
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

913 | P a g e

www.ijacsa.thesai.org

Efficient Cloud Workflow Scheduling with Inverted

Ant Colony Optimization Algorithm

Hongwei DING, Ying ZHANG*

Hebei Software Institute, Hebei, Bao ding, 071000, China

Abstract—Cloud computing has risen as a prominent

paradigm, offering users on-demand access to computing

resources and services via the Internet. In cloud environments,

workflow scheduling plays a vital role in optimizing resource

utilization, reducing execution time, and minimizing overall

costs. As workflows comprise interdependent tasks that need to

be assigned to Virtual Machines (VMs), the complexity of the

scheduling problem increases in proportion to workflow size and

VM availability. Due to its NP-hard nature, finding an optimal

scheduling solution for workflows remains a challenging task. To

address this problem, researchers have turned to metaheuristic

approaches, which have shown promise in finding near-optimal

solutions for complex combinatorial optimization problems. This

paper proposes a novel metaheuristic algorithm called Inverted

Ant Colony Optimization (IACO) for workflow scheduling in

cloud environments. IACO is a variation of the traditional ACO

algorithm, where the updated pheromone has an inverted

influence on the path chosen by the ants. By leveraging the

complementary nature of these two algorithms, our proposed

algorithm aims to achieve superior workflow scheduling

performance regarding total execution time and cost, surpassing

existing approaches.

Keywords—Cloud computing; workflow scheduling;

virtualization; task allocation; swarm intelligence; optimization

I. INTRODUCTION

Cloud computing is a technological advancement that
harnesses the capabilities of the Internet and distant centralized
servers to supply users with flexible services. These services
are delivered using a diverse range of distributed resources,
catering to various quality of service (QoS) requirements [1].
Prominent cloud computing platforms include Aneka,
Microsoft Azure, Google App Engine, and Amazon EC2.
Clouds are generally classified into several types: public,
private, community, hybrid, and cloud federation [2]. Public
clouds are accessible to the general public and are owned and
managed by external entities known as independent cloud
service providers. Computing resources, like applications,
storage, and servers, are available to an array of businesses or
individuals [3].

In contrast, private clouds are owned by an individual
organization and are either hosted internally or handled
exclusively by an external provider for that organization's use
[4]. Community clouds are shared among multiple
organizations with similar interests or requirements. These
clouds are designed to cater to the specific needs of a particular
community, such as government agencies, educational
institutions, or healthcare providers [5]. Hybrid clouds
integrate elements from both public and private clouds. In this

model, organizations can distribute applications and data
across multiple cloud deployment models, interconnected to
function as a cohesive infrastructure. Cloud federation involves
the interconnection and collaboration of multiple cloud
infrastructures to work as a single unified cloud environment. It
enables seamless movement of workloads and data among
different cloud providers, enhancing flexibility and scalability
in cloud computing [6].

Cloud computing is categorized into three primary service
models: Software-as-a-Service (SaaS), Platform-as-a-Service
(PaaS), and Infrastructure-as-a-Service (IaaS) [7]. In SaaS,
software applications are delivered to users online through
subscriptions. Users can use these services remotely without
installation or local device maintenance. The responsibility for
hosting, maintenance, and updates lies with the SaaS provider.
PaaS offers a platform for developers to build, deploy, and
manage applications with no need for infrastructure
management. PaaS provides developers with access to a set of
development tools, programming languages, and runtime
environments, facilitating the creation and execution of
applications. In IaaS, users subscribe to virtual machines,
servers, networking components, and other infrastructure
resources from a cloud provider. IaaS gives customers
enhanced control over infrastructure without requiring them to
invest in physical hardware and its maintenance [8].

Virtualization is a critical technology in cloud computing
that enables the coexistence of multiple Virtual Machines
(VMs) on a single physical machine. A VM is a simulated
computer system that executes tasks assigned by users. This
capacity for VM instantiation empowers users to run their
applications across resources that encompass diverse
functionality and cost attributes. Orchestrating this
arrangement within each physical machine or server is a
software layer, colloquially referred to as the hypervisor or VM
monitor. The hypervisor serves as a facilitator for VM creation
and ensures their isolated execution, allowing multiple VMs to
operate independently and securely on the same physical
hardware. The hypervisor is responsible for efficiently
managing the allocation of resources and providing a seamless
and robust virtualization environment for cloud computing [9].

Workflow scheduling poses a substantial challenge within
the context of cloud computing, entailing the intricate
assignment of workflow tasks to VMs based on a multitude of
operational and technical requisites [10]. Workflows are
constructed from an array of interdependent tasks, interlinked
by either data or functional dependencies, necessitating
meticulous consideration during the scheduling endeavor.
Nonetheless, the task of workflow scheduling in cloud

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

914 | P a g e

www.ijacsa.thesai.org

environments is classified as an NP-hard optimization problem,
rendering the attainment of an optimal schedule a formidable
undertaking [11]. The cloud environment typically
encompasses a multitude of VMs, engendering intricacies in
orchestrating an array of user tasks while accounting for
diverse scheduling objectives and elements. For instance, a
scheduling scheme may prioritize supporting Service Level
Agreements (SLAs), predetermined timeframes, and cost
limitations. Additionally, scheduling strategies may take into
account parameters like the availability of cloud resources and
services, load balancing, and resource utilization to make
informed scheduling plans.

The integration of cutting-edge technologies such as the
Internet of Things (IoT), machine learning, deep learning, and
neural networks has revolutionized workflow scheduling,
particularly in cloud environments. The IoT facilitates the
interconnectedness of devices and sensors, offering real-time
data collection and sharing [12, 13]. Machine learning
techniques, including supervised and unsupervised algorithms,
analyze this data to predict and optimize workflow patterns
[14, 15]. Deep learning, a subset of machine learning, uses
intricate neural network architectures to process complex data
representations, making it adept at recognizing patterns and
optimizing scheduling decisions [16]. Neural networks,
inspired by the human brain's structure, excel in learning from
data and making informed decisions based on this acquired
knowledge [17]. Their application in workflow scheduling
involves predictive analysis, resource allocation, and task
optimization [18]. Collectively, these technologies enable
intelligent decision-making, predictive scheduling, and
adaptive allocation of tasks within cloud environments. By
harnessing IoT data with machine learning, deep learning, and
neural networks, workflow scheduling becomes more agile,
responsive, and adept at handling the dynamic and complex
demands of cloud-based applications, ultimately improving
efficiency, resource utilization, and overall performance. Their
integration not only streamlines operations but also paves the
way for self-optimizing and self-adapting systems in cloud
workflow management [19, 20].

Meta-heuristic algorithms are key to workflow scheduling
within cloud computing due to the inherent complexity of task
allocation. These algorithms, by their nature of adaptive and
efficient search strategies, offer an effective way to navigate
the vast solution space, addressing the NP-hard nature of
scheduling problems [21]. They enable the optimization of
resource allocation, contributing significantly to reduced
execution times, minimized costs, and improved overall
efficiency in cloud-based workflow management. Inverted Ant
Colony Optimization (IACO) represents a deviation from the
conventional ACO algorithm, which is a metaheuristic derived
from the foraging behavior of real ants. In ACO, ants construct
solutions by probabilistically choosing paths in a graph based
on pheromone trails and heuristic information. The pheromone
trails reflect the attractiveness of edges in the graph, and ants
deposit pheromones on the paths they traverse. Over time,
paths with higher pheromone concentrations become more
attractive to other ants, leading to the emergence of high-
quality solutions. The IACO algorithm introduces a novel
concept to the ACO framework called "inversion." In the

traditional ACO, the pheromone trail is reinforced for
successful paths, and it is evaporated gradually to encourage
exploration. However, in IACO, the pheromone trail on the
best path (i.e., the path with the highest desirability) is reduced
instead of increased during the pheromone update process. This
reduction is referred to as "inversion". The core idea behind the
inversion mechanism in IACO is to enhance exploration
capabilities. By reducing the pheromone level on the best path,
the algorithm encourages ants to explore alternative routes
rather than always favoring the currently best-known path. This
helps in diversifying the search space and prevents the
algorithm from getting stuck in local optima. For workflow
scheduling in cloud computing, IACO is applied to find an
optimized allocation of tasks to VMs, aiming to lower the total
execution time and overall costs. In this context, the graph
represents the task dependency graph, and ants traverse paths
by assigning tasks to available virtual machines. The main
contributions of the study can be summarized as follows:

 Adaptation of traditional ACO algorithm with an
inversion mechanism to enhance exploration
capabilities and prevent local optima convergence.

 Improvement in the allocation of tasks to VMs, leading
to reduced total execution time and minimized costs in
cloud-based workflow scheduling.

 Establishment of a pioneering approach that sets a
potential benchmark for optimization in cloud
computing, influencing future research and practical
implementations.

II. RELATED WORK

Choudhary, et al. [22] combined the Heterogeneous
Earliest Finish Time (HEFT) heuristic and the Gravitational
Search Algorithm (GSA) for workflow scheduling. The GSA is
a powerful meta-heuristic that imitates the law of gravity to
search for optimal solutions, while HEFT is a widely used
heuristic that schedules tasks based on their earliest finish
times on heterogeneous resources. One of the key contributions
of their work is the introduction of a new factor called "cost
time equivalence," which enhances the realism of the bi-
objective optimization process. By considering the monetary
cost ratio (MCR) and the schedule length ratio (SLR) as
performance metrics, they compare the proposed algorithm's
performance with existing algorithms. To validate their results,
rigorous experiments are conducted over various scientific
workflows. They demonstrate the effectiveness of their
proposed algorithm by comparing it with standard GSA,
Hybrid Genetic Algorithm (HGA), and HEFT. Statistical tests,
such as Analysis of Variance (ANOVA), are utilized to
validate the results. The simulation results consistently show
that the proposed approach outperforms the existing algorithms
in terms of both makespan and cost optimization. The
algorithm's effectiveness is demonstrated across different
workflow scenarios, providing robust evidence of its
superiority over the compared algorithms.

Elsherbiny, et al. [23] introduced a novel algorithm that
extends the Intelligent Water Drops (IWD) algorithm, a nature-
inspired optimization method, to optimize the scheduling of
workflows in cloud computing environments. The suggested

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

915 | P a g e

www.ijacsa.thesai.org

algorithm is applied and incorporated into the workflow
simulation toolkit, allowing for comprehensive testing in
various simulated cloud environments with different cost
models. The results of the experiments demonstrate that the
proposed IWD-based algorithm outperforms classical
workflow scheduling algorithms in terms of both performance
and cost. They conducted a thorough comparison with several
well-known scheduling algorithms. In most situations, the
proposed IWD-based algorithm exhibited noticeable
enhancements in terms of both performance and cost,
outperforming the alternative algorithms. This showcases the
effectiveness and efficiency of the IWD-based approach in
optimizing workflow scheduling for cloud computing
environments.

Ismayilov and Topcuoglu [24] address the intricate
challenge of dynamic workflow scheduling within the context
of a Dynamic Multi-Objective Optimization Problem (DMOP).
This dynamic aspect arises from two primary sources: resource
failures (manifested as software or hardware faults) and the
inherent variability in the number of objectives during the
execution of workflows in real-world cloud computing
scenarios. To surmount this intricate problem, the authors
propose an innovative prediction-based dynamic multi-
objective evolutionary algorithm named NN-DNSGA-II. This
algorithm ingeniously combines the capabilities of an artificial
neural network with the NSGA-II algorithm, allowing it to
make informed predictions concerning the evolving objectives
and subsequently adapt its strategies accordingly. The study
also involves the adaptation of five prominent non-prediction-
based dynamic algorithms from the existing literature, with the
overarching goal of addressing the dynamic workflow
scheduling dilemma. The NN-DNSGA-II algorithm is
thoughtfully designed to encompass six distinct objectives
within the scheduling process. It aims to minimize critical
aspects such as makespan, cost, energy consumption, and
degree of imbalance while simultaneously maximizing
attributes like reliability and utilization. To assess its efficacy,
the authors conducted comprehensive empirical studies
employing real-world applications sourced from the Pegasus
workflow management system. This rigorous evaluation entails
a range of metrics tailored for DMOPs characterized by
unknown true Pareto-optimal fronts. Metrics include
considerations such as the number of non-dominated solutions,
Schott's spacing, and the Hypervolume indicator. The findings
derived from the empirical investigation reveal the remarkable
performance of the NN-DNSGA-II algorithm. It consistently
outperforms alternative algorithms across various scenarios,
underlining its supremacy in effectively managing dynamic
workflow scheduling imbued with multiple objectives and
unknown true Pareto-optimal fronts.

Mangalampalli, et al. [25] introduced a novel workflow-
scheduling mechanism that incorporates task priorities to
schedule tasks onto appropriate virtual resources efficiently.
The Whale Optimization Algorithm (WOA) was used as the
methodology to model this algorithm. Extensive simulations
were conducted using the workflow simulator to evaluate the
proposed mechanism's performance. The mechanism was
compared against existing algorithms, including PSO, CS,
ACO, and GA. The simulation results revealed significant

improvements in makespan, migration time, and energy
consumption when using the proposed mechanism. These
improvements indicate the effectiveness of the WOA-based
workflow-scheduling approach in optimizing task scheduling
in cloud computing environments. By considering task
priorities, the proposed mechanism is able to make more
informed and efficient scheduling decisions, leading to reduced
makespan (total execution time), migration time (task
relocation between resources), and energy consumption. These
improvements are crucial for enhancing the overall
performance and resource utilization in cloud-based workflow
management.

Zeedan, et al. [26] introduced an innovative approach
termed Enhanced Binary Artificial Bee Colony-based Pareto
Front (EBABC-PF) for optimizing workflow scheduling in
cloud computing environments. The proposed approach
involves a sequence of strategic steps aimed at achieving
efficient task scheduling. The initial step of the approach
involves task prioritization using the HEFT algorithm. HEFT
organizes tasks based on their earliest finish times across
heterogeneous resources, thereby establishing a prioritized
sequence. Subsequently, an initial solution is constructed using
the Greedy Randomized Adaptive Search Procedure (GRASP),
a constructive metaheuristic approach renowned for its
optimization capabilities. The core task scheduling phase is
executed through the utilization of the enhanced Binary
Artificial Bee Colony (BABC) algorithm. This modified
version of the BABC algorithm integrates several
enhancements specifically targeted at refining the local search
process. The process incorporates circular shift and mutation
operators, which are applied to the population's food sources
while considering the improvement rate. These enhancements
contribute to augmenting the algorithm's search capacity and
effectiveness. The proposed EBABC-PF approach is simulated
and implemented using WorkflowSim, an extension of the
CloudSim tool designed to manage workflows within cloud
environments. To assess its performance, the approach is
rigorously compared against a range of other scheduling
algorithms, which include HEFT, Deadline Heterogeneous
Earliest Finish Time (DHEFT), Non-dominated Sort Genetic
Algorithm (NSGA-II), and the standard BABC algorithm. This
comparative analysis is conducted across diverse task sizes and
benchmark workflows. The simulation results obtained exhibit
the exceptional efficiency of the proposed EBABC-PF
approach across multiple performance metrics. It notably
outperforms the alternative algorithms in terms of makespan
(total execution time), processing cost, and resource utilization.
This finding underscores the approach's effectiveness in
optimizing workflow scheduling within cloud computing
environments, rendering it a superior choice for this intricate
task.

III. PROPOSED APPROACH

A. Problem Statement

In the domain of cloud computing, workflow scheduling
involves the representation of workflows as Directed Acyclic
Graphs (DAGs), denoted as G = (V, E). V refers to a collection
of vertices, each representing an individual task within the
workflow. E, on the other hand, denotes the set of edges

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

916 | P a g e

www.ijacsa.thesai.org

signifying task dependencies. In this setup, tasks must be
executed in a specific order, where parent tasks precede the
execution of their child tasks. Fig. 1 offers a concrete
illustration of task dependencies spanning from T1 to T10.
Serving as the root node, T1 takes the lead as the first task to be
executed. Once T1 is finished, tasks T2 and T3, located on the
first tier of the DAG, are initiated. In a parallel manner, once
task T2 is accomplished, tasks T4 and T5 are set into motion.

Additionally, the execution of task T6 is contingent upon
the completion of task T3, thus establishing T3 as the necessary
precursor to T6. Scientific workflows encompass a specialized
class of workflows extensively utilized across a range of
scientific fields, such as astronomy, biology, and gravitational
waves, among others. Prominent instances of practical
scientific workflows include SIPHT, LIGO, Epigenomics,
CyberShake, and Montage, all meticulously cataloged by the
Pegasus project. The structural depiction of these scientific
workflows is presented in Fig. 2. The scheduling of workflows
can be perceived as a mapping function, allocating numerous
interdependent tasks to available virtual machines. A sample
mapping is illustrated in Fig. 3, demonstrating the allocation of
n tasks to m VMs. In such instances, when employing a brute

force algorithm, there emerge m*n potential combinations.
Consequently, the intricacy of workflow scheduling is
acknowledged, and achieving a solution within polynomial
time is not attainable. Consequently, the pursuit of a nearly
optimal resolution to the workflow scheduling predicament
proves advantageous and attainable through the assistance of
meta-heuristic algorithms.

Fig. 1. Task dependencies in workflow scheduling

Fig. 2. The structural depiction of scientific workflows.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

917 | P a g e

www.ijacsa.thesai.org

Fig. 3. Task mapping model.

B. Fitness Function

The optimization algorithm aims to enhance specific
parameters within the fitness function. In this context, we have
employed two distinct fitness functions, labeled F1 and F2,
which are the focal points of optimization through the proposed
algorithm. The initial fitness function, F1, encompasses a
synthesis of the Total Execution Time (TET), whereas the
subsequent fitness function, F2, is constructed from the Total
Execution Cost (TEC). The precise formulations of TET and
TEC are outlined in Eq. (1) and Eq. (5), respectively.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 (𝐹1) = 𝑇𝑜𝑡𝑎𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 (𝑇𝐸𝐶) (1)

The total execution time, often referred to as the makespan,
signifies the longest duration taken by tasks within the
workflow to reach completion. But it quantifies the time
necessary for accomplishing all tasks distributed among
various VMs. The mathematical expression to compute the
makespan of the workflow can be deduced from Eq. (2), where
CTi symbolizes the completion time of task Ti within the
workflow. The completion time of a task encompasses its
entire execution duration, and in cases where task
dependencies exist, the waiting time of preceding tasks is also
considered. The calculation of completion time is presented in
Eq. (3). The waiting time for task Ti is established as the
utmost completion time among all predecessor tasks within the
workflow, as delineated in Eq. (4). Furthermore, the execution
time of task Ti on jth VM can be evaluated using Eq. (5). Here,
SZTask signifies the size of task Ti, quantified in million
instructions (MI), Num (PEj) represents the count of cores
allocated to jth VM, and PEUnit denotes the magnitude of each
core in Millions of Instructions per Second (MIPS).

𝑇𝐸𝑇𝑊 = max {𝐶𝑇𝑡|1,2, … , 𝑚} (2)

𝐶𝑇𝑖 = {
𝐸𝑇𝑖 𝑖𝑓 𝑝𝑟𝑒𝑑(𝑇𝑖) = ∅

𝑊𝐾𝑖 + 𝐸𝑇𝑖 𝑖𝑓 𝑝𝑟𝑒𝑑(𝑇𝑖) ≠ ∅
 (3)

𝑊𝐾𝑖 = {
0 𝑖𝑓 𝑝𝑟𝑒𝑑(𝑇𝑖) = ∅

max (𝐶𝑇𝑖) 𝑖𝑓 𝑝𝑟𝑒𝑑(𝑇𝑖) ≠ ∅
 (4)

𝐸𝑇𝑖,𝑗 =
𝑆𝑍𝑇𝑎𝑠𝑘

𝑁𝑢𝑚(𝑃𝐸𝑗) × 𝑃𝐸𝑈𝑛𝑖𝑡

 (5)

Eq. (6) delineates the process for calculating TEC. The
TEC for the ith VM is derived by calculating the disparity
between the Least End Time (LET) and the Least Start Time
(LST) of that specific VM. The cost associated with the ith VM,
denoted as C[i], is uniformly set at 1 across all VMs. To
provide further clarity, Eq. (7) and Eq. (8) elucidate the
mechanics behind computing the LET and LST, respectively.
LET pertaining to the ith VM corresponds to the highest
execution time among all tasks executed on that particular VM.
Conversely, LST is determined as the minimum execution time
of tasks in progress on the ith VM.

𝑇𝑜𝑡𝑎𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 (𝑇𝐸𝐶)

= ∑ 𝐶[𝑖] × (𝐿𝐸𝑇[𝑖] − 𝐿𝑆𝑇[𝑖]

𝑉𝑀

𝑖=0

(6)

𝐿𝐸𝑇[𝑖] = max (𝐸𝑇[𝑖]) (7)

𝐿𝑆𝑇[𝑖] = min (𝐸𝑇[𝑖]) (8)

C. Proposed Algorithm

ACO algorithms harness a populace of ants to
collaboratively address optimization challenges, navigating
graphs to discover paths of minimal cost while upholding
specific constraints. The behavior of these ants encompasses
two distinct groups: a smaller ensemble lays down pheromone
trails, while the other contingent diligently tracks these trails,
reinforcing them while circumventing impulsive moves. As
time elapses, the potency of these trails diminishes, leading to a
waning allure for the ants. Let G = (V, E) symbolize the graph
that underpins the optimization conundrum, where V denotes
vertices and E signifies edges. On this graph, viable pathways
correspond to potential resolutions for the optimization
predicament. While in pursuit of the shortest path, the ants
deposit pheromones along their journey, cultivating an
enduring memory of the exploration process. Furthermore,
heuristic values might be attributed to the graph's edges,
derived from antecedent knowledge or real-time feedback,
exerting influence over the ants' conduct.

The decision-making process of the ants is probabilistic in
nature and relies on their memory, the constraints of the
problem, and the ant-routing table, a localized data structure
housing pheromone trails and heuristic values. Pheromone
updates transpire through two distinct mechanisms: an online
step-by-step update involving the deposition of pheromone by
the ant while traversing an edge and an online delayed update,
which involves adjusting pheromone trails after discovering a
solution and retracing the path in reverse. Additional processes
for updating pheromone trails include daemon actions and
pheromone evaporation. Daemon actions, while discretionary,
enable ants to execute actions that are beyond their individual
capacities, often involving centralized actions. Pheromone
evaporation entails a gradual reduction in the strength of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

918 | P a g e

www.ijacsa.thesai.org

pheromone trails over time. This mechanism prevents the
convergence toward suboptimal regions and promotes the
exploration of novel areas within the graph.

Algorithm. 1. Generic ACO algorithm

Initialize

While stop criteria are not met do

 For all ant a in A do

 Position a in startNode

 End for

 Repeat

 For all ant a in A do

 Choose nextNode

 Pheromone(currentNode,nextNode)+=Update

 End for

 Until every ant has a solution

 For all edge e in B do

 Pheromonee+=Deposit

 End for

 For all edge e in E do

 Pheromonee-=Evaporation

 End for

End while

Eq. (9) calculates the probability of an ant selecting a
particular path. It depends on the number of pheromones𝜏𝑖,𝑗,

present on the path between nodes i and j and the reverse of the
distance (𝜂𝑖,𝑗) between these two nodes. The parameters α and

β are control parameters that influence the relative importance
of pheromones and distance in the probability calculation.

𝑝𝑖,𝑗
𝑘 =

[𝜏𝑖,𝑗]𝛼[𝑛𝑖,𝑗]𝛽

∑ [𝜏𝑖,𝑙]
𝛼[𝑛𝑖,𝑙]

𝛽
𝑙=𝑗𝑖

 (9)

The ants act like scouts, searching for food (appropriate
service corresponding to user demands) in the environment.
Once they find food, they return to their nests, dropping
pheromones on the trails they have traversed. These

pheromones serve as a form of communication for other ants,
indicating the quality of the path. The pheromone trail amount
can either increase when ants deposit pheromone or decrease
over time due to pheromone evaporation. Eq. (10) calculates
the pheromone evaporation rate, where 1 − 𝜔 is the
pheromone declining rate.

𝜏𝑖,𝑗 = (1 − 𝜔) × 𝜏𝑖,𝑗 + ∑ ∆𝜏𝑟𝑖, 𝑗
𝑟=1

 (10)

In the ACO algorithm, other ants tend to follow paths with
a high amount of pheromone, as it indicates better solutions.
There are two main approaches to updating the pheromone
trails. The first approach involves selecting the best-so-far
solutions (iteration best) and using them to update the
pheromone matrices for each objective. These best solutions
represent the most promising paths found so far in the search
process. The second approach revolves around gathering and
storing non-dominated solutions in an external set. Only the
solutions in this non-dominated set are allowed to update the
pheromone trails. Non-dominated solutions are those that
cannot be improved in one objective without worsening at least
one other objective. This approach helps maintain a diverse set
of optimal solutions. Once the ants find food, they return to
their nests, dropping pheromones on the trail they traveled.
This pheromone serves as a signal for other ants to explore the
same path, thus collectively reinforcing good solutions. Ants
make local decisions based on their observations and the
information available in their local environment. Instead of
directly communicating with each other, ants use indirect
forms of communication, which is referred to as "stigmergy."
The pheromones left by ants’ act as a form of stigmergic
communication, guiding other ants to explore the most
promising paths. Over time, the pheromones evaporate, which
allows the algorithm to explore new areas and avoid
convergence to sub-optimal solutions. The rate of pheromone
evaporation is higher when returning to the nest takes a longer
time, promoting the exploration of alternative paths. At
intersections in the graph, each ant chooses one of the branches
to continue its path. Ants tend to select shorter branches to
return home faster, resulting in more pheromone accumulation
on these shorter paths.

Fig. 4. Path selection by ants.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

919 | P a g e

www.ijacsa.thesai.org

In the presented scenario (see Fig. 4), the ants encounter
three paths: A→B→C→E, A→B→E, and A→B→D→E.
Initially, due to the shorter distance, the shortest path A→B→E
will have a higher pheromone density. As the ants make their
choices, they select paths based on the pheromone densities
present on the branches. Consequently, most ants will opt for
the shortest path, A→B→E. The main focus of the article is on
the IACO algorithm for workflow scheduling in cloud
computing. This algorithm combines the principles of ACO
with a constrained optimization approach, which is suitable for
solving single-objective discrete optimization problems. By
leveraging pheromone communication and making local
decisions based on observed pheromone densities, the IACO
algorithm effectively guides ants to converge toward the
shortest and most feasible paths in the search space.

Indeed, the IACO method exhibits several significant
differences in each ant's behavior compared to the traditional
ACO. The main distinctions between ACO and IACO are as
follows:

 Pheromone functionality: In the ACO, the pheromones
produced by ants serve only the function of attraction.
Pheromones act as a positive signal, guiding ants to
explore paths with higher pheromone densities. In
contrast, the pheromones in the IACO method serve a
dual purpose. Besides attraction, they also act as a form
of repulsion. This repulsive nature of pheromones helps
to alleviate the pressure on certain paths or nodes. It
discourages ants from over-converging on a specific
route or node.

 Role of nodes: In the ACO, nodes do not directly
influence the algorithm. The focus lies primarily on
paths and the pheromones present on those paths as
important parameters.

 IACO Method: In the IACO, nodes play a significant
role as influencing parameters. They store the number
of pheromones present. If the pheromone count exceeds
a specific value, the node acts as a blockade, preventing
other ants from passing through it. This approach is
designed to reduce pressure on certain nodes and is
directly linked to the pheromone value.

 Consideration of route capacity: ACO does not
explicitly consider the maximum capacity on a path
when updating pheromones. In the IACO, the
pheromone's evaporation process takes into account
both the length of the route and the maximum capacity
of the route. This consideration helps to ensure that the
algorithm avoids routes that may become congested due
to excessive pheromones.

These differences in behavior and parameterization
between ACO and IACO allow the IACO method to address
complex optimization problems more effectively, especially in
scenarios where path congestion and capacity constraints are
crucial considerations. By combining both attractive and
repulsive properties of pheromones and incorporating node-
based mechanisms, IACO offers an enhanced approach for
finding optimal or near-optimal solutions in constrained
optimization problems.

IV. PERFORMANCE EVALUATION

In the experiments conducted to verify the performance of
the proposed method, we used the WorkflowSim toolkit. The
implementations of strategies were implemented in Java and
run on a computer with an Intel Core i5 processor running at
2.8 GHz and equipped with 4 GB of RAM. The WorkflowSim
toolkit is an extension of CloudSim, designed specifically to
simulate an environment for executing scientific workflows. In
pursuit of an equitable comparison of outcomes, the
simulations involving the proposed approach and other
established methods were orchestrated under identical
conditions. This systematic parity in experimentation
conditions serves to objectively gauge the performance and
efficacy of the proposed approach in contrast to alternative
methodologies. The experimental trials were conducted
utilizing three distinct real-world workflow applications, each
hailing from diverse scientific domains. Noteworthy among
these is the Montage workflow applied within the realm of
astronomical physics. Furthermore, the Cybershake workflow
was harnessed to analyze earthquake hazards, while the Ligo
workflows were instrumental in the quest for gravitational
wave detection.

The configuration of VMs is based on the specifications of
Amazon EC2 instances, which are commonly used in cloud
computing environments. Within the simulation model, it is
assumed that the storage capacity of every VM is generously
sufficient to host all the allocated tasks. Nonetheless, the mean
bandwidth linking distinct virtual machines exhibits variability
across three distinct scenarios: 5 Gb/s, 10 Gb/s, and 25 Gb/s.
The variation in bandwidth represents different network
capacities and performance levels that can affect task execution
and communication between VMs. Additionally, the virtual
machine preparation time is taken into consideration during the
simulations. This preparation time represents the overhead
required to set up and configure a VM before it can start
executing tasks. The temporal interval required for VM
preparation is modeled to fluctuate within the range of 1
second to 1.5 seconds. During the evaluation process of the
proposed IACO algorithm, a comprehensive comparison is
conducted against three alternative algorithms: standard ACO,
FR-MOS, and PEFT-ACO algorithms.

In the first series of experiments, the algorithms were
evaluated independently for each objective, i.e., cost and
makespan. The experiments were performed on three different
types of workflows: Montage, Cybershake, and Ligo, with
varying numbers of tasks (100 and 300). The results averaged
over 100 executions for each workflow type, are presented in
Table I. It is observed that the traditional ACO algorithm
performs poorly in both the total cost and makespan across all
three workflow types. On the other hand, the IACO algorithm
is superior to both PEFT-ACO and FR-MOS regarding cost
and makespan across all workflow types. The discernible
distinction in performance is especially pronounced with
regard to makespan. This indicates that IACO is more efficient
and effective in exploring the solution space and finding
globally optimal or near-optimal solutions. Fig. 5 and Fig. 6
provide visualizations of the average results for makespan and
cost when the number of tasks is set to 500.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

920 | P a g e

www.ijacsa.thesai.org

TABLE I. OBTAINED RESULTS FOR COST AND MAKESPAN

Workflow
Tasks

count

IACO FR-MOS PEFT-ACO ACO

Cost ($/h) Make span (s) Cost ($/h) Make span (s) Cost ($/h) Make span (s) Cost ($/h) Make span (s)

Montage 100 14.1 468.2 15.9 614.7 25.6 625.8 52.2 654.3

 300 9.2 584.7 13.8 679.4 20.1 693.5 30.1 708.3

Cybershake 100 21.8 489.5 40.7 513.7 57.7 578.5 70.2 695

 300 19.8 627.1 32.1 659.4 43.9 701.8 53.7 872.4

Ligo 100 31.5 559.1 46.9 609.5 69.7 695.8 78.7 710.8

 300 26.9 697.4 42.8 823.4 64.4 888.1 77.2 896.7

Fig. 5. Makespan comparison.

Fig. 6. Cost comparison.

V. CONCLUSION

Cloud computing has emerged as a revolutionary concept in
the field of distributed systems, providing efficient and scalable
solutions for high-performance and distributed computing
needs. Its dynamic nature, virtual resource provisioning, and
pay-per-use model have contributed to its widespread

popularity among organizations and research laboratories. In
this context, workflow scheduling plays a crucial role in
optimizing the execution of applications in cloud environments.
Workflows model processes as a sequence of steps, and
scheduling involves assigning each task of the workflow to an
appropriate processing resource while adhering to specific
workflow rules and constraints. This paper proposed a novel

0

100

200

300

400

500

600

700

800

Ligo Montage Cybershake

M
ak

es
p

an
 (

s)

Workflow

ACO FR-MOS PEFT-ACO IACO

0

100

200

300

400

500

600

700

800

900

1000

Ligo Montage Cybershake

C
o
st

 (
$
)

Workflow

ACO FR-MOS PEFT-ACO IACO

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

921 | P a g e

www.ijacsa.thesai.org

workflow scheduling approach called Inverted ACO (IACO).
The IACO algorithm leverages the principles of the ACO
algorithm but introduces unique modifications to improve its
performance in cloud-based workflow scheduling scenarios.
The experiments were carried out utilizing instances from the
Amazon EC2 cloud platform, encompassing three distinct real-
world workflow types originating from various scientific
domains.

In the comparative analysis, IACO was assessed against
established methodologies in the field, namely standard FR-
MOS, PEFT-ACO, and ACO algorithms. The results of the
experiments show that IACO outperforms all other algorithms
in most tests, particularly in terms of the trade-off between
makespan and cost. This work could explore how the IACO
algorithm adapts dynamically to varying cloud environments,
taking into account factors like workload fluctuations and cloud
structure diversity. Additionally, exploring the integration of
IACO with machine learning or other metaheuristic approaches
could expand its efficiency and applicability. Moreover,
investigating the scalability of IACO in hybrid cloud settings or
its adaptability to real-time workflow changes could
significantly advance its practical implementation.
Furthermore, assessing the robustness of IACO against various
cloud constraints, including resource limitations or network
latency, would contribute to a more comprehensive
understanding of its performance under diverse cloud
scenarios.

REFERENCES

[1] B. Pourghebleh, A. A. Anvigh, A. R. Ramtin, and B. Mohammadi, "The
importance of nature-inspired meta-heuristic algorithms for solving
virtual machine consolidation problem in cloud environments," Cluster
Computing, pp. 1-24, 2021.

[2] M. Hosseinzadeh et al., "A Hybrid Service Selection and Composition
Model for Cloud-Edge Computing in the Internet of Things," IEEE
Access, vol. 8, pp. 85939-85949, 2020.

[3] R. K. Tiwari and R. Kumar, "G-TOPSIS: a cloud service selection
framework using Gaussian TOPSIS for rank reversal problem," The
Journal of Supercomputing, vol. 77, no. 1, pp. 523-562, 2021.

[4] S. K. Panda and P. K. Jana, "An energy-efficient task scheduling
algorithm for heterogeneous cloud computing systems," Cluster
Computing, vol. 22, no. 2, pp. 509-527, 2019.

[5] V. Sundararaj, "Optimal task assignment in mobile cloud computing by
queue based ant-bee algorithm," Wireless Personal Communications, vol.
104, no. 1, pp. 173-197, 2019.

[6] X. Wei, "Task scheduling optimization strategy using improved ant
colony optimization algorithm in cloud computing," Journal of Ambient
Intelligence and Humanized Computing, pp. 1-12, 2020.

[7] B. Cao, Z. Sun, J. Zhang, and Y. Gu, "Resource allocation in 5G IoV
architecture based on SDN and fog-cloud computing," IEEE Transactions
on Intelligent Transportation Systems, vol. 22, no. 6, pp. 3832-3840,
2021.

[8] P. Behrouz, H. Vahideh, and A. A. Aghaei, "Service discovery in the
Internet of Things: review of current trends and research challenges,"
Wireless Networks, vol. 26, no. 7, pp. 5371-5391, 2020.

[9] A. Sheeba and B. Uma Maheswari, "An efficient fault tolerance scheme
based enhanced firefly optimization for virtual machine placement in
cloud computing," Concurrency and Computation: Practice and
Experience, vol. 35, no. 7, p. e7610, 2023.

[10] H. Vahideh, P. Behrouz, P. K. A. Asghar, and A. Ghaffari, "Exploring the
state-of-the-art service composition approaches in cloud manufacturing
systems to enhance upcoming techniques," The International Journal of
Advanced Manufacturing Technology, vol. 105, no. 1-4, pp. 471-498,
2019.

[11] V. Hayyolalam, B. Pourghebleh, M. R. Chehrehzad, and A. A. Pourhaji
Kazem, "Single‐objective service composition methods in cloud
manufacturing systems: Recent techniques, classification, and future
trends," Concurrency and Computation: Practice and Experience, vol. 34,
no. 5, p. e6698, 2022.

[12] B. Pourghebleh and V. Hayyolalam, "A comprehensive and systematic
review of the load balancing mechanisms in the Internet of Things,"
Cluster Computing, pp. 1-21, 2019.

[13] P. He, N. Almasifar, A. Mehbodniya, D. Javaheri, and J. L. Webber,
"Towards green smart cities using Internet of Things and optimization
algorithms: A systematic and bibliometric review," Sustainable
Computing: Informatics and Systems, vol. 36, p. 100822, 2022, doi:
https://doi.org/10.1016/j.suscom.2022.100822.

[14] S. N. H. Bukhari, J. Webber, and A. Mehbodniya, "Decision tree based
ensemble machine learning model for the prediction of Zika virus T-cell
epitopes as potential vaccine candidates," Scientific Reports, vol. 12, no.
1, p. 7810, 2022.

[15] T. Gera, J. Singh, A. Mehbodniya, J. L. Webber, M. Shabaz, and D.
Thakur, "Dominant feature selection and machine learning-based hybrid
approach to analyze android ransomware," Security and Communication
Networks, vol. 2021, pp. 1-22, 2021.

[16] B. M. Jafari, M. Zhao, and A. Jafari, "Rumi: An Intelligent Agent
Enhancing Learning Management Systems Using Machine Learning
Techniques," Journal of Software Engineering and Applications, vol. 15,
no. 9, pp. 325-343, 2022.

[17] M. Sadi et al., "Special Session: On the Reliability of Conventional and
Quantum Neural Network Hardware," in 2022 IEEE 40th VLSI Test
Symposium (VTS), 2022: IEEE, pp. 1-12.

[18] J. Webber, A. Mehbodniya, Y. Hou, K. Yano, and T. Kumagai, "Study on
idle slot availability prediction for WLAN using a probabilistic neural
network," in 2017 23rd Asia-Pacific Conference on Communications
(APCC), 2017: IEEE, pp. 1-6.

[19] R. Singh et al., "Analysis of Network Slicing for Management of 5G
Networks Using Machine Learning Techniques," Wireless
Communications and Mobile Computing, vol. 2022, 2022.

[20] S. Habib, S. Aghakhani, M. G. Nejati, M. Azimian, Y. Jia, and E. M.
Ahmed, "Energy management of an intelligent parking lot equipped with
hydrogen storage systems and renewable energy sources using the
stochastic p-robust optimization approach," Energy, p. 127844, 2023.

[21] S. Mahmoudinazlou, A. Alizadeh, J. Noble, and S. Eslamdoust, "An
improved hybrid ICA-SA metaheuristic for order acceptance and
scheduling with time windows and sequence-dependent setup times,"
Neural Computing and Applications, pp. 1-19, 2023.

[22] A. Choudhary, I. Gupta, V. Singh, and P. K. Jana, "A GSA based hybrid
algorithm for bi-objective workflow scheduling in cloud computing,"
Future Generation Computer Systems, vol. 83, pp. 14-26, 2018.

[23] S. Elsherbiny, E. Eldaydamony, M. Alrahmawy, and A. E. Reyad, "An
extended intelligent water drops algorithm for workflow scheduling in
cloud computing environment," Egyptian informatics journal, vol. 19, no.
1, pp. 33-55, 2018.

[24] G. Ismayilov and H. R. Topcuoglu, "Neural network based multi-
objective evolutionary algorithm for dynamic workflow scheduling in
cloud computing," Future Generation computer systems, vol. 102, pp.
307-322, 2020.

[25] S. Mangalampalli, G. R. Karri, and G. N. Satish, "Efficient Workflow
Scheduling algorithm in cloud computing using Whale Optimization,"
Procedia Computer Science, vol. 218, pp. 1936-1945, 2023.

[26] M. Zeedan, G. Attiya, and N. El-Fishawy, "Enhanced hybrid multi-
objective workflow scheduling approach based artificial bee colony in
cloud computing," Computing, vol. 105, no. 1, pp. 217-247, 2023.

