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Abstract—The prompt evolution of cloud computing 

technology has given rise to the emergence of countless cloud-

based services. However, guaranteeing Quality of Service (QoS) 

awareness in service composition poses a substantial difficulty in 

cloud computing. A solitary service cannot effectively handle the 

complicated requests and varied demands of real-world 

situations. In some instances, one service alone may not be 

enough to fulfill users' particular requirements, prompting the 

integration of several services to satisfy these needs. As an NP-

hard problem, service composition has been addressed using 

many metaheuristic algorithms. In this context, the proposed 

methodology presents a new blended technique, referred to as 

Integrated Aquila Optimizer (IAO), which amalgamates 

conventional Aquila Optimizer (AO) and Particle Swarm 

Optimization (PSO) algorithm. The central objective of this 

hybridization is to tackle the shortcomings confronted by both 

AO and PSO algorithms. Specifically, these algorithms are 

known to get stuck in local search areas and show limited 

solution variety. To address these challenges, the proposed 

method introduces a novel transition mechanism that facilitates 

suitable adjustments between the search operators, ensuring 

continual improvements in the solutions. The transition 

mechanism allows the algorithm to switch between AO and PSO 

when any of them gets stuck or when the diversity of solutions 

decreases. This adaptability enhances the overall performance 

and effectiveness of the hybrid approach. The proposed IAO 

method is exhaustively tested through experiments conducted 

using the Cloudsim simulation platform. The numerical findings 

confirm the effectiveness of the suggested approach regarding 

dependability, accessibility, and expenses, which are essential 

factors of cloud computing. 
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I. INTRODUCTION 

Cloud computing is a prevalent method for providing on-
demand resources and services. Its pay-as-you-go strategy has 
attracted considerable attention from businesses and research 
institutions, particularly in areas that require substantial and 
intricate computing tasks, such as aerospace, bioinformatics, 
and physics [1]. Elastic computing capabilities are provided to 
cloud users through cloud computing, encapsulating these 
capabilities as Virtual Machines (VMs) deployed on Physical 
Hosts (PHs) controlled by the management center. These 
resources are fabricated and made accessible to users based on 
their availability and the required quality parameters [2]. Cloud 

computing has become a popular choice for large institutions 
and IT companies for its reliability, cost-effectiveness, and 
security. The rise of dependable and credible cloud providers 
has greatly diminished concerns about embracing this method 
[3, 4]. 

However, two significant challenges must be addressed 
regarding service accessibility and efficient allocation 
prospects. Predicting all the necessary services, particularly in 
software services, is a challenging task [5]. To tackle this issue, 
providing simple and fundamental services that can be 
combined to form more complex services is essential [6]. 
Different service providers can contribute to these building 
block services, making it easier to address the diverse needs of 
users. The second hurdle is selecting the ideal combination of 
mandatory and individual services, each supplied by different 
suppliers with variable quality of service (QoS) features [7]. 
This involves optimizing the formation of complex services 
while considering a vast number of similar single services 
offered by different providers. As an NP-hard problem, this 
presents a formidable computational challenge. Service 
composition has emerged as one of the most effective 
approaches proposed and utilized by cloud providers and 
researchers alike. This approach simultaneously resolves both 
of the aforementioned challenges. This technique aims to 
ensure service user satisfaction by choosing appropriate 
services from a pool, adhering to service composition 
restrictions, analyzing important QoS metrics, and accounting 
for the unpredictable nature of changing service features and 
network conditions [8]. 

The integration of the Internet of Things (IoT), machine 
learning, deep learning, and neural networks represents a 
transformative paradigm in addressing the complex challenges 
of cloud service composition. IoT devices generate vast 
amounts of data, often in diverse formats and characteristics [9-
11]. Machine learning techniques provide the ability to extract 
valuable insights from this data, facilitating intelligent 
decision-making in the cloud service composition process [12, 
13]. Deep learning, a subset of machine learning, excels at 
handling complex, unstructured data, such as images, text, and 
speech, enabling the automatic recognition of patterns and 
correlations in the cloud service context [14, 15]. Neural 
networks, inspired by the human brain's interconnected 
neurons, offer powerful tools for modeling and optimizing the 
intricate relationships between various cloud services, 
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enhancing the accuracy of service composition while adapting 
to dynamic and unpredictable conditions [16, 17]. 

Meta-heuristic algorithms are vital to solving complicated 
challenges associated with cloud service composition. These 
algorithms, known for their adaptability and problem-solving 
versatility, offer effective strategies to optimize the selection 
and arrangement of diverse cloud-based services, ensuring QoS 
requirements are met, and performance is maximized within 
complex cloud computing environments. By efficiently 
navigating the vast solution spaces, meta-heuristic algorithms 
contribute significantly to achieving optimal service 
combinations, which are essential for fulfilling the dynamic 
and multifaceted demands of cloud users [18]. This paper 
proposes a swarm intelligence-based method for service 
composition in cloud computing called Integrated Aquila 
Optimizer (IAO). IAO merges the traditional AO and Particle 
Swarm Optimization (PSO) algorithms to overcome their 
individual constraints. Specifically, IAO addresses the issues of 
having low solution diversity and being stuck in local search 
areas. The proposed method incorporates a new transition 
mechanism to maintain improvements and enhance 
performance. This mechanism enables appropriate transitions 
between search operators, allowing the algorithm to switch 
between AO and PSO when any algorithm becomes stuck or 
solution diversity decreases. This paper contributes the 
following: 

 QoS criteria determine the optimal selection of services. 
This ensures that the user's objectives are met 
effectively. 

 Reductions in response times and cost-of-service 
choices lead to faster service composition. 

 Power consumption is decreased compared to other 
metaheuristic algorithms. 

The rest of the paper in arranged in the following manner. 
Section ii reviews the related work. Section III explains the 
problem statement. Section IV discusses the proposed method. 
Simulation results are reported in Section V. Finally, Section 
VI concludes the paper and suggests some hints for upcoming 
research. 

II. RELATED WORK 

Bao, et al. [19] proposed a new approach called the 
Evolutionary Multitasking Algorithm for Cloud Computing 
Service Composition Problem (EMA-CCSC). EMA-CCSC 
stands out due to its capacity to optimize two service 
composition tasks concurrently, unlike traditional solvers that 
handle composite service requests one at a time after pooling 
them in a waiting queue. This enhanced optimization capability 
allows EMA-CCSC to handle a greater number of tasks more 
quickly, leading to improved efficiency. To evaluate the 
performance of EMA-CCSC, the researchers conducted 
experiments using the QWS dataset. They resolved a series of 
randomly generated service composition tasks varying in size 
and structure. Experiments suggest that EMA-CCSC is 
superior to other algorithms with varying properties. Notably, 
EMA-CCSC achieves this performance while spending only 
half of its computational expenses. Qi, et al. [20] introduce 

models for evaluating Quality of Service (QoS) and propose a 
mathematical model for optimizing Web service composition 
regarding QoS. Additionally, a knowledge-driven differential 
evolution process is presented for optimizing Web service 
composition. By incorporating structural knowledge, this 
algorithm significantly enhances the convergence velocity. The 
research includes simulation experiments and an evaluation 
methodology, with results demonstrating that KDE 
(knowledge-based differential evolution) outperforms the PSO 
algorithm and original differential evolution for Web service 
composition. 

Hosseinzadeh, et al. [21] have presented a novel integrated 
approach termed the Artificial Neural Network-based Particle 
Swarm Optimization (ANN-PSO) Algorithm, which is tailored 
to augment the Quality of Service (QoS) attributes within 
cloud-edge computing. The crux of their contribution lies in 
introducing a formal verification technique that employs 
labeled transition systems to evaluate crucial linear temporal 
logic equations systematically. This verification process 
bolsters the efficacy of candidate composite services and 
optimizes various QoS parameters within the context of the 
hybrid algorithm. The outcomes of the experiment exhibit the 
exceptional effectiveness of the proposed model, highlighted 
by its minimal verification time, low memory consumption, 
and capability to ensure critical specifications based on Linear 
Temporal Logic (LTL) formulas. Furthermore, they noted that 
the recommended model exceeds other service composition 
algorithms, attaining the ideal timing, reliability, and cost. 
Souri, et al. [22] introduced a hybrid formal verification 
approach to evaluate service composition in multi-cloud 
environments. The objective was to enhance the ultimate 
service configuration by reducing the number of cloud vendors 
involved while maintaining a high QoS. Their method involved 
a behavioral model to analyze request flow, selection of 
services, and combination within a varied cloud situation. The 
suggested procedure utilized model checking using Multi-
Labeled Transition Systems (MLTS) and process algebra using 
Pi-Calculus to perform the analysis of service composition. 
These techniques were employed to monitor performance 
characteristics to measure the quality of service. The authors 
conducted experiments to validate the feasibility of their 
proposed approach, utilizing performance evaluations and 
confirmation setups. The experimental results demonstrated the 
effectiveness and viability of the approach in achieving 
optimized multi-cloud service composition with reliable QoS 
standards. 

Wang and Liu [23] introduced an inventive approach by 
fusing the firefly optimization algorithm (FOA) with fuzzy 
logic, presenting a methodology adept at effectively 
harmonizing multiple QoS parameters while adhering to 
connectivity limitations in service composition. The crux of 
their contribution lies in the introduction of a novel metric, 
termed the model maturity metric, designed to assess the 
lifecycle of simulation models across various cloud scenarios. 
This study dynamically computes the maturity score for the 
amalgamated model, factoring in the collaborative 
relationships between model services. The authors further 
devised a new algorithm that integrates FOA and fuzzy logic to 
optimize and synthesize cloud model services. Empirical 
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findings underscored the efficacy of the proposed technique. It 
showcased a superior performance compared to previous 
methodologies in key aspects like energy consumption, 
availability, and response time. This substantiates the 
efficiency of the suggested approach in significantly enhancing 
the Quality of Service (QoS) within the realm of cloud service 
composition. Mohapatra, et al. [24] introduced a Multi-Criteria 
Decision-Making methodology that employs the Simple 
Additive Weighting (SAW) technique. This methodology 
assists customers in determining the preferable cloud service 
from a range of available services based on their individual 
satisfaction criteria. 

Additionally, they proposed an enhanced approach called 
Eagle Strategy with Whale Optimization algorithm (ESWOA). 
This enhanced technique helps balance local and global 
optima, ensuring efficient optimization of cloud services. The 
system proposes time-saving, dependable, and trustworthy 
cloud services from the available pool by combining these 
methodologies. This recommendation system aids customers in 
finding the appropriate cloud services to satisfy their specific 
demands. 

III. PROBLEM STATEMENT 

Service composition identifies the most suitable set of 
Cloud-based Services (CSs) from an array of available services 
to enhance user experience while adhering to QoS constraints. 
In Fig. 1, the formal definition of service composition is 
presented. It assumes that from a total of m candidate services 
available in the cloud, n services (𝑋1, 𝑋2,⋯, 𝑋𝑛) must be 
combined to achieve the desired QoS and meet the user's 
requirements. There are various ways to combine a set of 
services, but evaluating all possible combinations and selecting 
the optimal method is time-consuming. This paper addresses 
the service combining issue using IAO. The system model for 
cloud service composition consists of several key components, 
including Cloud Providers (CPs), service requirements, QoS 
constraints, and types of composite service profiles. Different 
CP partners must collaborate and work together in a supply 
chain format to meet all service requirements. This 
collaboration allows them to leverage their unique strengths 
and capabilities, creating an optimal package of services that 
fulfills the customer's needs and ensures the highest QoS. 
Effective communication and coordination among CP partners 
are essential for a successful collaboration. CPs may offer 
multiple services, each involving one or more CPs. To meet the 
complex needs of customers, services from different 
commercial independent cloud platforms can be combined 
through mutual communication. This flexibility in combining 
services from various sources enhances the ability to satisfy 
customers' diverse and evolving requirements effectively. 

In QoS-aware service composition, the cloud user initially 
provides a list of abstract services that describe the application 
requirements for a specific task. The cloud provider then 
composes these abstract services into a concrete and executable 
workflow, which is deployed within the cloud environment. 
The cloud provider considers the user's specified QoS 
constraints throughout this composition process, such as 
performance, reliability, and cost. These constraints play a 
crucial role in ensuring that the composed services meet the 

user's needs while optimizing the resulting workflow's cost, 
performance, and reliability. To achieve this optimization, the 
cloud provider evaluates and weighs the different QoS 
requirements against each other. By doing so, they can make 
informed decisions to select the most suitable composition of 
services that best aligns with the user's goals and fulfills the 
specified QoS constraints. Consider a set of n customer service 
requirements represented as R = (R1, R2, ..., Ri, Rn) (1 ≤ i ≤ n). 
Each abstract service Si (1 ≤ i ≤ n) can satisfy a specific 
requirement Ri in a particular order, adhering to the user's 
preferences and priorities for service composition. Cloud pools 
offer services catering to clients' diverse needs from numerous 
providers, aiming to boost their profitability. As client needs 
can be complex, they may require the compilation and 
orchestration of multiple services. Service composition aims to 
combine and organize these various services into a formalized 
workflow that efficiently processes client requests. Figure 2 
illustrates the process of composing a cloud service, where n 
tasks represent the client's request. Each workflow task is 
matched with candidate services during service discovery. An 
optimization algorithm is employed to select the most suitable 
services to create a coherent path that fulfills the client's 
requirements. 

 
Fig. 1. Service composition model. 

A workflow in this context represents a client request 
comprising n tasks and a list of m candidate services. These 
workflows are represented using directed acyclic graphs 
(DAGs) with five tuples. V = (T1, T2, ..., Tn) represents the 
workflow of n tasks, and each task includes a list of candidate 

services denoted as (𝑆1
1, 𝑆2

2, … , 𝑆𝑛
𝑚), where 𝑆𝑖

𝑗
 (1 ≤ i ≤ n, 1 ≤ j ≤ 

m) represents the jth service for the ith task. An association 
between the services and QoS parameters is represented by E. 
The QoS parameters for the jth service are denoted as 

( 𝑃1,𝑖
1 , 𝑃2,𝑖

2 , … , 𝑃𝑄,𝑛
𝑚 , where 𝑃𝑟,𝑖

𝑗
(1 ≤ 𝑟 ≤ 𝑄)  represents the rth 

QoS parameter for the jth service. Here, C represents the values 
of the QoS parameters, represented as 𝐶 = (𝐶1, 𝐶2, … , 𝐶𝑄) . 

The workflow patterns can be loop, conditional, parallel, or 
sequential, and they are denoted as P. Q denotes the number of 
QoS parameters in the system. Furthermore, W represents the 
clients' QoS desires, represented as 𝑊 = (𝑊1, 𝑊2, … , 𝑊𝑄) , 

indicating the specific values and priorities the clients require 
for the QoS parameters. 

In the given formulation, there are multiple potential 
solutions in the form of infinite paths, with a total of less than 
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m solutions. However, the results obtained from optimization 
algorithms reveal that only one solution stands out as the best 
among all others. Hence, the service composition problem can 
be seen as a multi-objective optimization problem, as the goal 
is to find a single optimal solution. In the context of mobile 
cloud computing environments, the battery life of mobile 
devices is a critical factor. Therefore, three QoS factors, 
namely cost, response time, and energy, play a significant role 
in determining the optimal service composition. These QoS 
parameters are further divided into positive and negative 
factors. Positive factors, such as availability and throughput, 
are most beneficial to users when their values increase. On the 
other hand, negative factors, such as energy consumption and 
response time, benefit the user when their values are decreased. 
Optimization algorithms are employed to calculate the 
solution's fitness based on the following formula, which 

considers the various QoS parameters and their effect on user 
satisfaction. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
= 𝑊1. 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑡𝑖𝑚𝑒0
+ 𝑊2. 𝐸𝑛𝑒𝑟𝑔𝑦 + 𝑊3. 𝐶𝑜𝑠𝑡 

(1) 

In Eq. (1), the values of W1, W2, and W3 are constrained to 
range from 0 to 1, and their sum is equal to 1. The proposed 
algorithm aims to select a composite service that yields the 
lowest fitness value. Table I illustrate the existing QoS factors, 
calculated using sum and product operations and then 
normalized to fall from 0 to 1. This normalization process 
ensures that all the QoS factors are on a comparable scale, 
allowing the algorithm to make a fair assessment and selection 
of the composite service with the most favorable QoS 
attributes.

TABLE I.  QOS AGGREGAATION FORMULAS AND WORKFLOW PATTERNS 

QoS parameter Loop Fork Branch Sequential 

Cost 

 

 

 
 

Energy consumption 

 

 

  

Response time 

 

 

  
 

IV. INTEGRATED AQUILA OPTIMIZER FOR SERVICE 

COMPOSITION 

A. Aquila Optimizer 

The Aquila Optimization (AO) algorithm draws inspiration 
from the hunting behaviors of the Aquila (eagle) during its 
pursuit of prey. The hunting process involves four steps: 
expanded exploration, narrowed exploration, expanded 
exploitation, and narrowed exploitation. To transition from the 
exploration stage to the exploitation stage, the AO algorithm 
incorporates various behaviors. In the initial two-thirds of 
iterations, the algorithm replicates the exploration phase, 
followed by the emulation of the exploitation phase in the 
concluding one-third of iterations. Mathematically, the AO 
algorithm can be described as follows: 

Initializing: A total of N solutions are strategically 
distributed within a D-dimensional exploration domain, 
delimited by a predetermined range denoted as [L, U]. This 
allocation is accomplished through the utilization of Eq. (2), 
where Xi,j denotes the value in the jth dimension of the ith 
solution. Here, Lj and Uj signify the lower and upper boundary 
values pertaining to the jth dimension within the exploration 
space, while r signifies a randomly generated value within the 
range of 0 to 1. The spatial coordinates of these solutions are 
meticulously recorded in a matrix denoted as XN×D. 
Subsequently, the fitness value for each individual solution is 
computed through the function f(Xi). 

𝑋𝑖,𝑗 = 𝐿𝑗 + 𝑟 × (𝑈𝑗 − 𝐿𝑗) (2) 

Expanded exploration: An Aquila, or eagle, employs a 
distinct strategy for locating potential prey by identifying 
regions of interest and strategically selecting optimal hunting 
locations through a combination of high soaring and vertical 
stooping. This behavior enables the bird to survey the search 
area from elevated vantage points, aiding in the estimation of 
potential prey locations. The AO algorithm simulates this 
approach to expand exploration, as captured by Eq. (3). This 
simulation occurs when the ongoing iteration count is less than 
two-thirds of the total maximum iterations, and a randomly 
generated value falls below 0.5. Within Eq. (3), X1(iter + 1) 
corresponds to the solution generated from the prime method, 
intended for utilization in the subsequent iteration. Xbest(iter) 
designates the best solution discovered up to the current 
iteration, serving as an approximation of the prey's position. 

The term (1 −
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
) is employed to regulate the extent of 

exploration based on the progression of iterations. Here, iter 
denotes the current iteration count, and MaxIter represents the 
total number of iterations. In the iterth iteration, XM(iter) 
represents the mean of the presently available solutions, 
computed using Eq. (4). This mean value acts as a guide for the 
exploration process, providing a directional influence for the 
algorithm as it navigates the search space in pursuit of the 
optimal solution. 

𝑋1(𝑖𝑡𝑒𝑟 + 1) = 𝑋𝑏𝑒𝑠𝑡(𝑖𝑡𝑒𝑟) × (1 −
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
)

+ (𝑋𝑀(𝑖𝑡𝑒𝑟) − 𝑋𝑏𝑒𝑠𝑡(𝑖𝑡𝑒𝑟) × 𝑟) 

(3) 

𝑋𝑀(𝑖𝑡𝑒𝑟) =
1

𝑁
∑ 𝑋𝑖(𝑖𝑡𝑒𝑟), ∀𝑗 = 1,2, … , 𝐷

𝑁

𝑖=1
 

(4) 
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In Eq. (4), the variable N denotes the total number of 
solutions within the population, while D signifies the 
dimensionality of the search space. 

Narrowed exploration: The hunting behavior of the Aquila, 
referred to as "contour flight" or "short glide attack," involves 
the bird hovering over its intended prey, descending swiftly 
upon spotting the prey from an elevated position. This tactic 
allows the Aquila to explore a designated region with precision 
thoroughly. The AO algorithm emulates this focused 
exploration strategy through Eq. (5), enacted when the ongoing 
iteration count remains less than two-thirds of the maximum 
iterations and a randomly generated value exceeds 0.5. In Eq. 
(5), X2(iter + 1) represents the solution generated by the 
narrowed exploration technique. XR(iter) denotes a solution 
randomly selected from the entire set of solutions during the 
iter-th iteration. 

Additionally, Levy(D) signifies the Levy flight distribution 
function, calculated via Eq. (6). The Levy flight distribution 
function, as defined in Eq. (6), exerts an influence on the 
movement of solutions during the narrowed exploration phase. 
By introducing controlled random deviations, this distribution 
facilitates dynamic and efficient exploration of the search 
space. This stochastic behavior enables the algorithm to focus 
on specific areas of interest during the narrowed exploration 
phase, potentially leading to the discovery of promising 
solutions. 

𝑋2(𝑖𝑡𝑒𝑟 + 1) = 𝑋𝑏𝑒𝑠𝑡(𝑖𝑡𝑒𝑟) × 𝐿𝑒𝑣𝑦(𝐷) + 𝑋𝑅(𝑖𝑡𝑒𝑟)
+ (𝑦 − 𝑥) × 𝑟 

(5) 

𝐿𝑒𝑣𝑦(𝐷) = 𝑠 ×
𝑢 × 𝜎

|𝜐|
1
𝛽

, 𝜎 = (
Γ(1 + 𝛽) × sin (

𝜋𝛽
2

)

Γ(
1 + 𝛽

2
) × β × 2(

𝛽−1
2

)
) 

(6) 

Eq. (6) delineates the parameter values as follows: β = 1.5 
and s = 0.01. In addition, the variables u and v are integer 
values randomly generated within the range of 0 to 1. Moving 
to Eq. (5), the spiral pattern is depicted through the variables y 
and x, which are computed using Eq. (7). Eq. (7) relies on the 
calculations of the variables r and θ. The value of r is 
established using Eq. (8), while the value of θ is computed 
through Eq. (9). In Eq. (8) and Eq. (9), the number of search 
cycles is determined by the random number r1, which assumes 
values between 1 and 20. D1 denotes an integer value ranging 
from 1 to D, where D signifies the dimensionality of the search 
space. U is a constant set to 0.0056, and ω is another constant 
established at 0.005. These parameters collectively contribute 
to the computation of the spiral form in Eq. (7), playing a 
pivotal role in shaping the movement and exploration patterns 
of solutions during the narrowed exploration phase within the 
framework of the AO algorithm. 

𝑦 = 𝑝 × cos(𝜃) , 𝑥 = 𝑝 × sin (𝜃) (7) 

𝑝 = 𝑟1 + 𝑈 × 𝐷1 (8) 

𝜃 = −𝜔 × 𝐷1 + 𝜃1, 𝜃1 =
3 × 𝜋

2
 

(9) 

Expanded exploitation: Aquila adopts the "low-flying 
descent attack" tactic to capture its target in the expanded 

exploitation phase. After carefully identifying the prey zone, 
the Aquila prepares to descend and attack. It descends 
vertically and executes the first strike to gauge how the prey 
would respond. The AO algorithm simulates this low-flying 
descent attack behavior using Eq. (10). It is performed when 
the current iteration is greater than two-thirds of the maximum 
iterations and a randomly generated value is less than 0.5. Eq. 
(10) introduces X3(iter + 1) as the solutions generated through 
the expanded exploitation approach. The parameters governing 
exploitation adjustment, α and δ, are both fixed at a value of 
0.1. These parameters play a role in fine-tuning the exploration 
and exploitation balance during the expanded exploitation 
stage. The values of α and δ help control the level of 
exploitation, influencing how the algorithm explores the 
promising regions discovered earlier and refines the solutions 
to find the optimal solution more effectively. 

𝑋3(𝑖𝑡𝑒𝑟 + 1) = (𝑋𝑏𝑒𝑠𝑡(𝑖𝑡𝑒𝑟) − 𝑋𝑀(𝑖𝑡𝑒𝑟)) × 𝛼 − 𝑟

+ ((𝑈 − 𝐿) × 𝑟 + 𝐿) × 𝛿 

(10) 

Narrowed exploitation: In the narrower exploitation phase, 
the Aquila adopts a "walking and grabbing the prey" strategy, 
characterized by a randomized approach towards the prey 
followed by an attack. This action is executed when the current 
iteration is greater than two-thirds of the maximum iterations 
and a randomly generated value is greater than 0.5. This 
behavior is simulated using Eq. (11). In Eq. (11), X4(iter + 1) 
signifies the fourth search solution generated, X(iter) denotes 
the current solution during the iterth iteration, and a quality 
function referred to as QF is computed using Eq. (12) to 
regulate and balance the search strategy. To determine the 
values of G1 and G2, which represent the Aquila's prey tracking 
movements, Eq. (13) and Eq. (14) are utilized. 

𝑋4(𝑖𝑡𝑒𝑟 + 1) = 𝑄𝐹(𝑖𝑡𝑒𝑟) × 𝑋𝑏𝑒𝑠𝑡(𝑖𝑡𝑒𝑟)
− (𝐺1 × 𝑋(𝑖𝑡𝑒𝑟) × 𝑟) − 𝐺2

× 𝐿𝑒𝑣𝑦(𝐷) + 𝑟 × 𝐺1 

(11) 

𝑄𝐹(𝑖𝑡𝑒𝑟) = 𝑡
2×𝑟−1

(1−𝑀𝑎𝑥𝐼𝑡𝑒𝑟)2
 

(12) 

𝐺1 = 2 × 𝑟 − 1 (13) 

𝐺2 = 2 × (1 −
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
) 

(14) 

B. Particle Swarm Optimization 

PSO is an intelligent, biologically inspired algorithm that 
draws its origins from the study of avian predatory behavior. 
At its core, PSO operates on the principle of identifying 
optimal solutions through collaborative interaction and the 
exchange of information among individual members within a 
group. In PSO, each individual is represented as a bird, and 
their positions and speeds are treated as independent variables. 
The objective function value at each location is related to the 
food density, and the goal is to find the optimal location with 
the highest food density, which corresponds to the optimal 
solution to the problem. Each bird adjusts its search direction 
and speed based on the difference between its historical best 
position and the best position found by the entire population. 
By continuously updating their positions and speeds and 
sharing information with each other, the bird swarm gradually 
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converges toward the optimal population location. This 
collective effort leads to finding the optimal solution called 
problem convergence. 

Within the realm of optimization, the PSO algorithm is 
often conceptualized as a stochastic search challenge occurring 
in a D-dimensional space. The central aim is to optimize a 
given objective function. In this D-dimensional environment, a 
population of n particles are denoted as pi = (pi1, pi2, ..., piD)T, 
where each ith particle is composed of a d-dimensional position 
vector xi = (xi1, xi2, ..., xid)T and a velocity vector vi = (vi1, vi2, 
..., vid)T. The PSO algorithm commences with each particle 
initiating its search within the D-dimensional space, leveraging 
an initial set of randomized particles. Through a series of 
iterative updates, the particle embarks on a quest to identify an 
optimal solution. During this continuous exploration, the 
particle maintains its present optimal position, pi = (pi1, pi2, ..., 
pid)T, representing its local optimum, and its velocity vi = (vi1, 
vi2, ..., vid)T. The global optimal solution, pg = (pg1, pg2, ..., 
pgd)T, signifies the finest solution collectively discovered by 
the entire particle swarm during optimization. In each iteration, 
the particle refines its position and velocity by considering two 
distinct "optimal solutions": its local best position and the 
global best position. By updating its position and velocity 
using the specified equations outlined in Eq. (15) and Eq. (16), 
the particle navigates towards its local best position while 
being influenced by the superior global best position identified 
by the swarm as a whole. The PSO algorithm recurrently 
applies these updates, fostering the gradual convergence of 

particles towards the global optimal solution. This iterative 
process orchestrates the collective efforts of particles, 
ultimately yielding optimization of the objective function and 
culminating in the discovery of the paramount solution for the 
given optimization quandary. 

𝑣𝑖𝑑(𝑡 + 1) = 𝜔𝑣𝑖𝑑(𝑡) + 𝑐1𝑟1(𝑝𝑖𝑑(𝑡) − 𝑥𝑖𝑑(𝑡))

+ 𝑐2𝑟2(𝑝𝑔𝑑(𝑡) − 𝑥𝑖𝑑(𝑡)) 

(15) 

𝑥𝑖𝑑(𝑡 + 1) = 𝑥(𝑡) + 𝑣𝑖𝑑(𝑡 + 1),   𝑖 = 1,2, … , 𝑁; 𝑑
= 1,2, … , 𝐷 

(16) 

C. Proposed IAO Algorithm 

The IAO incorporates two main search methods, namely 
the Aquila Optimizer and Particle Swarm Optimizer, to 
enhance its search capabilities. A novel transition mechanism 
(TM) is employed to balance the search process and preserve 
the diversity of solutions. This transition mechanism, as shown 
in Eq. (17), aims to prevent the algorithm from getting trapped 
in local optima and improve the quality of the candidate 
solutions. By combining the strengths of both the Aquila 
Optimizer and Particle Swarm Optimizer and using the 
transition mechanism, the proposed IAO method aims to 
achieve more robust and efficient optimization performance. 

𝑇𝑀 =
1

2
𝑆𝑖𝑛 (𝜋 + 2𝜋 ×

𝑡

𝑇
) + 𝑟𝑎𝑛𝑑 

(17) 

 

Fig. 2. The flowchart of the proposed method. 

Fig. 2 illustrates the general procedure of the proposed IAO 
method. The method begins by initializing the solutions and 

defining the required parameters, including the transition 
parameter (TM). The TM is crucial in determining the 
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optimization process used in each iteration. During the 
optimization process, if the value of the TM is greater than the 
current iteration number (t), the algorithm utilizes the Aquila 
Optimizer's operators for updating the solutions. On the other 
hand, if the TM is less than or equal to the current iteration 
number (t), the Particle Swarm Optimizer's operators are 
employed for updating the solutions. By dynamically switching 
between the two search methods based on the TM, the 
proposed IAO method enhances the diversity of the solutions. 
It avoids getting trapped in specific search areas, especially 
local search areas. This approach allows the algorithm to 
balance exploration and exploitation effectively, leading to 
improved overall performance and better convergence toward 
the optimal solution. 

V. SIMULATION 

To assess the superiority of the IAO method in solving 
large-scale cloud service composition problems, its 
performance is compared with several other algorithms: 
Genetic Algorithm (GA), Max-Min Ant System (MMAS), 
Artificial Bee Colony (ABC), and PSO. The comparison is 
conducted using two large-scale problems denoted by the task 
scale T(n, m), where n represents the number of subtasks equal 
to 30, m represents the number of candidate services for each 
subtask, with m ∈ {100, 300}. For instance, T(30, 300) 
indicates 30 subtasks and 300 candidate services. In this 
comparison, the QoS evaluation index is normalized. 

Fig. 3 and Fig. 4 present the box plots of the average QoS 
fitness values obtained from the experimental data for each 
cloud service composition problem scale. These box plots 
allow for a visual comparison of the performance of different 
algorithms, showcasing the distribution and variation in their 
average fitness values. Fig. 5 shows the average time 
consumption for each algorithm during the experiment. Based 
on the computational results, it is evident that the IAO method 
outperforms the other algorithms regarding the maximum 
fitness values obtained. In the T (30, 100) problems, the 

maximum values in all five algorithms are relatively similar. 
However, as the scale of the problem increases, a noticeable 
gap starts to emerge between IAO and the other algorithms. 
IAO consistently performs at the top, GA and PSO at the 
bottom, and MMAS and ABC in the middle. The IAO method 
demonstrates faster optimization time compared to MMAS as 
the scale of the problem increases. This advantage becomes 
more pronounced for larger and more complex cloud service 
composition problems. IAO's faster optimization lies in its 
incorporation of GA to optimize the solutions generated by the 
ant colony algorithm. By combining these two optimization 
techniques, IAO can dynamically adjust and fine-tune the 
solutions, fully leveraging the strengths of the genetic 
algorithm. 

The stability of the optimal solution is indeed superior in 
both IAO and MMAS compared to other algorithms, such as 
GA and PSO. The key reason behind this enhanced stability is 
that IAO and MMAS are designed to effectively avoid local 
optima during optimization. Ant-colony algorithms, including 
MMAS, utilize pheromone-based communication and 
exploration, which allows them to strike a balance between 
exploitation and exploration. This helps prevent premature 
convergence to local optima and encourages the algorithm to 
explore a more diverse and promising search space. On the 
other hand, GA and PSO are more prone to premature 
convergence, especially in complex optimization problems. 
This can lead to less stable solutions as they might get trapped 
in local optima, failing to explore other potential regions of the 
search space. It is evident from the results that IAO 
outperforms the other algorithms in terms of accuracy, 
especially as the scale of the problem increases. The higher 
accuracy achieved by IAO can be attributed to the strengths of 
the ant algorithm in searching large spaces. The AO is 
particularly well-suited for exploring complex and vast search 
spaces, as it leverages pheromone-based communication and 
dynamic adjustments to navigate the problem domain 
efficiently. 

 
Fig. 3. Box plot of the optimal solution for 100 candidate services. 
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Fig. 4. Box plot of the optimal solution for 300 candidate services. 

 
Fig. 5. Time consumption comparison. 

Additionally, the iterative adjustment threshold and 
increased ant population size introduced in the IAO algorithm 
contribute to its improved accuracy. These modifications help 
fine-tune the search process and facilitate more thorough 
exploration, which enables IAOs to find high-quality solutions 
more effectively. As the scale of the problem grows, the 
advantage of IAO becomes more pronounced, as it can 
consistently deliver more accurate solutions compared to other 
algorithms like MMAS and GA. This demonstrates the 
capability of IAO as a robust and accurate optimization 
method, making it a promising choice for tackling large-scale 
cloud service composition problems and other complex 
optimization challenges. 

VI. CONCLUSION 

Cloud computing has gained immense popularity due to its 
numerous benefits, such as cost-effectiveness and the ability to 

offer a wide range of hardware and software services. 
However, composing different services to fulfill complex 
requests poses challenging Np-hard problems. To overcome 
this, service composition becomes essential for creating more 
extensive services with enhanced functionalities. This paper 
introduced a novel hybrid method called IAO, which combines 
the strengths of both the conventional AO and PSO algorithms. 
By combining AO and PSO, this hybridization aims to address 
their weaknesses, such as low solution diversity and being 
trapped in local search. To tackle these challenges, the 
proposed IAO method incorporates a unique transition 
mechanism that enables seamless changes between search 
operators. This mechanism allows the algorithm to switch 
between AO and PSO when necessary, especially when either 
algorithm gets stuck, or the diversity of solutions declines. This 
adaptability enhances the overall performance and 
effectiveness of the hybrid approach. The performance of the 
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IAO method is extensively tested through experiments on the 
Cloudsim simulation platform. Comparative experiments are 
conducted, and the results demonstrate that IAO significantly 
improves the accuracy and stability of large-scale cloud service 
composition problems. Moreover, the time consumption of the 
algorithm is also optimized, showcasing its efficiency in 
solving complex optimization problems. 

In future research, this work can be extended in several 
directions. First, a deeper exploration of the scalability and 
adaptability of the IAO in larger, more complex cloud 
environments could offer valuable insights. Additionally, 
investigating the integration of IAO with emerging 
technologies like edge computing or hybrid cloud setups could 
enhance its applicability across diverse computing landscapes. 
Further research could refine the transition mechanism of IAO 
to dynamically adapt to changing network conditions and 
varying service demands in real-time. Moreover, exploring the 
impact of IAO in multi-objective optimization scenarios to 
simultaneously optimize conflicting QoS metrics would be a 
compelling avenue for advancement. Lastly, a thorough 
investigation into the security implications and resilience of 
IAO against potential attacks or failures within cloud 
environments could be a pivotal direction for future 
improvement. 
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