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Abstract—In view of the problems that traditional real-time 

style transmission technology requires a large number of sample 

map training, low image quality, lack of realism and detail, this 

study combines the improved generative adversarial network 

(GANs) with real-time style transfer technology, and enhances 

the real-time style transfer calculation with adaptive instance 

normalization. As a result, a novel intelligent clothing ethnic 

pattern design model is developed. Experimental results show 

that the model reduces physical memory usage by 45.7%, with 

only 453MB, and utilizes only 26% of CPU resources in terms of 

CPU usage. The training time is approximately 20 minutes and 

48 seconds. This model performance is obviously higher than 

other models. The designed intelligent clothing ethnic pattern 

design model in this study demonstrates higher clarity and 

shorter processing time, and has potential applications in the 

field of image generation. 
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I. INTRODUCTION 

In today's era, clothing design plays a crucial role in 
personalization and innovation. With the growing demand for 
unique styles and cultural diversity, ethnic patterns have 
become a popular design element. However, manually 
drawing and applying these patterns require a significant 
amount of time and labor, limiting their application in 
large-scale production. To address this issue, computer vision 
and deep learning technologies have been widely applied in 
the field of fashion design [1]. In particular, style transfer 
methods based on Generative Adversarial Networks (GANs) 
have made significant progress. Among them, Deep 
Convolutional GAN (DCGAN) is a powerful generative 
model that can learn from input data and generate realistic 
images [2-3]. Style transfer is a technique of applying the style 
of one image to another image, which is widely used in artistic 
creation and design. AdaIN is an instance normalization 
technique that is adaptive to adjust the style of an image, 
making the result of style transfer more natural and 
realistic.However, there are some defects in the traditional 
intelligent design technology. On the one hand, traditional 
techniques often require a large number of sample images for 
training, which can be very difficult and time-consuming for 
specific ethnic patterns. On the other hand, traditional 
techniques may lead to a low quality of the generated images 
and a lack of realism and detail. Moreover, traditional 
techniques may not very well preserve the style and character 

of the original pattern. For the above problems, this study 
proposed a series of improvement measures for standard 
DCGAN, introduced in the decoder network, the generated 
false image more close to the real image, adopted the method 
of multi-scale feature extraction and fusion in the generator 
and discriminator network, makes the generated false image 
more real, by stacking the convolution layer and 
deconvolution layer to improve the quality of the generated 
image, and an improved algorithm of deep convolution 
generation against network (IDCGAN) is developed. In 
addition, the adaptive instance normalization (AdaIN) is also 
applied to the real-time style transfer technology to design an 
intelligent model for the clothing ethnic pattern design. The 
study aims to achieve image generation through adversarial 
learning, allowing DCGAN to learn specific ethnic patterns 
from a small number of samples and generate high-quality, 
realistic images. The article consists of four main parts. The 
second part provides a comprehensive review of the current 
research status of intelligent clothing design and style transfer 
systems. The third part establishes an intelligent model for 
ethnic pattern design in clothing based on improved DCGAN 
for real-time style transfer. The fourth part includes 
comparative experiments and efficiency verification to 
evaluate the optimization effects of the model. 

II. RELATED WORKS 

As people's pursuit of personalization and unique styles 
continues to grow, traditional clothing design no longer meets 
the demands of consumers. In order to meet this demand, 
researchers have been exploring intelligent design 
technologies that are adaptable to these needs. Ding et al. 
addressed the issues of low accuracy and stability in 
traditional manual crown design by developing an automatic 
crown design strategy with DCGAN, and the outcomes 
indicates that it had the smallest morphological differences 
compared to natural teeth [4]. Abd Al et al. proposed a 
DCGAN based algorithm and a novel Capsule Network to 
assist semiconductor manufacturers in identifying defect 
patterns in wafers, and the experimental results showed that 
the method achieved a training accuracy of 99.59% and a 
validation accuracy of 97.53% [5]. Bian et al. developed a 
compound screening model based on DCGAN to screen and 
design novel compounds with target-specificity for 
cannabinoid receptors, and the experimental results showed 
that the model had the highest accuracy compared to other 
models [6]. Cheng et al. proposed a Data Enhancement 
Communication Behavior Recognition (DECBR) scheme to 
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address the limitations of traditional communication behavior 
recognition techniques in accurately analyzing communication 
behaviors, and the DECBR scheme significantly improved the 
accuracy and efficiency of behavior recognition under small 
sample conditions [7]. Li et al. designed an image 
classification model that combines DCGAN and AlexNet for 
rapid differentiation of multiple forms of glioblastoma images, 
and the experiment outcomes indicates that the model reached 
0.920 accuracy and an AUC of 0.947 for distinguishing PsP 
and TTP after 10-fold cross-validation [8]. Ni et al. addressed 
the issue of large deviations in carrot quality identification 
using traditional visual inspection methods by designing a 
carrot quality identification model that combines DCGAN and 
Squeeze-and-Excitation Deep Networks, and the experiment 
outcomes showed that the model reached 98.36% accuracy 
[9]. 

Jing et al. proposed a new normalization module called 
Dynamic Instance Normalization (DIN) to address the 
deployment challenges of style transfer systems in 
resource-constrained environments. DIN allows for flexible 
and more efficient transfer of arbitrary styles. The 
experimental results showed that this approach reduced 
computational costs by more than 20% compared to existing 
methods [10]. Reimann et al. addressed the issue of one-shot 
stylization in existing style transfer computations, which 
mostly limit the style elements interactive adjusting. They 
designed a fast style transfer network which is 
stroke-adjustable. It can simultaneously control stroke 
intensity and size. The experimental results showed that the 
model make users achieving resolutions exceeding 20 million 
pixels and good output fidelity [11]. Hollandi et al. developed 
a deep learning-based cell nucleus segmentation framework 
that utilizes image style transfer to automatically generate cell 
nucleus segmentation masks. This framework aims to find a 
method for locating 2D cell nuclei in different regions. The 
experimental results showed that the model effectively 
identifies cell nuclei in different experiments without the need 
for expert annotations [12]. Huang et al. addressed the lack of 
diversity in traditional style transfer by designing a style 
transfer model that combines region semantics with 
multi-style transfer. The experimental results showed that the 
model seamlessly combines multiple styles together, and, with 
the assist of semantic matching, assigns corresponding styles 
to content regions [13]. Xu et al. tackled the problem of 
indistinguishable details between different types of objects 
caused by single-band imaging. They designed a target 
detection-oriented style transfer network for panchromatic 
remote sensing images. After style transfer, the target 

detection accuracy on panchromatic remote sensing images 
significantly improved [14]. Zhou et al. proposed a new 
approach that combines attention mechanism with style 
transfer models to enhance the flexibility of style transfer 
tasks. The experimental results showed that this approach is 
effective and produces high-quality images [15]. 

In summary, DECBR and style transfer have a solid 
theoretical and implementation foundation in the field of 
intelligent clothing design. However, there is limited research 
that combines the two for ethnic clothing design. Therefore, 
the study aims to improve DECBR and combine it with style 
transfer computations to develop an intelligent clothing design 
model, in order to further advance the clothing design 
industry. 

III. IMPROVEMENT OF DCGAN ALGORITHM AND 

ESTABLISHMENT OF INTELLIGENT PATTERN DESIGN MODEL 

This chapter contains two sections. The first gives an 
introduction on the standard Deep Convolutional Generative 
Adversarial Network (DCGAN) and proposes some 
improvement strategies to address its limitations. The second 
section focuses on improving traditional real-time style 
transfer networks and establishing an intelligent design model 
based on real-time style transfer networks. 

A. Improvement of DCGAN Algorithm Design 

DCGAN is a neural network model used for generating 
realistic images. It combines the ideas of generative models 
and adversarial training, mainly containing two components: 
the generator and the discriminator [16-17]. The former is a 
network that uses random noise vectors to do input and 
attempts to bring up images similar to the training data. The 
generator gradually constructs the image through multiple 
convolution, deconvolution, and activation function operations. 
The discriminator is also a convolutional neural network 
whose goal is distinguishing between the images generated 
and real ones. The discriminator extracts image features 
through operations such as convolution, pooling, and 
activation functions, and outputs a probability value between 0 
and 1, indicating the likelihood that the input image is a real 
image [18]. In DCGAN, the two components are alternately 
trained. The generator manufacture images that is real enough 
for deceiving the discriminator, while the later strives to 
differentiate between the images generated by the generator 
and real images [19]. This process stimulates the generator to 
continuously enhance the generated images' quality and makes 
the discriminator more accurate, as shown in Fig. 1.
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Fig. 1. Schematic diagram of DCGAN structure.
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Although DCGAN is a widely used entity in the studying 
areas of image synthesis, editing, and super-resolution 
reconstruction, there are some limitations when applying 
DCGAN to real-time style transfer of ethnic clothing patterns' 
intelligence design. Firstly, DCGAN has relatively weak 
feature extraction capabilities. Despite using convolutional 
neural networks (CNN) to learn image features, it may not 
fully capture the complex features of ethnic patterns due to 
network structure and training data limitations. This can result 
in generated clothing that is not realistic enough and deviates 
significantly from the target style. Secondly, there is a lack of 
overall style transfer constraints. DCGAN primarily focuses 
on generating realistic images during the training process, 
with less emphasis on maintaining consistency and layout of 
local patterns. In clothing design, maintaining pattern 
consistency is crucial, but DCGAN may not fully consider the 
layout and details of patterns in different parts of the garment, 
resulting in clothing that does not resemble a normal garment 
and lacks coherence and integrity. To address these limitations, 
a modified DCGAN approach is proposed, and the network 
structure during the training phase is shown in Fig. 2. 

Fig. 2 illustrates the network structure during the training 
phase of IDCGAN. At the beginning of training, random noise 
is input into the generator. The generator processes the noise 
through decoding and encoding operations to generate fake 
images. These fake images gradually approach real images 
through the generator. At the same time, real and fake images 
are simultaneously input into the discriminator. It is another 
network responsible for classifying the input images and 
outputting the feature space Z. This feature space represents 
the representation of the images in the discriminator. Next, the 
classification loss and the real/fake loss are calculated by 
comparing the classification results of real and fake images. 
The classification loss measures the accuracy of the 
discriminator in distinguishing real and fake images, while the 
real/fake loss reflects the adversarial training process within 
the two components. Throughout the training process, the two 
components engage in a competitive dynamic, continuously 
optimizing their parameters. The generator's objective is to 
produce increasingly realistic fake images to deceive the 
discriminator, while the discriminator aims to distinguish 
between real and fake images, improving its accuracy. The 
algorithm flow is shown in Fig. 3. 
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Fig. 2. Improved DCGAN network training stage structure diagram. 

Feedback losses to 

the generator

Start

Collect Datasets

Input random noise

Generate false 

clothing images

Calculate classification 

losses

Calculate true and 

false losses

Is condition meet?

End

Y

N

 

Fig. 3. IDCGN algorithm flowchart. 
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Fig. 3 shows the flowchart of the IDCGAN algorithm. 
Firstly, a dataset is collected for model training. Next, random 
noise is input into the encoding network of the generator to 
extract feature tensors. The third step is to input the extracted 
feature tensors and the specified style to be transformed into 
the decoding network of the generator, generating fake 
clothing images. Then, the discriminator is trained to improve 
its discriminative ability to distinguish the true and fake 
images. At the same time, the classification loss is calculated 
based on the feature space Z to measure the performance of 
the generator in generating different categories of clothing. 
The sixth step is to calculate the real/fake loss based on the 
feature space Z, which helps the generator generate more 
realistic clothing images. Next, the loss is fed back to the 
generator to adjust its strategy for generating images. Finally, 
steps two to seven are repeated in a loop until the total loss of 
the network converges, achieving the desired training effect. 
Through this iterative process, the IDCGAN algorithm 
continuously optimizes the balance between the generator and 
the discriminator, achieving better quality in generating fake 
images. The loss function used in the training process is the 
conditional contrastive loss. To further explain this loss 
function, it is necessary to first explain the NT-Xent loss 
function, which is expressed as Eq. (1). 

1 1 1 2 2{ , ( ),..., , ( )} { , ,..., }m m mA x T x x T x a a a   (1) 

In equation (1), ( )mT x  represents the random data 

augmentation for this loss function. After some 
transformations, the expression of the NT-Xent loss function is 
shown in Eq. (2). 
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In Eq. (2), t  is the temperature that controls the push and 

pull forces. By incorporating the embedding equation into 
Eq. (2) and (3) is obtained. 
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In equation (3), ( )e y  represents the embedding equation. 

By adding the cosine similarity of negative samples in 
equation (3), the final loss function is shown in Eq. (4). 
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B. Intelligent Design Model Based on Real-Time Style 

Transfer Network 

Real-time style transfer network is a computer vision 
technique used to transfer the style of an input image to 
another target style while preserving the content of the input 
image. Typically, this network combines CNN with methods 
for image stylization. The goal of real-time style transfer 
network is to perform style transformation on an image in a 
short period of time, making it appear as if it was drawn or 
rendered using the target style. By minimizing a loss function, 
the real-time style transfer network can generate an output 
image with the desired target style. The network structure is 
shown in Fig. 4.
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Fig. 4. Network structure of real-time style transfer network.

Fig. 4 illustrates the network structure of the real-time 
style transfer network. The left half represents the image 
transformation network, which consists of a series of CNN 

layers and deconvolution layers. These layers are used to 
gradually transform the input image into an output image with 
the target style. Each CNN layer can extract different features 
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from the input image, while the deconvolution layers are used 
to synthesize these features into the final output image. The 
right half represents the loss network, which is used to 
calculate the content loss and style loss. The content loss 
ensures that the output image preserves the content 
information of the input image by comparing the feature 
representations of the input and generated images. The style 
loss captures the target style features by comparing the feature 
statistics of the input image, generated image, and target style 
image. The loss function is shown in Eq. (5). 

1 1 2 2L L L    (5) 

In Eq. (5), 1L  represents the content loss function, and 

2L  represents the style loss function. The formula for the 

content loss function is shown in Eq. (6). 
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In Eq. (6), y  represents the original image, and y


 

represents the generated image. The formula for the style loss 
function is shown in Eq. (7). 
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In Eq. (7), jG

 
represents the Gram matrix, which is a 

matrix that describes the correlations between features by 

taking the inner product between different channels in the 
feature map of the j th layer. The formula for the Gram 

matrix is shown in Eq. (8). 
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In Eq. (8),   represents the pre-trained network model, 

and , ,( )j h w cx  represents the values of the feature map in the 

image network with a height of h , width of w , and c  

channels. The detailed structure size of the generator network 
is shown in Fig. 5. 

Fig. 5 shows a detailed schematic diagram of the network 
structure size for real-time style transfer. The network includes 
one reflection padding layer, six convolutional layers, and five 
residual blocks. With this network, style transfer between 
images can be achieved, and the time required to generate 
images is significantly reduced. However, although this 
network has achieved certain results, there is still room for 
improvement. For example, there are still areas that can be 
optimized in terms of image quality, detail preservation, and 
style restoration. In addition, the current network structure 
needs to be trained for each specific style, which limits its 
applicability. To address these issues, some improvements 
have been made to the network, as shown in Fig. 6. 
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Fig. 5. Generate a detailed schematic diagram of the network structure size. 
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Fig. 6. Improved real-time style migration network structure diagram.

Fig. 6 shows the structure diagram of the improved 
real-time style transfer network. The network consists of two 
main components: the upper part and the lower part. In the 
upper part, the input content image is passed through an image 
encoder network to generate the generated image. This 
network can be a CNN that encodes the content image into an 
initial version of the generated image. The generated image 
and the style image are then passed through the VGG-19 
model for feature extraction [20]. In the lower part, the content 
loss and style loss are propagated back through the process of 
backpropagation, and the pixel values of the generated image 
are updated using the gradient descent optimization algorithm. 
The optimization objective is to minimize the content loss and 
style loss, thereby preserving the content and matching the 
target style in the generated image. Additionally, the research 
addresses the issue of traditional normalization methods 
struggling to learn highly nonlinear features by introducing 
Adaptive Instance Normalization (AdaIN), which is 
formulated as Eq. (9). 
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In Eq. (9), B C W Hx R    . W  and H  represents the 

width and height of the image, respectively. To allow Eq. (9) 
to be fitted by the ReLU activation function, a transformation 
is applied to the equation, as shown in Eq. (10). 
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In equation (10), b  represents the image index in the 

batch, 2  represents the variance, and   represents the 

mean. The calculation of the variance is approximated as 
shown in Eq. (11). 
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In Eq. (11), c  represents the number of channels in the 

image. Compared to traditional instance normalization (IN), 

AdaIN only requires one forward pass, as shown in Eq. (12). 
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In Eq. (12), y  represents the input values for style, and 

x  represents the input values for content. In addition, the 

style loss needs to be optimized by removing the Gram matrix 
from the loss function of AdaIN, as shown in Eq. (13). 
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In Eq. (13), 2|| . ||  represents the L2 norm. 

IV. PERFORMANCE TESTING AND APPLICATION ANALYSIS 

OF PATTERN INTELLIGENT DESIGN SYSTEM 

This chapter is divided into two sections. The first section 
mainly verifies the improvement effect of the IDCGAN 
algorithm by comparing it with the standard DCGAN 
algorithm. The second section focuses on the application 
analysis of the pattern intelligent design system and its 
application in practical clothing design. 

C. Comparative Experiment of IDCGAN Algorithm 

In order to address some limitations of the standard 
DCGAN algorithm in the field of clothing design, the study 
made a series of improvements and finally formed the 
IDCGAN algorithm. To verify whether this improved 
algorithm is superior compared with standard DCGAN 
algorithm, the study used PyTorch 1.4 software on 
Ubuntu64-bit platform, the learning rate starting value can be 
set to 0.0002, batch size using batch size such as 16,32 or 64, 
noise dimension set to 100, loss function as binary 
cross-entropy loss function, IDCGAN and DCGAN using the 
CV-PTON dataset for 40,000 iterations. The PR curves were 
used as an assessment criterion. The results are shown in 
Fig. 7.
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Fig. 7. Comparison of PR curves before and after DCGAN improvement.

Fig. 7 shows the changes in the PR curves before and after 
the improvement of the DCGAN algorithm. From Fig. 7(a), 
after the model convergence, the recall rate of the DCGAN 
algorithm has improved, but the precision has significantly 
decreased. This indicates that the original DCGAN algorithm 
may have some noise or errors in generating samples. From 
Fig. 7(b), it can be seen that by using a deep feature extraction 
network to improve the algorithm, the feature extraction 
capability of DCGAN is significantly enhanced. This allows 
the improved algorithm to generate samples with better style 
transfer effects while maintaining high recall rate and 
precision. To verify the improvement effect of the loss 
function comparison in this study, a similarity heatmap of the 
IDCGAN during the experimental process was visualized, as 
shown in Fig. 8. 

Fig. 8 shows the similarity heatmap of IDCGAN. By 
observing the results in the figure, it can be seen that the 
contrastive loss used in this algorithm is very effective in 
distinguishing between input and generated patterns of the 
same category, with a similarity score of 1. This means that 
the improved algorithm can accurately identify and generate 
samples that are similar to the input pattern. Additionally, for 
different categories of style patterns, the similarity score is 
close to 0. This indicates that the improved algorithm can 
differentiate between samples of different categories and will 
not mistake them for similar patterns. Furthermore, a series of 
experiments were conducted to evaluate the resource 
consumption of IDCGAN and DCGAN, and the results are 
shown in Fig. 9. 

Based on the results in Fig. 9, it can be observed that 
IDCGAN and DCGAN differ in terms of CPU resources, 
memory resources, and training time. By comparing Fig. 9(a) 
and Fig. 9(b), IDCGAN reduces the physical memory usage 
by 45.7% compared to DCGAN, with only 453MB compared 
to DCGAN's 834MB. Additionally, in terms of CPU resource 

utilization, IDCGAN only utilizes 26% of the CPU resources, 
indicating its relatively low computational demand. This is 
advantageous for devices or environments with limited 
resources. Furthermore, it is worth noting that the training 
time of IDCGAN is approximately 20 minutes and 48 seconds, 
while DCGAN takes about 34 minutes and 49 seconds. This 
comparison shows that the training time of IDCGAN is 
reduced by approximately 70%. This means that IDCGAN is 
more efficient in terms of training speed and can complete 
training tasks faster. 
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Fig. 8. Improving DCGAN similarity thermal map.
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Fig. 9. Resource consumption of DCGAN and IDCGAN in various aspects.

D. Application Analysis of Style Transfer Network and 

Intelligent Design System 

To address the limitations of real-time style transfer 
networks in terms of generated image quality, detail 
preservation, and style restoration, an improved real-time style 
transfer network was designed. The experiment first verified 
the optimization effect of the style transfer network based on 
AdaIN. For this purpose, batch normalization (BN) and 
instance normalization (IN) were introduced as control groups. 
The experiment was conducted using PyTorch 1.8 software on 
the Windows 10 platform, and the three models were trained 
for 62,500 iterations each. The results are shown in Fig. 10. 

Fig. 10 displays the correlation of the loss and the 
iterations in the training based on three different normalization 
methods. From the figure, the loss values of the three models 
rapidly decrease in the first 5,000 iterations, then stabilize in 
the range of 50,000 to 45,000 iterations, and then decrease 
rapidly again. The final loss values of the models based on BN, 
IN, and AdaIN normalization converge to 1.02, 0.83, and 0.52, 
respectively. The real-time style transfer network based on 
AdaIN achieves the lowest loss value. To analyze the 
application of the proposed improved transfer model in this 
experiment, the trained model was applied to actual clothing 
design and evaluated by 36 professional fashion designers. 
Aesthetic quality scores and visual realism were used as 
evaluation criteria. The experimental results are shown in 
Fig. 11. 

Fig. 11 provides a detailed display of the evaluation results 
of the images generated on AdaIN by 36 professional fashion 

designers. This chart clearly reflects that the proposed style 
transfer network has received widespread acclaim among the 
fashion designer community. Designers evaluated the images 
generated by the model rigorously and comprehensively from 
their professional perspectives. The results show that the 36 
designers gave high aesthetic quality ratings to the images, 
with an average score of 96, indicating the excellent 
performance of the model in terms of aesthetic representation. 
Additionally, the designers highly recognized the visual 
realism of the images generated by the model, with an average 
score of 94.7. This score demonstrates the model's ability to 
successfully transfer the target style while preserving the 
original image content. To validate the superiority of the 
proposed intelligent design system in this study, comparative 
experiments were conducted with classical style transfer 
networks and standard real-time style transfer networks, as 
Fig. 12. 

Fig. 12 displays the application effects of the three 
different style transfer networks. By observing Fig. 12(a), the 
images generated by the classical style transfer network are 
relatively blurry and lack detail. However, Fig. 12(b) shows 
that the real-time style transfer network has made significant 
progress compared to the classical style transfer network, but 
there is still room for improvement in terms of detail. In 
contrast, Fig. 12(c) demonstrates that the style transfer 
network proposed in this study preserves more details and 
generates style transfer results that are clearer. In conclusion, 
the style transfer network in this study has achieved 
significant improvements in image quality and detail 
expression. 
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Fig. 10. Loss value variation curves of three models. 
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Fig. 11. Model aesthetic quality rating and visual authenticity rating. 
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Fig. 12. Three styles of transfer application effects.

V. CONCLUSION 

To address the issues of long manual design pattern 
creation time and low flexibility, an intelligent image design 
model based on the IDCGAN real-time style transfer 
algorithm was designed. IDCGAN The innovative content of 
the algorithm mainly includes the introduction of encoder and 
decoder network, the introduction of style vector, the method 
of multi-scale feature extraction and fusion, the use of 
conditional constraints and multi-task learning. These 
innovations enable the IDCGAN algorithm to generate more 
realistic and constrained fake images, and improve the 
efficiency and effect of the algorithm. For actually verifying 
the superiority of this improved algorithm compared to the 
standard DCGAN, experiments were conducted using PyTorch 
1.4 software on a 64-bit Ubuntu system platform for 40,000 
iterations. The results showed that after the model iterations 
converged, the recall rate of the DCGAN algorithm improved, 
but the precision significantly decreased. This indicates that 
the original DCGAN algorithm may have some noise or errors 
when generating samples. However, by using a deep feature 
extraction network to improve the algorithm, IDCGAN 
significantly enhanced the feature extraction capability of 
DCGAN. Additionally, the final loss values of the models 
based on BN, IN, and AdaIN normalization converged to 1.02, 
0.83, and 0.52, respectively. The real-time style transfer 
network based on AdaIN achieved the lowest loss value. By 
comparison, IDCGAN can reduce physical memory usage by 
45.7% to only 453MB, compared with DCGAN by 834MB. 
Moreover, in terms of CPU resource utilization, IDCGAN 
occupies only about 26% of the CPU resources, showing 
relatively low computational requirements. This is a very 
important advantage for scenarios where devices or 
environments are limited. Thus, this result indicates that 
IDCGAN not only generates more realistic false images, but 

also improves the efficiency of the algorithm. Finally, the 
proposed improved transfer model was subjected to 
application analysis, and the outcomes tells that the images 
generated by the classical style transfer network were 
relatively blurry and lacked detail. Furthermore, the aesthetic 
quality ratings given by the 36 designers were high, with an 
average score of 96, indicating that the model was 
well-received by the designers. On the other hand, the style 
transfer network proposed in this study preserved more details 
and generated clearer style transfer results. However, it should 
be noted that the model still required at least 45,000 iterations 
to stabilize during training, which is an aspect that needs 
improvement in future research. Future research will try to 
apply this method to more areas of image generation, such as 
art creation, interior design, game development, film and 
television special effects, etc. 
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