 5 shows the average time
consumption for each algorithm during the experiment. Based
on the computational results, it is evident that the IAO method
outperforms the other algorithms regarding the maximum
fitness values obtained. In the T (30, 100) problems, the

maximum values in all five algorithms are relatively similar.
However, as the scale of the problem increases, a noticeable
gap starts to emerge between IAO and the other algorithms.
IAO consistently performs at the top, GA and PSO at the
bottom, and MMAS and ABC in the middle. The IAO method
demonstrates faster optimization time compared to MMAS as
the scale of the problem increases. This advantage becomes
more pronounced for larger and more complex cloud service
composition problems. IAO's faster optimization lies in its
incorporation of GA to optimize the solutions generated by the
ant colony algorithm. By combining these two optimization
techniques, IAO can dynamically adjust and fine-tune the
solutions, fully leveraging the strengths of the genetic
algorithm.

The stability of the optimal solution is indeed superior in
both IAO and MMAS compared to other algorithms, such as
GA and PSO. The key reason behind this enhanced stability is
that IAO and MMAS are designed to effectively avoid local
optima during optimization. Ant-colony algorithms, including
MMAS, utilize pheromone-based communication and
exploration, which allows them to strike a balance between
exploitation and exploration. This helps prevent premature
convergence to local optima and encourages the algorithm to
explore a more diverse and promising search space. On the
other hand, GA and PSO are more prone to premature
convergence, especially in complex optimization problems.
This can lead to less stable solutions as they might get trapped
in local optima, failing to explore other potential regions of the
search space. It is evident from the results that IAO
outperforms the other algorithms in terms of accuracy,
especially as the scale of the problem increases. The higher
accuracy achieved by IAO can be attributed to the strengths of
the ant algorithm in searching large spaces. The AO is
particularly well-suited for exploring complex and vast search
spaces, as it leverages pheromone-based communication and
dynamic adjustments to navigate the problem domain
efficiently.

Fig. 3. Box plot of the optimal solution for 100 candidate services.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

900 | P a g e

www.ijacsa.thesai.org

Fig. 4. Box plot of the optimal solution for 300 candidate services.

Fig. 5. Time consumption comparison.

Additionally, the iterative adjustment threshold and
increased ant population size introduced in the IAO algorithm
contribute to its improved accuracy. These modifications help
fine-tune the search process and facilitate more thorough
exploration, which enables IAOs to find high-quality solutions
more effectively. As the scale of the problem grows, the
advantage of IAO becomes more pronounced, as it can
consistently deliver more accurate solutions compared to other
algorithms like MMAS and GA. This demonstrates the
capability of IAO as a robust and accurate optimization
method, making it a promising choice for tackling large-scale
cloud service composition problems and other complex
optimization challenges.

VI. CONCLUSION

Cloud computing has gained immense popularity due to its
numerous benefits, such as cost-effectiveness and the ability to

offer a wide range of hardware and software services.
However, composing different services to fulfill complex
requests poses challenging Np-hard problems. To overcome
this, service composition becomes essential for creating more
extensive services with enhanced functionalities. This paper
introduced a novel hybrid method called IAO, which combines
the strengths of both the conventional AO and PSO algorithms.
By combining AO and PSO, this hybridization aims to address
their weaknesses, such as low solution diversity and being
trapped in local search. To tackle these challenges, the
proposed IAO method incorporates a unique transition
mechanism that enables seamless changes between search
operators. This mechanism allows the algorithm to switch
between AO and PSO when necessary, especially when either
algorithm gets stuck, or the diversity of solutions declines. This
adaptability enhances the overall performance and
effectiveness of the hybrid approach. The performance of the

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12

A
v
er

ag
e

ti
m

e
co

n
su

m
p

ti
o

n
 (

s)

PSO GA MMAS IAO

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

901 | P a g e

www.ijacsa.thesai.org

IAO method is extensively tested through experiments on the
Cloudsim simulation platform. Comparative experiments are
conducted, and the results demonstrate that IAO significantly
improves the accuracy and stability of large-scale cloud service
composition problems. Moreover, the time consumption of the
algorithm is also optimized, showcasing its efficiency in
solving complex optimization problems.

In future research, this work can be extended in several
directions. First, a deeper exploration of the scalability and
adaptability of the IAO in larger, more complex cloud
environments could offer valuable insights. Additionally,
investigating the integration of IAO with emerging
technologies like edge computing or hybrid cloud setups could
enhance its applicability across diverse computing landscapes.
Further research could refine the transition mechanism of IAO
to dynamically adapt to changing network conditions and
varying service demands in real-time. Moreover, exploring the
impact of IAO in multi-objective optimization scenarios to
simultaneously optimize conflicting QoS metrics would be a
compelling avenue for advancement. Lastly, a thorough
investigation into the security implications and resilience of
IAO against potential attacks or failures within cloud
environments could be a pivotal direction for future
improvement.

FUNDING

This work was supported by Anhui Province Department of
Education University Scientific Research Fund
(KJ2019A0570).

REFERENCES

[1] B. Pourghebleh, A. A. Anvigh, A. R. Ramtin, and B. Mohammadi, "The
importance of nature-inspired meta-heuristic algorithms for solving
virtual machine consolidation problem in cloud environments," Cluster
Computing, pp. 1-24, 2021.

[2] P. Bakaraniya, S. Patel, and P. Singh, "5G Enabled Smart City Using
Cloud Environment," in Predictive Analytics in Cloud, Fog, and Edge
Computing: Perspectives and Practices of Blockchain, IoT, and 5G:
Springer, 2022, pp. 199-226.

[3] K. Prasanna Kumar and K. Kousalya, "Amelioration of task scheduling in
cloud computing using crow search algorithm," Neural Computing and
Applications, vol. 32, no. 10, pp. 5901-5907, 2020.

[4] K. K. Gola, B. M. Singh, B. Gupta, N. Chaurasia, and S. Arya, "Multi‐
objective hybrid capuchin search with genetic algorithm based
hierarchical resource allocation scheme with clustering model in cloud
computing environment," Concurrency and Computation: Practice and
Experience, vol. 35, no. 7, p. e7606, 2023.

[5] V. Hayyolalam, B. Pourghebleh, and A. A. Pourhaji Kazem, "Trust
management of services (TMoS): Investigating the current mechanisms,"
Transactions on Emerging Telecommunications Technologies, vol. 31,
no. 10, p. e4063, 2020.

[6] V. Hayyolalam, B. Pourghebleh, M. R. Chehrehzad, and A. A. Pourhaji
Kazem, "Single‐objective service composition methods in cloud
manufacturing systems: Recent techniques, classification, and future
trends," Concurrency and Computation: Practice and Experience, vol. 34,
no. 5, p. e6698, 2022.

[7] P. Behrouz, H. Vahideh, and A. A. Aghaei, "Service discovery in the
Internet of Things: review of current trends and research challenges,"
Wireless Networks, vol. 26, no. 7, pp. 5371-5391, 2020.

[8] H. Vahideh, P. Behrouz, P. K. A. Asghar, and A. Ghaffari, "Exploring the
state-of-the-art service composition approaches in cloud manufacturing
systems to enhance upcoming techniques," The International Journal of
Advanced Manufacturing Technology, vol. 105, no. 1-4, pp. 471-498,
2019.

[9] B. Pourghebleh and V. Hayyolalam, "A comprehensive and systematic
review of the load balancing mechanisms in the Internet of Things,"
Cluster Computing, pp. 1-21, 2019.

[10] P. He, N. Almasifar, A. Mehbodniya, D. Javaheri, and J. L. Webber,
"Towards green smart cities using Internet of Things and optimization
algorithms: A systematic and bibliometric review," Sustainable
Computing: Informatics and Systems, vol. 36, p. 100822, 2022, doi:
https://doi.org/10.1016/j.suscom.2022.100822.

[11] S. Habib, S. Aghakhani, M. G. Nejati, M. Azimian, Y. Jia, and E. M.
Ahmed, "Energy management of an intelligent parking lot equipped with
hydrogen storage systems and renewable energy sources using the
stochastic p-robust optimization approach," Energy, p. 127844, 2023.

[12] R. Singh et al., "Analysis of Network Slicing for Management of 5G
Networks Using Machine Learning Techniques," Wireless
Communications and Mobile Computing, vol. 2022, 2022.

[13] S. N. H. Bukhari, J. Webber, and A. Mehbodniya, "Decision tree based
ensemble machine learning model for the prediction of Zika virus T-cell
epitopes as potential vaccine candidates," Scientific Reports, vol. 12, no.
1, p. 7810, 2022.

[14] B. M. Jafari, M. Zhao, and A. Jafari, "Rumi: An Intelligent Agent
Enhancing Learning Management Systems Using Machine Learning
Techniques," Journal of Software Engineering and Applications, vol. 15,
no. 9, pp. 325-343, 2022.

[15] T. Gera, J. Singh, A. Mehbodniya, J. L. Webber, M. Shabaz, and D.
Thakur, "Dominant feature selection and machine learning-based hybrid
approach to analyze android ransomware," Security and Communication
Networks, vol. 2021, pp. 1-22, 2021.

[16] J. Webber, A. Mehbodniya, Y. Hou, K. Yano, and T. Kumagai, "Study on
idle slot availability prediction for WLAN using a probabilistic neural
network," in 2017 23rd Asia-Pacific Conference on Communications
(APCC), 2017: IEEE, pp. 1-6.

[17] M. Sadi et al., "Special Session: On the Reliability of Conventional and
Quantum Neural Network Hardware," in 2022 IEEE 40th VLSI Test
Symposium (VTS), 2022: IEEE, pp. 1-12.

[18] S. Mahmoudinazlou, A. Alizadeh, J. Noble, and S. Eslamdoust, "An
improved hybrid ICA-SA metaheuristic for order acceptance and
scheduling with time windows and sequence-dependent setup times,"
Neural Computing and Applications, pp. 1-19, 2023.

[19] L. Bao et al., "An evolutionary multitasking algorithm for cloud
computing service composition," in Services–SERVICES 2018: 14th
World Congress, Held as Part of the Services Conference Federation,
SCF 2018, Seattle, WA, USA, June 25–30, 2018, Proceedings 14, 2018:
Springer, pp. 130-144.

[20] J. Qi, B. Xu, Y. Xue, K. Wang, and Y. Sun, "Knowledge based
differential evolution for cloud computing service composition," Journal
of Ambient Intelligence and Humanized Computing, vol. 9, pp. 565-574,
2018.

[21] M. Hosseinzadeh et al., "A Hybrid Service Selection and Composition
Model for Cloud-Edge Computing in the Internet of Things," IEEE
Access, vol. 8, pp. 85939-85949, 2020.

[22] A. Souri, A. M. Rahmani, N. J. Navimipour, and R. Rezaei, "A hybrid
formal verification approach for QoS-aware multi-cloud service
composition," Cluster Computing, vol. 23, pp. 2453-2470, 2020.

[23] W. Wang and Z. Liu, "Cloud Service Composition using Firefly
Optimization Algorithm and Fuzzy Logic," International Journal of
Advanced Computer Science and Applications, vol. 14, no. 3, 2023.

[24] S. S. Mohapatra, R. R. Kumar, and J. Pradhan, "Hybrid eagle strategy for
QOS-based cloud service composition," Journal of Information and
Optimization Sciences, vol. 43, no. 5, pp. 1047-1059, 2022.

