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Abstract—Cloud computing has risen as a prominent 

paradigm, offering users on-demand access to computing 

resources and services via the Internet. In cloud environments, 

workflow scheduling plays a vital role in optimizing resource 

utilization, reducing execution time, and minimizing overall 

costs. As workflows comprise interdependent tasks that need to 

be assigned to Virtual Machines (VMs), the complexity of the 

scheduling problem increases in proportion to workflow size and 

VM availability. Due to its NP-hard nature, finding an optimal 

scheduling solution for workflows remains a challenging task. To 

address this problem, researchers have turned to metaheuristic 

approaches, which have shown promise in finding near-optimal 

solutions for complex combinatorial optimization problems. This 

paper proposes a novel metaheuristic algorithm called Inverted 

Ant Colony Optimization (IACO) for workflow scheduling in 

cloud environments. IACO is a variation of the traditional ACO 

algorithm, where the updated pheromone has an inverted 

influence on the path chosen by the ants. By leveraging the 

complementary nature of these two algorithms, our proposed 

algorithm aims to achieve superior workflow scheduling 

performance regarding total execution time and cost, surpassing 

existing approaches. 
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I. INTRODUCTION 

Cloud computing is a technological advancement that 
harnesses the capabilities of the Internet and distant centralized 
servers to supply users with flexible services. These services 
are delivered using a diverse range of distributed resources, 
catering to various quality of service (QoS) requirements [1]. 
Prominent cloud computing platforms include Aneka, 
Microsoft Azure, Google App Engine, and Amazon EC2. 
Clouds are generally classified into several types: public, 
private, community, hybrid, and cloud federation [2]. Public 
clouds are accessible to the general public and are owned and 
managed by external entities known as independent cloud 
service providers. Computing resources, like applications, 
storage, and servers, are available to an array of businesses or 
individuals [3]. 

In contrast, private clouds are owned by an individual 
organization and are either hosted internally or handled 
exclusively by an external provider for that organization's use 
[4]. Community clouds are shared among multiple 
organizations with similar interests or requirements. These 
clouds are designed to cater to the specific needs of a particular 
community, such as government agencies, educational 
institutions, or healthcare providers [5]. Hybrid clouds 
integrate elements from both public and private clouds. In this 

model, organizations can distribute applications and data 
across multiple cloud deployment models, interconnected to 
function as a cohesive infrastructure. Cloud federation involves 
the interconnection and collaboration of multiple cloud 
infrastructures to work as a single unified cloud environment. It 
enables seamless movement of workloads and data among 
different cloud providers, enhancing flexibility and scalability 
in cloud computing [6]. 

Cloud computing is categorized into three primary service 
models: Software-as-a-Service (SaaS), Platform-as-a-Service 
(PaaS), and Infrastructure-as-a-Service (IaaS) [7]. In SaaS, 
software applications are delivered to users online through 
subscriptions. Users can use these services remotely without 
installation or local device maintenance. The responsibility for 
hosting, maintenance, and updates lies with the SaaS provider. 
PaaS offers a platform for developers to build, deploy, and 
manage applications with no need for infrastructure 
management. PaaS provides developers with access to a set of 
development tools, programming languages, and runtime 
environments, facilitating the creation and execution of 
applications. In IaaS, users subscribe to virtual machines, 
servers, networking components, and other infrastructure 
resources from a cloud provider. IaaS gives customers 
enhanced control over infrastructure without requiring them to 
invest in physical hardware and its maintenance [8]. 

Virtualization is a critical technology in cloud computing 
that enables the coexistence of multiple Virtual Machines 
(VMs) on a single physical machine. A VM is a simulated 
computer system that executes tasks assigned by users. This 
capacity for VM instantiation empowers users to run their 
applications across resources that encompass diverse 
functionality and cost attributes. Orchestrating this 
arrangement within each physical machine or server is a 
software layer, colloquially referred to as the hypervisor or VM 
monitor. The hypervisor serves as a facilitator for VM creation 
and ensures their isolated execution, allowing multiple VMs to 
operate independently and securely on the same physical 
hardware. The hypervisor is responsible for efficiently 
managing the allocation of resources and providing a seamless 
and robust virtualization environment for cloud computing [9]. 

Workflow scheduling poses a substantial challenge within 
the context of cloud computing, entailing the intricate 
assignment of workflow tasks to VMs based on a multitude of 
operational and technical requisites [10]. Workflows are 
constructed from an array of interdependent tasks, interlinked 
by either data or functional dependencies, necessitating 
meticulous consideration during the scheduling endeavor. 
Nonetheless, the task of workflow scheduling in cloud 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 10, 2023 

914 | P a g e  

www.ijacsa.thesai.org 

environments is classified as an NP-hard optimization problem, 
rendering the attainment of an optimal schedule a formidable 
undertaking [11]. The cloud environment typically 
encompasses a multitude of VMs, engendering intricacies in 
orchestrating an array of user tasks while accounting for 
diverse scheduling objectives and elements. For instance, a 
scheduling scheme may prioritize supporting Service Level 
Agreements (SLAs), predetermined timeframes, and cost 
limitations. Additionally, scheduling strategies may take into 
account parameters like the availability of cloud resources and 
services, load balancing, and resource utilization to make 
informed scheduling plans. 

The integration of cutting-edge technologies such as the 
Internet of Things (IoT), machine learning, deep learning, and 
neural networks has revolutionized workflow scheduling, 
particularly in cloud environments.  The IoT facilitates the 
interconnectedness of devices and sensors, offering real-time 
data collection and sharing [12, 13]. Machine learning 
techniques, including supervised and unsupervised algorithms, 
analyze this data to predict and optimize workflow patterns 
[14, 15]. Deep learning, a subset of machine learning, uses 
intricate neural network architectures to process complex data 
representations, making it adept at recognizing patterns and 
optimizing scheduling decisions [16]. Neural networks, 
inspired by the human brain's structure, excel in learning from 
data and making informed decisions based on this acquired 
knowledge [17]. Their application in workflow scheduling 
involves predictive analysis, resource allocation, and task 
optimization [18]. Collectively, these technologies enable 
intelligent decision-making, predictive scheduling, and 
adaptive allocation of tasks within cloud environments. By 
harnessing IoT data with machine learning, deep learning, and 
neural networks, workflow scheduling becomes more agile, 
responsive, and adept at handling the dynamic and complex 
demands of cloud-based applications, ultimately improving 
efficiency, resource utilization, and overall performance. Their 
integration not only streamlines operations but also paves the 
way for self-optimizing and self-adapting systems in cloud 
workflow management [19, 20]. 

Meta-heuristic algorithms are key to workflow scheduling 
within cloud computing due to the inherent complexity of task 
allocation. These algorithms, by their nature of adaptive and 
efficient search strategies, offer an effective way to navigate 
the vast solution space, addressing the NP-hard nature of 
scheduling problems [21]. They enable the optimization of 
resource allocation, contributing significantly to reduced 
execution times, minimized costs, and improved overall 
efficiency in cloud-based workflow management. Inverted Ant 
Colony Optimization (IACO) represents a deviation from the 
conventional ACO algorithm, which is a metaheuristic derived 
from the foraging behavior of real ants. In ACO, ants construct 
solutions by probabilistically choosing paths in a graph based 
on pheromone trails and heuristic information. The pheromone 
trails reflect the attractiveness of edges in the graph, and ants 
deposit pheromones on the paths they traverse. Over time, 
paths with higher pheromone concentrations become more 
attractive to other ants, leading to the emergence of high-
quality solutions. The IACO algorithm introduces a novel 
concept to the ACO framework called "inversion." In the 

traditional ACO, the pheromone trail is reinforced for 
successful paths, and it is evaporated gradually to encourage 
exploration. However, in IACO, the pheromone trail on the 
best path (i.e., the path with the highest desirability) is reduced 
instead of increased during the pheromone update process. This 
reduction is referred to as "inversion". The core idea behind the 
inversion mechanism in IACO is to enhance exploration 
capabilities. By reducing the pheromone level on the best path, 
the algorithm encourages ants to explore alternative routes 
rather than always favoring the currently best-known path. This 
helps in diversifying the search space and prevents the 
algorithm from getting stuck in local optima. For workflow 
scheduling in cloud computing, IACO is applied to find an 
optimized allocation of tasks to VMs, aiming to lower the total 
execution time and overall costs. In this context, the graph 
represents the task dependency graph, and ants traverse paths 
by assigning tasks to available virtual machines. The main 
contributions of the study can be summarized as follows: 

 Adaptation of traditional ACO algorithm with an 
inversion mechanism to enhance exploration 
capabilities and prevent local optima convergence. 

 Improvement in the allocation of tasks to VMs, leading 
to reduced total execution time and minimized costs in 
cloud-based workflow scheduling. 

 Establishment of a pioneering approach that sets a 
potential benchmark for optimization in cloud 
computing, influencing future research and practical 
implementations. 

II. RELATED WORK 

Choudhary, et al. [22] combined the Heterogeneous 
Earliest Finish Time (HEFT) heuristic and the Gravitational 
Search Algorithm (GSA) for workflow scheduling. The GSA is 
a powerful meta-heuristic that imitates the law of gravity to 
search for optimal solutions, while HEFT is a widely used 
heuristic that schedules tasks based on their earliest finish 
times on heterogeneous resources. One of the key contributions 
of their work is the introduction of a new factor called "cost 
time equivalence," which enhances the realism of the bi-
objective optimization process. By considering the monetary 
cost ratio (MCR) and the schedule length ratio (SLR) as 
performance metrics, they compare the proposed algorithm's 
performance with existing algorithms. To validate their results, 
rigorous experiments are conducted over various scientific 
workflows. They demonstrate the effectiveness of their 
proposed algorithm by comparing it with standard GSA, 
Hybrid Genetic Algorithm (HGA), and HEFT. Statistical tests, 
such as Analysis of Variance (ANOVA), are utilized to 
validate the results. The simulation results consistently show 
that the proposed approach outperforms the existing algorithms 
in terms of both makespan and cost optimization. The 
algorithm's effectiveness is demonstrated across different 
workflow scenarios, providing robust evidence of its 
superiority over the compared algorithms. 

Elsherbiny, et al. [23] introduced a novel algorithm that 
extends the Intelligent Water Drops (IWD) algorithm, a nature-
inspired optimization method, to optimize the scheduling of 
workflows in cloud computing environments. The suggested 
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algorithm is applied and incorporated into the workflow 
simulation toolkit, allowing for comprehensive testing in 
various simulated cloud environments with different cost 
models. The results of the experiments demonstrate that the 
proposed IWD-based algorithm outperforms classical 
workflow scheduling algorithms in terms of both performance 
and cost. They conducted a thorough comparison with several 
well-known scheduling algorithms. In most situations, the 
proposed IWD-based algorithm exhibited noticeable 
enhancements in terms of both performance and cost, 
outperforming the alternative algorithms. This showcases the 
effectiveness and efficiency of the IWD-based approach in 
optimizing workflow scheduling for cloud computing 
environments. 

Ismayilov and Topcuoglu [24] address the intricate 
challenge of dynamic workflow scheduling within the context 
of a Dynamic Multi-Objective Optimization Problem (DMOP). 
This dynamic aspect arises from two primary sources: resource 
failures (manifested as software or hardware faults) and the 
inherent variability in the number of objectives during the 
execution of workflows in real-world cloud computing 
scenarios. To surmount this intricate problem, the authors 
propose an innovative prediction-based dynamic multi-
objective evolutionary algorithm named NN-DNSGA-II. This 
algorithm ingeniously combines the capabilities of an artificial 
neural network with the NSGA-II algorithm, allowing it to 
make informed predictions concerning the evolving objectives 
and subsequently adapt its strategies accordingly. The study 
also involves the adaptation of five prominent non-prediction-
based dynamic algorithms from the existing literature, with the 
overarching goal of addressing the dynamic workflow 
scheduling dilemma. The NN-DNSGA-II algorithm is 
thoughtfully designed to encompass six distinct objectives 
within the scheduling process. It aims to minimize critical 
aspects such as makespan, cost, energy consumption, and 
degree of imbalance while simultaneously maximizing 
attributes like reliability and utilization. To assess its efficacy, 
the authors conducted comprehensive empirical studies 
employing real-world applications sourced from the Pegasus 
workflow management system. This rigorous evaluation entails 
a range of metrics tailored for DMOPs characterized by 
unknown true Pareto-optimal fronts. Metrics include 
considerations such as the number of non-dominated solutions, 
Schott's spacing, and the Hypervolume indicator. The findings 
derived from the empirical investigation reveal the remarkable 
performance of the NN-DNSGA-II algorithm. It consistently 
outperforms alternative algorithms across various scenarios, 
underlining its supremacy in effectively managing dynamic 
workflow scheduling imbued with multiple objectives and 
unknown true Pareto-optimal fronts. 

Mangalampalli, et al. [25] introduced a novel workflow-
scheduling mechanism that incorporates task priorities to 
schedule tasks onto appropriate virtual resources efficiently. 
The Whale Optimization Algorithm (WOA) was used as the 
methodology to model this algorithm. Extensive simulations 
were conducted using the workflow simulator to evaluate the 
proposed mechanism's performance. The mechanism was 
compared against existing algorithms, including PSO, CS, 
ACO, and GA. The simulation results revealed significant 

improvements in makespan, migration time, and energy 
consumption when using the proposed mechanism. These 
improvements indicate the effectiveness of the WOA-based 
workflow-scheduling approach in optimizing task scheduling 
in cloud computing environments. By considering task 
priorities, the proposed mechanism is able to make more 
informed and efficient scheduling decisions, leading to reduced 
makespan (total execution time), migration time (task 
relocation between resources), and energy consumption. These 
improvements are crucial for enhancing the overall 
performance and resource utilization in cloud-based workflow 
management. 

Zeedan, et al. [26] introduced an innovative approach 
termed Enhanced Binary Artificial Bee Colony-based Pareto 
Front (EBABC-PF) for optimizing workflow scheduling in 
cloud computing environments. The proposed approach 
involves a sequence of strategic steps aimed at achieving 
efficient task scheduling. The initial step of the approach 
involves task prioritization using the HEFT algorithm. HEFT 
organizes tasks based on their earliest finish times across 
heterogeneous resources, thereby establishing a prioritized 
sequence. Subsequently, an initial solution is constructed using 
the Greedy Randomized Adaptive Search Procedure (GRASP), 
a constructive metaheuristic approach renowned for its 
optimization capabilities. The core task scheduling phase is 
executed through the utilization of the enhanced Binary 
Artificial Bee Colony (BABC) algorithm. This modified 
version of the BABC algorithm integrates several 
enhancements specifically targeted at refining the local search 
process. The process incorporates circular shift and mutation 
operators, which are applied to the population's food sources 
while considering the improvement rate. These enhancements 
contribute to augmenting the algorithm's search capacity and 
effectiveness. The proposed EBABC-PF approach is simulated 
and implemented using WorkflowSim, an extension of the 
CloudSim tool designed to manage workflows within cloud 
environments. To assess its performance, the approach is 
rigorously compared against a range of other scheduling 
algorithms, which include HEFT, Deadline Heterogeneous 
Earliest Finish Time (DHEFT), Non-dominated Sort Genetic 
Algorithm (NSGA-II), and the standard BABC algorithm. This 
comparative analysis is conducted across diverse task sizes and 
benchmark workflows. The simulation results obtained exhibit 
the exceptional efficiency of the proposed EBABC-PF 
approach across multiple performance metrics. It notably 
outperforms the alternative algorithms in terms of makespan 
(total execution time), processing cost, and resource utilization. 
This finding underscores the approach's effectiveness in 
optimizing workflow scheduling within cloud computing 
environments, rendering it a superior choice for this intricate 
task. 

III. PROPOSED APPROACH 

A. Problem Statement 

In the domain of cloud computing, workflow scheduling 
involves the representation of workflows as Directed Acyclic 
Graphs (DAGs), denoted as G = (V, E). V refers to a collection 
of vertices, each representing an individual task within the 
workflow. E, on the other hand, denotes the set of edges 
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signifying task dependencies. In this setup, tasks must be 
executed in a specific order, where parent tasks precede the 
execution of their child tasks. Fig. 1 offers a concrete 
illustration of task dependencies spanning from T1 to T10. 
Serving as the root node, T1 takes the lead as the first task to be 
executed. Once T1 is finished, tasks T2 and T3, located on the 
first tier of the DAG, are initiated. In a parallel manner, once 
task T2 is accomplished, tasks T4 and T5 are set into motion. 

Additionally, the execution of task T6 is contingent upon 
the completion of task T3, thus establishing T3 as the necessary 
precursor to T6. Scientific workflows encompass a specialized 
class of workflows extensively utilized across a range of 
scientific fields, such as astronomy, biology, and gravitational 
waves, among others. Prominent instances of practical 
scientific workflows include SIPHT, LIGO, Epigenomics, 
CyberShake, and Montage, all meticulously cataloged by the 
Pegasus project. The structural depiction of these scientific 
workflows is presented in Fig. 2. The scheduling of workflows 
can be perceived as a mapping function, allocating numerous 
interdependent tasks to available virtual machines. A sample 
mapping is illustrated in Fig. 3, demonstrating the allocation of 
n tasks to m VMs. In such instances, when employing a brute 

force algorithm, there emerge m*n potential combinations. 
Consequently, the intricacy of workflow scheduling is 
acknowledged, and achieving a solution within polynomial 
time is not attainable. Consequently, the pursuit of a nearly 
optimal resolution to the workflow scheduling predicament 
proves advantageous and attainable through the assistance of 
meta-heuristic algorithms. 

 
Fig. 1. Task dependencies in workflow scheduling

 
Fig. 2. The structural depiction of scientific workflows. 
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Fig. 3. Task mapping model. 

B. Fitness Function 

The optimization algorithm aims to enhance specific 
parameters within the fitness function. In this context, we have 
employed two distinct fitness functions, labeled F1 and F2, 
which are the focal points of optimization through the proposed 
algorithm. The initial fitness function, F1, encompasses a 
synthesis of the Total Execution Time (TET), whereas the 
subsequent fitness function, F2, is constructed from the Total 
Execution Cost (TEC). The precise formulations of TET and 
TEC are outlined in Eq. (1) and Eq. (5), respectively. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝐹1) = 𝑇𝑜𝑡𝑎𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 (𝑇𝐸𝐶) (1) 

The total execution time, often referred to as the makespan, 
signifies the longest duration taken by tasks within the 
workflow to reach completion. But it quantifies the time 
necessary for accomplishing all tasks distributed among 
various VMs. The mathematical expression to compute the 
makespan of the workflow can be deduced from Eq. (2), where 
CTi symbolizes the completion time of task Ti within the 
workflow. The completion time of a task encompasses its 
entire execution duration, and in cases where task 
dependencies exist, the waiting time of preceding tasks is also 
considered. The calculation of completion time is presented in 
Eq. (3). The waiting time for task Ti is established as the 
utmost completion time among all predecessor tasks within the 
workflow, as delineated in Eq. (4). Furthermore, the execution 
time of task Ti on jth VM can be evaluated using Eq. (5). Here, 
SZTask signifies the size of task Ti, quantified in million 
instructions (MI), Num (PEj) represents the count of cores 
allocated to jth VM, and PEUnit denotes the magnitude of each 
core in Millions of Instructions per Second (MIPS). 

𝑇𝐸𝑇𝑊 = max {𝐶𝑇𝑡|1,2, … , 𝑚} (2) 

𝐶𝑇𝑖 = {
𝐸𝑇𝑖                  𝑖𝑓 𝑝𝑟𝑒𝑑(𝑇𝑖) = ∅

𝑊𝐾𝑖 + 𝐸𝑇𝑖    𝑖𝑓 𝑝𝑟𝑒𝑑(𝑇𝑖) ≠ ∅
 (3) 

𝑊𝐾𝑖 = {
0                   𝑖𝑓 𝑝𝑟𝑒𝑑(𝑇𝑖) = ∅

max (𝐶𝑇𝑖)   𝑖𝑓 𝑝𝑟𝑒𝑑(𝑇𝑖) ≠ ∅
 (4) 

𝐸𝑇𝑖,𝑗 =
𝑆𝑍𝑇𝑎𝑠𝑘

𝑁𝑢𝑚(𝑃𝐸𝑗) × 𝑃𝐸𝑈𝑛𝑖𝑡

 (5) 

Eq. (6) delineates the process for calculating TEC. The 
TEC for the ith VM is derived by calculating the disparity 
between the Least End Time (LET) and the Least Start Time 
(LST) of that specific VM. The cost associated with the ith VM, 
denoted as C[i], is uniformly set at 1 across all VMs. To 
provide further clarity, Eq. (7) and Eq. (8) elucidate the 
mechanics behind computing the LET and LST, respectively. 
LET pertaining to the ith VM corresponds to the highest 
execution time among all tasks executed on that particular VM. 
Conversely, LST is determined as the minimum execution time 
of tasks in progress on the ith VM. 

𝑇𝑜𝑡𝑎𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 (𝑇𝐸𝐶)

= ∑ 𝐶[𝑖] × (𝐿𝐸𝑇[𝑖] − 𝐿𝑆𝑇[𝑖]

𝑉𝑀

𝑖=0

 
(6) 

𝐿𝐸𝑇[𝑖] = max (𝐸𝑇[𝑖]) (7) 

𝐿𝑆𝑇[𝑖] = min (𝐸𝑇[𝑖]) (8) 

C. Proposed Algorithm 

ACO algorithms harness a populace of ants to 
collaboratively address optimization challenges, navigating 
graphs to discover paths of minimal cost while upholding 
specific constraints. The behavior of these ants encompasses 
two distinct groups: a smaller ensemble lays down pheromone 
trails, while the other contingent diligently tracks these trails, 
reinforcing them while circumventing impulsive moves. As 
time elapses, the potency of these trails diminishes, leading to a 
waning allure for the ants. Let G = (V, E) symbolize the graph 
that underpins the optimization conundrum, where V denotes 
vertices and E signifies edges. On this graph, viable pathways 
correspond to potential resolutions for the optimization 
predicament. While in pursuit of the shortest path, the ants 
deposit pheromones along their journey, cultivating an 
enduring memory of the exploration process. Furthermore, 
heuristic values might be attributed to the graph's edges, 
derived from antecedent knowledge or real-time feedback, 
exerting influence over the ants' conduct. 

The decision-making process of the ants is probabilistic in 
nature and relies on their memory, the constraints of the 
problem, and the ant-routing table, a localized data structure 
housing pheromone trails and heuristic values. Pheromone 
updates transpire through two distinct mechanisms: an online 
step-by-step update involving the deposition of pheromone by 
the ant while traversing an edge and an online delayed update, 
which involves adjusting pheromone trails after discovering a 
solution and retracing the path in reverse. Additional processes 
for updating pheromone trails include daemon actions and 
pheromone evaporation. Daemon actions, while discretionary, 
enable ants to execute actions that are beyond their individual 
capacities, often involving centralized actions. Pheromone 
evaporation entails a gradual reduction in the strength of 
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pheromone trails over time. This mechanism prevents the 
convergence toward suboptimal regions and promotes the 
exploration of novel areas within the graph. 

Algorithm. 1. Generic ACO algorithm 

Initialize 

While stop criteria are not met do 

     For all ant a in A do 

         Position a in startNode 

     End for 

     Repeat 

         For all ant a in A do 

             Choose nextNode 

             Pheromone(currentNode,nextNode)+=Update 

           End for 

    Until every ant has a solution 

    For all edge e in B do 

        Pheromonee+=Deposit 

    End for 

    For all edge e in E do 

        Pheromonee-=Evaporation 

    End for 

End while 

Eq. (9) calculates the probability of an ant selecting a 
particular path. It depends on the number of pheromones𝜏𝑖,𝑗, 

present on the path between nodes i and j and the reverse of the 
distance (𝜂𝑖,𝑗) between these two nodes. The parameters α and 

β are control parameters that influence the relative importance 
of pheromones and distance in the probability calculation. 

𝑝𝑖,𝑗
𝑘 =

[𝜏𝑖,𝑗]𝛼[𝑛𝑖,𝑗]𝛽

∑ [𝜏𝑖,𝑙]
𝛼[𝑛𝑖,𝑙]

𝛽
𝑙=𝑗𝑖

 (9) 

The ants act like scouts, searching for food (appropriate 
service corresponding to user demands) in the environment. 
Once they find food, they return to their nests, dropping 
pheromones on the trails they have traversed. These 

pheromones serve as a form of communication for other ants, 
indicating the quality of the path. The pheromone trail amount 
can either increase when ants deposit pheromone or decrease 
over time due to pheromone evaporation. Eq. (10) calculates 
the pheromone evaporation rate, where 1 − 𝜔  is the 
pheromone declining rate. 

𝜏𝑖,𝑗 = (1 − 𝜔) × 𝜏𝑖,𝑗 + ∑ ∆𝜏𝑟𝑖, 𝑗
𝑟=1

 (10) 

In the ACO algorithm, other ants tend to follow paths with 
a high amount of pheromone, as it indicates better solutions. 
There are two main approaches to updating the pheromone 
trails. The first approach involves selecting the best-so-far 
solutions (iteration best) and using them to update the 
pheromone matrices for each objective. These best solutions 
represent the most promising paths found so far in the search 
process. The second approach revolves around gathering and 
storing non-dominated solutions in an external set. Only the 
solutions in this non-dominated set are allowed to update the 
pheromone trails. Non-dominated solutions are those that 
cannot be improved in one objective without worsening at least 
one other objective. This approach helps maintain a diverse set 
of optimal solutions. Once the ants find food, they return to 
their nests, dropping pheromones on the trail they traveled. 
This pheromone serves as a signal for other ants to explore the 
same path, thus collectively reinforcing good solutions. Ants 
make local decisions based on their observations and the 
information available in their local environment. Instead of 
directly communicating with each other, ants use indirect 
forms of communication, which is referred to as "stigmergy." 
The pheromones left by ants’ act as a form of stigmergic 
communication, guiding other ants to explore the most 
promising paths. Over time, the pheromones evaporate, which 
allows the algorithm to explore new areas and avoid 
convergence to sub-optimal solutions. The rate of pheromone 
evaporation is higher when returning to the nest takes a longer 
time, promoting the exploration of alternative paths. At 
intersections in the graph, each ant chooses one of the branches 
to continue its path. Ants tend to select shorter branches to 
return home faster, resulting in more pheromone accumulation 
on these shorter paths. 

 

Fig. 4. Path selection by ants. 
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In the presented scenario (see Fig. 4), the ants encounter 
three paths: A→B→C→E, A→B→E, and A→B→D→E. 
Initially, due to the shorter distance, the shortest path A→B→E 
will have a higher pheromone density. As the ants make their 
choices, they select paths based on the pheromone densities 
present on the branches. Consequently, most ants will opt for 
the shortest path, A→B→E. The main focus of the article is on 
the IACO algorithm for workflow scheduling in cloud 
computing. This algorithm combines the principles of ACO 
with a constrained optimization approach, which is suitable for 
solving single-objective discrete optimization problems. By 
leveraging pheromone communication and making local 
decisions based on observed pheromone densities, the IACO 
algorithm effectively guides ants to converge toward the 
shortest and most feasible paths in the search space. 

Indeed, the IACO method exhibits several significant 
differences in each ant's behavior compared to the traditional 
ACO. The main distinctions between ACO and IACO are as 
follows: 

 Pheromone functionality: In the ACO, the pheromones 
produced by ants serve only the function of attraction. 
Pheromones act as a positive signal, guiding ants to 
explore paths with higher pheromone densities. In 
contrast, the pheromones in the IACO method serve a 
dual purpose. Besides attraction, they also act as a form 
of repulsion. This repulsive nature of pheromones helps 
to alleviate the pressure on certain paths or nodes. It 
discourages ants from over-converging on a specific 
route or node. 

 Role of nodes: In the ACO, nodes do not directly 
influence the algorithm. The focus lies primarily on 
paths and the pheromones present on those paths as 
important parameters. 

  IACO Method: In the IACO, nodes play a significant 
role as influencing parameters. They store the number 
of pheromones present. If the pheromone count exceeds 
a specific value, the node acts as a blockade, preventing 
other ants from passing through it. This approach is 
designed to reduce pressure on certain nodes and is 
directly linked to the pheromone value. 

 Consideration of route capacity: ACO does not 
explicitly consider the maximum capacity on a path 
when updating pheromones. In the IACO, the 
pheromone's evaporation process takes into account 
both the length of the route and the maximum capacity 
of the route. This consideration helps to ensure that the 
algorithm avoids routes that may become congested due 
to excessive pheromones. 

These differences in behavior and parameterization 
between ACO and IACO allow the IACO method to address 
complex optimization problems more effectively, especially in 
scenarios where path congestion and capacity constraints are 
crucial considerations. By combining both attractive and 
repulsive properties of pheromones and incorporating node-
based mechanisms, IACO offers an enhanced approach for 
finding optimal or near-optimal solutions in constrained 
optimization problems. 

IV. PERFORMANCE EVALUATION 

In the experiments conducted to verify the performance of 
the proposed method, we used the WorkflowSim toolkit. The 
implementations of strategies were implemented in Java and 
run on a computer with an Intel Core i5 processor running at 
2.8 GHz and equipped with 4 GB of RAM. The WorkflowSim 
toolkit is an extension of CloudSim, designed specifically to 
simulate an environment for executing scientific workflows. In 
pursuit of an equitable comparison of outcomes, the 
simulations involving the proposed approach and other 
established methods were orchestrated under identical 
conditions. This systematic parity in experimentation 
conditions serves to objectively gauge the performance and 
efficacy of the proposed approach in contrast to alternative 
methodologies. The experimental trials were conducted 
utilizing three distinct real-world workflow applications, each 
hailing from diverse scientific domains. Noteworthy among 
these is the Montage workflow applied within the realm of 
astronomical physics. Furthermore, the Cybershake workflow 
was harnessed to analyze earthquake hazards, while the Ligo 
workflows were instrumental in the quest for gravitational 
wave detection. 

The configuration of VMs is based on the specifications of 
Amazon EC2 instances, which are commonly used in cloud 
computing environments. Within the simulation model, it is 
assumed that the storage capacity of every VM is generously 
sufficient to host all the allocated tasks. Nonetheless, the mean 
bandwidth linking distinct virtual machines exhibits variability 
across three distinct scenarios: 5 Gb/s, 10 Gb/s, and 25 Gb/s. 
The variation in bandwidth represents different network 
capacities and performance levels that can affect task execution 
and communication between VMs. Additionally, the virtual 
machine preparation time is taken into consideration during the 
simulations. This preparation time represents the overhead 
required to set up and configure a VM before it can start 
executing tasks. The temporal interval required for VM 
preparation is modeled to fluctuate within the range of 1 
second to 1.5 seconds. During the evaluation process of the 
proposed IACO algorithm, a comprehensive comparison is 
conducted against three alternative algorithms: standard ACO, 
FR-MOS, and PEFT-ACO algorithms. 

In the first series of experiments, the algorithms were 
evaluated independently for each objective, i.e., cost and 
makespan. The experiments were performed on three different 
types of workflows: Montage, Cybershake, and Ligo, with 
varying numbers of tasks (100 and 300). The results averaged 
over 100 executions for each workflow type, are presented in 
Table I. It is observed that the traditional ACO algorithm 
performs poorly in both the total cost and makespan across all 
three workflow types. On the other hand, the IACO algorithm 
is superior to both PEFT-ACO and FR-MOS regarding cost 
and makespan across all workflow types. The discernible 
distinction in performance is especially pronounced with 
regard to makespan. This indicates that IACO is more efficient 
and effective in exploring the solution space and finding 
globally optimal or near-optimal solutions. Fig. 5 and Fig. 6 
provide visualizations of the average results for makespan and 
cost when the number of tasks is set to 500. 
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TABLE I.  OBTAINED RESULTS FOR COST AND MAKESPAN 

Workflow 
Tasks 

count 

IACO FR-MOS PEFT-ACO ACO 

Cost ($/h) Make span (s) Cost ($/h) Make span (s) Cost ($/h) Make span (s) Cost ($/h) Make span (s) 

Montage 100 14.1 468.2 15.9 614.7 25.6 625.8 52.2 654.3 

 300 9.2 584.7 13.8 679.4 20.1 693.5 30.1 708.3 

Cybershake 100 21.8 489.5 40.7 513.7 57.7 578.5 70.2 695 

 300 19.8 627.1 32.1 659.4 43.9 701.8 53.7 872.4 

Ligo 100 31.5 559.1 46.9 609.5 69.7 695.8 78.7 710.8 

 300 26.9 697.4 42.8 823.4 64.4 888.1 77.2 896.7 

 
Fig. 5. Makespan comparison. 

 
Fig. 6. Cost comparison. 

V. CONCLUSION 

Cloud computing has emerged as a revolutionary concept in 
the field of distributed systems, providing efficient and scalable 
solutions for high-performance and distributed computing 
needs. Its dynamic nature, virtual resource provisioning, and 
pay-per-use model have contributed to its widespread 

popularity among organizations and research laboratories. In 
this context, workflow scheduling plays a crucial role in 
optimizing the execution of applications in cloud environments. 
Workflows model processes as a sequence of steps, and 
scheduling involves assigning each task of the workflow to an 
appropriate processing resource while adhering to specific 
workflow rules and constraints. This paper proposed a novel 
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workflow scheduling approach called Inverted ACO (IACO). 
The IACO algorithm leverages the principles of the ACO 
algorithm but introduces unique modifications to improve its 
performance in cloud-based workflow scheduling scenarios. 
The experiments were carried out utilizing instances from the 
Amazon EC2 cloud platform, encompassing three distinct real-
world workflow types originating from various scientific 
domains. 

In the comparative analysis, IACO was assessed against 
established methodologies in the field, namely standard FR-
MOS, PEFT-ACO, and ACO algorithms. The results of the 
experiments show that IACO outperforms all other algorithms 
in most tests, particularly in terms of the trade-off between 
makespan and cost. This work could explore how the IACO 
algorithm adapts dynamically to varying cloud environments, 
taking into account factors like workload fluctuations and cloud 
structure diversity. Additionally, exploring the integration of 
IACO with machine learning or other metaheuristic approaches 
could expand its efficiency and applicability. Moreover, 
investigating the scalability of IACO in hybrid cloud settings or 
its adaptability to real-time workflow changes could 
significantly advance its practical implementation. 
Furthermore, assessing the robustness of IACO against various 
cloud constraints, including resource limitations or network 
latency, would contribute to a more comprehensive 
understanding of its performance under diverse cloud 
scenarios. 
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