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Abstract—Numerous artificial intelligence (AI) techniques are 

currently utilized to identify planning solutions for supply chains, 

which comprise suppliers, manufacturers, wholesalers, and 

customers. Continuous optimization of these chains is necessary 

to enhance their performance. Manufacturing is a critical stage 

within the supply chain that requires continuous optimization. 

Mass Customization Manufacturing is one such manufacturing 

type that involves high-volume production with a wide variety of 

materials. However, genetic algorithms have not been used to 

minimize both time and cost in the context of mass customization 

manufacturing. Therefore, we propose this study to present an 

artificial intelligence solution using genetic algorithm to build a 

model that minimizes the time and cost which associated with 

mass customized orders. Our problem formulation is based on a 

real-world case, and it adheres to expert descriptions. Our 

proposed optimization model incorporates two strategies to solve 

the optimization problem. The first strategy employs a single 

objective function focused on either time or cost, while the second 

strategy applies the multi-objective function NSGAII to optimize 

both time and cost simultaneously. The effectiveness of the 

proposed model was evaluated using a real case study, and the 

results demonstrated that leveraging genetic algorithms for mass 

customization optimization outperformed expert estimations in 

finding efficient solutions. On average, the evaluation revealed a 

20.4% improvement for time optimization, a 29.8% 

improvement for cost optimization, and a 25.5% improvement 

for combined time and cost optimization compared to traditional 

expert optimization. 

Keywords—Mass customization manufacturing; metaheuriatic 

search; genetic algorithm; optimization; supply chain management 

I. INTRODUCTION 

Technological breakthroughs often give rise to new and 
persistent optimization dilemmas. To address these real-world 
challenges, metaheuristics (MHs), characterized as versatile 
and general-purpose methods, have been suggested as 
effective tools [1]. Metaheuristic optimization is focused on 
resolving real-world optimization problems by employing a 
range of metaheuristic algorithms, such as genetic algorithms, 
particle swarm optimization, bee algorithms, ant colony 
optimization, and memetic algorithms.  Supply chain 
management poses a formidable task in the domain of 
continuous optimization using the power of metaheuristic 
optimization. It involves the simultaneous minimization of 
time, cost, and distance, or the maximization of quality and 

profit, as dictated by the problem's specifications. A supply 
chain is a cohesive group of organizations that are 
interconnected through the flow of materials, information, 
logistics, and finances. Each organization within this 
collective consists of enterprises responsible for 
manufacturing raw materials and components and offering 
services such as distribution, storage, wholesale, and retail. 
The ultimate customers are regarded as the concluding 
segment within this chain [2]. Typically, a supply chain 
encompasses diverse facilities such as suppliers of raw 
materials, manufacturers, warehouses, wholesalers, retailers, 
distribution hubs, and customers. The movement of materials 
and information occurs within and between these 
organizations [3]. 

In simpler terms, the supply chain comprises diverse 
components working together in a network that commences 
with raw material manufacturing and culminates in its 
shipment to storage facilities, distribution centers, and 
ultimately ensuring customer satisfaction [4]. The 
optimization of the supply chain network holds great 
importance when it comes to minimizing time and cost or 
maximizing profit. One area that requires particular attention 
is the manufacturing component of the supply chain. 
Manufacturing strategies, including make to stock, make to 
order, engineer to order, and mass customization, play a 
significant role in this regard. Mass customization revolves 
around producing a diverse array of products in large volumes. 
However, executing mass customization orders successfully 
poses various challenges, with a major focus on formulating a 
compelling value proposition that ensures customers' utmost 
satisfaction [5, 6], which creates the need for the optimization 
of the complete value creation process, the other challenge and 
the important one is that the mass customized products usually 
consume time and cost money more than the standard 
manufacturing forms. 

In order to optimize the manufacturing lines inside the 
manufacturing floor, it is required to minimize the time and 
the cost of producing mass customized products which is the 
objective of this paper. The objective is not only the 
optimization of selecting the suitable manufacturing 
operations, but also the selection of proper or suitable supplier 
that help in minimizing time and cost. One of the AI methods 
for reaching this objective is genetic algorithms (GA). This 
includes formulating the supplying and manufacturing of mass 
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customization processes as an optimization problem, in 
addition to applying two optimization strategies, single 
objective time and cost separately, and multi-objective time 
and cost together. 

The core motivation behind our proposed model is to 
apply genetic algorithms for the optimization of supply and 
manufacturing processes for mass-customized products. After 
constructing the model and implementing genetic algorithms, 
we observed substantial improvements, including a 20% 
reduction in time, a 30% reduction in cost, and a 25% 
reduction in both time and cost when compared to estimations 
provided by experts and consultants. This paper is structured 
into six sections. Section II provides an overview of existing 
research in the domains of supply chains and mass 
customization optimization from diverse viewpoints. Section 
III is the proposed model, followed by a discussion of Genetic 
Algorithms will be illustrated in the Section IV. Section V 
encompasses the discussion of results. The conclusions are 
detailed in the Section VI, and the presentation of future 
research directions in Section VII. 

II. RELATED WORK 

Mass customization entails a highly complex supply chain 
with distinct features that can be classified into two key 
branches. The first branch encompasses the intricate 
relationship between the random information provided by 
clients' orders and the supply chain partners. This connection 
often gives rise to numerous scheduling conflicts and 
introduces dynamic or random elements into the process. The 
second aspect revolves around the collaborative benefits and 
the inherent risks within this intricate environment [7]. 
Therefore, this paper aims to investigate how to effectively 
manage these characteristics, analyze the advantages and risks 
associated with collaboration in mass customization, and 
present previous research on supply chain optimization, mass 
customization manufacturing and the application of GA either 
in supply chain or mass customization optimization in next 
three separate sections. 

A. Supply Chain Optimization 

The escalating global population and the increased demand 
for food, especially in aquaculture [8], have led to a surge in 
research focusing on the food supply chain. One notable study 
in this domain presented an innovative bi-objective and multi-
period mathematical model for a closed-loop supply chain 
(CLSC) specifically tailored to the fish industry. The model is 
designed by using the multi-objective Keshtel algorithm 
(MOKA), NSGA-II, and MOSA. In addition, the Taguchi 
method is applied to harmonize these meta-heuristics to reach 
higher performance, and the ε-constraint method is used to 
solve small-sized problems to validate them. The results 
showed that the exact method cannot solve large-sized 
problems. The solutions are compared in terms of different 
performance metrics. Also, a case study with a trout CLSC in 
the north of Iran is investigated. The results and the case study 
showed that the implemented model can be applied to the 
suggested solution approach. The focal point of the food 
supply chain model mentioned is to enhance the chain's 
performance, prioritizing improvements regardless of time or 
cost implications. 

A supply chain optimization problem could decide where 
to locate and relocate mobile and modular production units to 
convert biomass waste to energy [9]. Both deterministic and 
two-stage stochastic designs were introduced, accounting for 
the inherent uncertainty of how much and where biomass is 
produced. The framework was applied to case studies 
analyzing the states of Minnesota and North Carolina. Results 
from both states were that mobile production modules lead to 
reduce supply chain cost around 1–4%, or millions of dollars 
per year. Furthermore, this framework shows the benefit of 
mobile modules as a means of protection against uncertainty.  
Authors in that model directed their contribution to save cost 
by choosing the best location of the production units 
regardless the time. 

A blood supply chain network (BSCN) [10] was 
formulated to minimize the total cost of the supply chain 
system for demand and transportation costs. The network 
stages considered for modeling was containing of blood 
donation clusters, major laboratory centers, permanent and 
temporary blood transfusion centers, and blood supply hubs. 
Other goals included determining the optimal number and 
location of potential facilities, optimal allocation of the flow 
of goods between the selected facilities and determining the 
most suitable transport route to distribute the goods to 
customer areas in uncertainty conditions. Given that the model 
was implemented by using NP-hard, the MFGO algorithm to 
solve the model with a priority-based solution. The results of 
the experiments’ design showed the higher efficiency of the 
MFGO algorithm than the PSO algorithm in obtaining 
efficient solutions. Also, the mean of the objective function in 
robust approach was more than the one in the deterministic 
approach, while the standard deviation of the first objective 
function in the robust approach was less than the one in the 
deterministic approach at all levels of the uncertainty factor. In 
BSCN model time was not a factor in optimization process. 

A location-inventory optimization model for supply chain 
(SC) configuration was presented in [11]. It included a 
supplier, several distribution centers (DCs), and several 
retailers. Customer demand and replenishment lead time were 
considered to be stochastic. Two classes of customer orders, 
priority and ordinary, were assumed based on their demand. 
The goal was to find the optimal locations for DCs and their 
inventory policy simultaneously. For this purpose, a two-
phase approach based on queuing theory and stochastic 
optimization was developed. In the first phase, the stock level 
of DCs was modeled as a Markov chain process and is 
analyzed, while in the second phase, a mathematical program 
was used to determine the optimal number and locations of 
DCs, the assignment of retailers to DCs, and the order quantity 
and safety stock level at DCs. As solving this problem was 
NP-hard, a hybrid Genetic Algorithm (GA) was developed to 
make the problem computationally tractable. In location-
inventory optimization model, the time and destination were 
considered to be factors in optimization process which were 
two dependable factors regardless the cost of the destination. 

In time of pandemic (COVID 19), a novel multi-objective 
optimization model for the vehicle routing problem from 
suppliers of raw material to manufacturer were introduced 
within the realm of a factory-is-a-box framework [12]. The 
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key objective is the minimization of both the cumulative cost 
incurred while traversing network edges and the total cost 
accrued by visiting network nodes. This solution approach 
incorporates a specialized multi-objective hybrid 
metaheuristic algorithm that explicitly incorporates problem-
specific characteristics. This model's primary objective was to 
optimize vehicle routing for raw material delivery to the 
manufacturer. In contrast, our proposed model is dedicated to 
optimizing the entire supply chain for raw materials and the 
manufacturing process, particularly for mass customization 
products. 

B. Mass Customization Optimization 

This section presents some authors who handled the 
manufacturing and mass customization manufacturing 
optimization. For optimizing manufacturing problems, a 
literature review was done to focus on reconfigurable 
manufacturing systems (RMS) optimization. This literature 
was classified in two scenarios. The first scenario, different 
optimization problems uprising in RMS were introduced and 
discussed. The second classification scenario presented 
solution approaches used to solve these problems. This work 
was intended to help scientists identify potential research areas 
in the domain of optimization for RMS. This literature showed 
the optimization process for reconfigurable manufacturing 
systems using different techniques such as mathematical 
programming (MP) models [13, 14], dynamic programming 
[15, 16], meta-heuristics [17] and heuristics [18]. RMS 
optimization concerned of maximizing the profit or quality or 
minimizing the cost regardless the time which is considering 
in our research. On the other hand, Mass Customization 
Manufacturing (MCM), existing research fingered to 
optimization. 

A research was pointed to the fourth industrial revolution 
and the digital transformation of consumer marketplaces and 
its need in manufacturers to reshape their business models to 
deal with the continuous changing in customer needs and 
market fluctuations [19]. Currently, manufacturers are tending 
toward product variation strategies and more customer 
oriented methods to keep the competitive advantage in the 
Industry 4.0 environment, and mass customization is among 
the most famous implemented business models. Under such 
circumstances, an economical material supply to assembly 
lines has become a significant concern for manufacturers. 
Consequently, the proposed study concerned about optimizing 
the material supply to mixed-model assembly lines that 
contributed to the overall production cost efficiency, mainly 
by decreasing both the material holding and material 
transportation costs across production lines, while satisfying 
certain constraints. Given the complexity of the problem, a 
new two-stage heuristic algorithm is applied in such study to 
enable a cost-efficient delivery.  To evaluate the efficiency 
and effectiveness of the proposed heuristic algorithm, a set of 
test problems were solved and compared versus the best 
solution found by a commercial expert. The results of the 
comparison reveal that the proposed heuristic offered 
reasonable solutions, thus presenting huge opportunities for 
production cost efficiency and manufacturing sustainability 
under the mass customization viewpoint. As seen, that 

research focused on minimizing the cost only without putting 
the factor of time into consideration. 

The current global unpredictable market is characterized 
by increasing demand for highly customized products [20]. To 
thrive in this scenario, it becomes necessary to establish a 
closer interaction between product and manufacturing system, 
keeping the main focus on the customer. This paper presented 
a Modular Product Design (MPD) as a best strategy to 
produce a large product variety. MPD’s configuration stage 
represented a key step for mass customization because it 
allows customers to be integrated into the value-creation 
process. Reconfigurable Manufacturing Systems (RMS) 
appear to be the most suitable manufacturing system to 
manufacture mass customized products due to their ability to 
be quickly reconfigured, adjusting their production capacity 
and functionality to fit new market demands. Pointing to 
integrate single customer needs with the decisions taken for 
the product and manufacturing process, this paper suggested a 
new 0-1 nonlinear integer programming model to optimize the 
configuration of modular products and RMS, driven by 
individual customer requests.  A genetic algorithm based 
approach was proposed to solve this model, and its parameters 
were tuned with a two-full factorial design. A case study of 
customizable office chairs was used to illustrate the 
proposition, and several scenarios of customer requirements 
and RMS configurations were presented. Results showed that 
varying initial machines’ configurations could highly affect 
the process plan and the total manufacturing costs; but, there 
was no confirmation that changes in initial design of 
configurations caused weighty effects. In summary, this work 
confirmed the relevance of integrating modular product and 
RMS configuration decisions for decreasing costs of 
producing mass-customized products. In RMS model, time 
was not considered in the optimization process. 

A distributed approach for smart production management 
in a cellular manufacturing system was presented for offering 
mass-customized products [21]. This approach was based on 
three decision stages: factory-stage (master planning module), 
shop floor stage (bidding system) dealing with unexpected 
actions, and cell stage. The approach integrated planning, 
scheduling, and material handling allocation while considering 
real-time data from the supply chain. A mathematical model 
for factory-stage planning was proposed with two sequence-
based resolution approaches implemented on two meta-
heuristics, NSGAII and SMPSO. 

C. Genetic Algorithm with Supply Chain Management and 

Mass Customization Manufacturing 

A literature review of the application of GA on supply 
chain management (SCM) was published [22]. It consists of 
several complex processes and each process is equally 
important to maintain a successful supply chain. The literature 
review contained the eight processes of supply chain as given 
by Council of SCM Professionals. This literature review 
illustrated that there are no contributions of applying bi-
objective function of minimizing the time and cost together 
which we focused on in our proposed model. 

On the other hand, some models were designed to solve 
the problem of optimization of manufacturing sector [23]. 
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However, very few models that concerned about mass 
customized manufacturing. Moreover, a few numbers of these 
models were implemented using genetic algorithm and no 
models were implemented using bi-objective function of 
minimizing time and cost in such sector [24, 25]. 

It was proven regarding the related work section that there 
were infrequently highlighted points in the optimization 
process in supply chain management, mass customization 
manufacturing and using genetic algorithm in these two fields. 
The following section will discuss the proposed model which 
takes into consideration what was neglected previously in the 
related work. 

III. THE PROPOSED MODEL 

This research focuses on creating a model that integrates 
cost and time considerations in the optimization of mass 
customization. It emphasizes the collaboration between 
suppliers and manufacturers involved in the supply chains for 
mass customized products. The primary goal is to identify the 
most effective combinations of these entities to achieve 
desired objectives. To accomplish this, the study suggests the 
utilization of evolutionary algorithms, which are ideal for 
generating suitable combinations and yielding favorable 
results. 

The suggested solution is based on using the evolutionary 
algorithms especially genetic algorithms to optimize the best 
scenario of selecting the best supplier, best operation type 
(either manual or automatic) and best number of 
manufacturing lines in order to minimize time, cost or both in 
a mass customized order. The definition of the mathematical 
formulation of the objective functions designed to obtain the 
optimal solution or scenario will be clarified in next 
paragraphs. Fig. 1 clarifies some abbreviations that will be 
used in the mathematical model of the proposed problem. 

Before commencing a comprehensive explanation of our 
mathematical model, it's essential to recognize the importance 
of considering specific manufacturing rules. These rules play a 
critical role in clarifying the methods for calculating time and 
cost, and they are informed by the collective expertise of 
consultants. These rules are: 

 Automatic Time = Manual Time/2. 

 Automatic Manufacturing Cost = 1.6 * Manual 
Manufacturing Cost. 

According to real-world manufacturing metrics, manual 
manufacturing consumes double the time of automated 
manufacturing, while the average cost of the automated 
process is 1.6 times that of manual manufacturing. 

Generally, the mathematical formulation for the 
optimization process is being built according to an objective 
function and constrains that controls this function. Here, the 
suggested solution was divided into three choices according to 
the order demander priority. The customer may need to 
minimize the time only, cost only, or both of them. Table I 
illustrates the objective functions and the constraints of each 
priority. Within the context of the cost objective function, we 
come across TotSC, or total supply cost, which is subject to 
the influence of numerous variables such as supplier selection, 
category, color, and operation type. These factors are 
collectively evaluated to ascertain the overall cost. In the 
following three paragraphs, we will illustrate the three 
objective functions specified in Table I, encompassing a 
breakdown of their individual terms. 

 

Fig. 1. Abbreviations. 

TABLE I.  OBJECTIVE FUNCTIONS AND CONSTRAINTS 

Priority Objective Function Subject to 

Time Min (Y) = ∑          

           

             

       

             

Cost Min (Y) = ∑                          

           

             

       

           

         

             

Time and Cost Min (Y) =     ∑                                 ∑             
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When discussing the Time objective function, MLT, 
representing manufacturing lead time covering all phases of 
the manufacturing process (including assembly, painting, and 
packaging) is a key factor. Notably, manufacturing lines 
employing automatic processes outperform their manual 
counterparts in terms of time efficiency. In our model where 
the priority is for minimizing the time only, the quantity is 
distributed equally over the four manufacturing lines, so the 
time consumed is equal to any of manufacturing line. 
Furthermore, SLT, denoting supplying lead time, relates to the 
time required to deliver the components from two distinct 
suppliers, with Supplier A exhibiting superior delivery speed 
compared to Supplier B. In our model Supplier A takes half 
time of Supplier B. So, the total time will be MLT+SLT. 

Within the context of the cost objective function, we come 
across TotSC, or total supply cost, which is subject to the 
influence of numerous variables such as supplier selection, 
category, color, and operation type. These factors are 
collectively evaluated to ascertain the overall cost.Conversely, 
TotMC, denoting total manufacturing cost, is predominantly 
governed by the choice between manual and automatic 
operation modes distributed over manufacturing lines, with 
manual operations being the more cost-efficient alterna 
additionally, there exists an overhead factor, representing a 
fixed monetary addition to the unit cost, covering various 
expenses like utilities (electricity, water, maintenance), and 
labor. 

The third objective function can be regarded as a 
consolidation of the two objective functions discussed above. 
Nonetheless, in any multi-objective function, it is crucial to 
assign weights to individual terms during the optimization 
process. In this scenario, we have opted for an equal allocation 
of 50% weight to both time and cost, signifying their equal 

importance. Under these conditions, the quantity is allocated 
among the four manufacturing lines as detailed below: 

 ML1 = Automatic = 2/5 from the Total Quantity. 

 ML2= Manual = 1/5 from the Total Quantity. 

 ML3= Manual = 1/5 from the Total Quantity. 

 ML4= Manual = 1/5 from the Total Quantity. 

This division into fifths is based on the principle that the 
automatic line processes double the quantity of the manual 
line within the same time interval. 

Now that we have clarified the terms associated with each 
objective function in Table I, it's time to provide a 
comprehensive explanation of our model. 

The suggested model consists of three scenarios of mass 
customization optimization process. The model depends on 
entering five inputs which are quantity, color, category, size, 
sub-size, and priority. The priority input is the key of which 
objective function will be executed. 

Fig. 2 illustrates the inputs, GA processing and the output 
of these scenarios. 

The suggested model has five inputs:  

 Color: Black, Silver, White, Red, Blue, Green, Red, 
Brown, Pink, Purple, Golden, or Yellow. 

 Category: Mountain, Tour, Road, or Folded bikes. 

 Size: Child or Adult. 

 Sub – Size: Small, Medium, or Large. 

 Priority: Time only, Cost only, or Both. 

 

Fig. 2. The suggested optimization model. 
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The customer requests his/her order by determining the 
above inputs. However, the values of each input are limited 
which is considered as constrains in genetic algorithm point of 
view. These constraints (see Table I) are: 

 Quantity :  1000   TQ   6000 

 Color:  1  Color  12 

 Category: 1   Category    4 

 Size: 1 Size   2 

 Sub-Size: 1   Sub-Size   3 

 Priority: Time, Cost, or Both. 

From manufacturer side, there three values must be 
clarified which are the operation type, number of 
manufacturing lines and which supplier will supply the 
material. These values are: 

 Operation Type (Op): Manual or Automatic. 

 Supplier: A or B 

The customer may request up to 3 different orders per one 
request. In addition, there are three constrains for optimization 
process but from the manufacturer side which are: 

 Operation Type : 1   Op   2 

 ML=4  

 Supplier = 1  Supplier   2 

The customer requests will be optimized using genetic 
algorithm to find the optimal solution of minimized time, cost 
or both of them. The proposed model is using two techniques 
of GA. For time only and cost only, single objective 
optimization technique is being used, while for both time and 
cost bi-objective optimization techniques is being 
implemented. Next section will explain the genetic algorithm 
and how the proposed model is being implemented by it. 

IV. GENETIC ALGORITHM 

In recent times, meta-heuristic algorithms have gained 
significant popularity for addressing complex real-world 
challenges across various domains including engineering, 
manufacturing, economics, healthcare, and politics. Among 
these algorithms, the genetic algorithm (GA) stands out as a 
widely recognized approach, drawing inspiration from the 
process of biological evolution. Meta-heuristics can be 
categorized into two groups: single-solution based and 
population-based meta-heuristics [24]. GA falls into the 
category of population-based meta-heuristic algorithms. 

The new populations are produced by iterative procedure 
of genetic operators on individuals existing in the population. 
The chromosome structure, selection, crossover, mutation, and 
evaluation of objective function computation are the basic 
elements of GA [24]. The GA chromosome representation and 
GA operators (Selection, Crossover and Mutation) will be 
explained and how GA was applied on the proposed solution. 

A. Chromosome Representation 

Genetic Algorithm draws inspiration from the evolutionary 
process, selecting elite solutions (chromosomes) for optimal 
outcomes in the search space. Chromosome in GA represents 
a solution and it is also called individual. Each chromosome 
consists of many genes according to the solution parameter. 

The chromosome of our proposed solution consists of five 
genes. Fig. 3 represents the chromosome which represents the 
form of solution that the manufacturer will execute. First gene 
describes the supplier group that suits to the objective 
function. Rest of genes is the manufacturing lines (MLi) and if 
it will operate automatically or manually according to the 
objective function as well. 

 

Fig. 3. The chromosome representation. 

In the first gene of the Supplier Group, there are two 
categories. The first category is associated with higher 
expenses but faster raw material deliveries; whereas the 
second category offers cost savings but slower material 
delivery. The subsequent genes in the sequence represent the 
manufacturer's internal manufacturing lines. When these lines 
operate manually, manufacturing time increases but cost 
decreases. 

Conversely, automatic operation reduces manufacturing 
time but increases cost. Within genetic algorithms, there are 
two terms called "genotype" and "phenotype" which signify 
the relationship between the proposed genetic chromosomes 
and their actual chromosomes post-processing. In the realms 
of artificial intelligence optimization and computer science, 
these two terms are fundamentally interchangeable. Hence, 
there is no inherent difference, eliminating the necessity to 
define a distinct ratio between them. 

B. Selection Process 

Selection is a first feature to go forward of finding the 
nearest solution, which commonly services Evolutionary 
Computation (EC) [26]. In general, there are many selection 
techniques in GA, such as roulette wheel, tournament, rank, 
Boltzmann, and stochastic universal sampling [24]. The most 
usable technique and it is used in the proposed solution is 
roulette wheel selection (RWS). It works on selecting specific 
solutions that will share in forming the next generation. It 
gives each solution or individual of the recent generation the 
probability to be selected in the next generation according to 
its proportionality to the objective function value [27]. 

C. Crossover 

It is one the GA operators that is done between two 
chromosomes called parents by choosing randomly either 
single point or multiple points to swap what beyond these 
chosen point(s ) [28]. The result of the crossover process is 
new modified chromosomes called off-springs. Fig. 4 
describes the implementation of crossover types in the 
suggested solution. It describes a single crossover 
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implementation and a multi crossover implementation in the 
proposed solution. 

 
Fig. 4. Crossover operator single crossover, multi crossover. 

D. Mutation 

Mutation is another operator that keeps the genetic variety 
and diversity from one population to the succeeding 
population [29]. It is performed by choosing at least one or 
more genes randomly and changing their values. The value of 
the objective function is then recalculated. Fig. 5 gives an 
example of mutation process by choosing a random gene and 
changing its value according to the proposed solution. 

 

Fig. 5. Applying mutation operator 

The steps of implementing the GA can be clarified through 
the pseudo-code as shown in Fig. 6. 

 
Fig. 6. Genetic algorithm pseudocode. 

V. DISCUSSION AND RESULTS 

To the best of our knowledge, this is the first study to 
solve the problem through applying the optimization 
methodology; moreover, the problem was formulated 
mathematically according to the real manufacturing case, and 
according to the consultants inside the manufacturer and 

experts in mass customization manufacturing field. So, they 
are our reference and benchmark in our proposed study. In a 
practical case study focused on a mass customization bicycle 
manufacturer, the proposed model was put into action. 
Customers had the option to place orders for bicycles in 
diverse categories, sizes, and colors, as previously mentioned. 
Moreover, they were able to order bicycles in large quantities. 

The objective is to optimize the combination of supplying 
and manufacturing processes from the manufacturer to 
execute the orders in minimum time, minimum cost or both to 
achieve the customer goal. The three mathematical models 
and GA were implemented using MATLAB [30]. Two of 
these mathematical models used the single objective GA. 

However, the third model was implemented using NSGAII 
technique [31] to solve the multi-objective optimization 
problem. Table II illustrates the values of each parameter used 
in GA implementation. Each genetic algorithm code asks for 
assigning values of 4 main parameters. These parameters are 
population size [24], number of generations, crossover rate 
and mutation rate. 

Each objective function is tested on three different 
quantities 2000, 3500 and 5500 bicycles with different 
categories, colors, sizes and sub-sizes. Table III illustrates the 
enhancement of solutions in form of enhancement of GA 
generations. 

The results in Table III shows the modifications of 
solutions for time only and cost only columns versus the 
number of generations. While the last column shows the 
modifications of time and cost together over the number 
generations using NSGAII technique. In bi-objective function 
mode, time is being represented in Y-axis and cost is in X-
axis.  In Table III, the graphs in each row determine the values 
of the most optimum time, cost or time and cost with every 
round of generation (100 rounds) until reaching the minimum 
optimum solution. 

When examining the time column graphs, it becomes 
evident that values are progressively minimized with each 
generation. Conversely, the cost column experiences abrupt 
reductions, primarily because cost is subject to fixed prices 
determined by various factors, leading to the characteristic 
sharp curve. 

After the observation of 100 solutions per each iteration, 
eight forms of solutions were noticed but different objective 
function values. Fig. 7 presents these forms of these solutions 
(chromosomes that mentioned in Fig. 3). 

TABLE II.  GA PARAMETER SETTING 

Parameter Value 

Population Size 100 

Number of Generation 100 

Crossover Rate 0.85 

Mutation Rate 0.01 
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TABLE III.  ENHANCEMENT OF GA GENERATIONS FOR THREE DIFFERENT CASES 

Quantity Time Cost Time and Cost 

2000 

 

 

 

3500 

 

 

 

5500 

 

 

 

 

 
Fig. 7. Forms of solutions. 

The evaluation of the results involved consulting 
production management experts in the bicycle manufacturing 
industry. Their estimations, obtained using traditional 
computation techniques, were compared with the outcomes 

generated by GA and NSGAII, as shown in Table IV. The 
table presents numerical data for three different cases, each 
involving different quantities. The evaluation considered time, 
cost, and a combination of both for each quantity. The results 
section of the table includes the expert estimation, GA results, 
and the percentage improvement achieved by our proposed 
models over the expert estimation. The findings clearly 
indicate that treating time and cost as a multi-objective 
functions leads to optimal results. Additionally, it was 
observed that higher quantities ordered corresponded to 
greater enhancements achieved through GA. 

The expert estimations documented in Table IV are cited 
in order to facilitate a comparison between our GA-generated 
results and the authentic data stored within the database of a 
prominent bicycle manufacturer. 

Table V illustrates the average of enhancement percentage 
of GA and NSGAII versus the experts estimates. 
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TABLE IV.  SAMPLE OF NUMERIC RESULTS 

Solution 

Forms 

Time (Week) Cost (x106) Time (Week) and Cost (x106) 

Expert 

Estimation 

GA 

Result 
% 

Expert 

Estimation 

GA 

Result 
% 

Expert 

Estimation 

NSGAII  

Result 
% 

Time Cost Time Cost Time Cost 

Quantity : 2000  Bicycles 

Solution 1 8 6 25 6.3 4.2 33.3 8 6.3 6 4.2 25 33.3 

Solution 2 10 6 40 5.9 3 49.1 10 5.9 8 3 20 49.1 

Solution 3 9 6 33.3 5.5 4.2 23.6 9 5.5 6 4.2 33.3 23.6 

Solution 4 11 10 9.1 5.1 3 41.2 11 5.1 8 3 27.3 41.2 

Solution 5 10 10 0 4.7 4.2 10.6 10 4.7 10 4.2 0 10.6 

Solution 6 12 10 16.6 4.4 3 31.8 12 4.4 12 3 0 31.2 

Solution 7 11 10 9.1 4.3 4.2 2.4 11 4.3 10 4.2 9.1 2.3 

Solution 8 13 12 7.7 3.5 3 14.3 13 3.5 12 3 7.7 14.3 

Quantity : 3500 Bicycles 

Solution 1 14 10 28.5 11.5 7.11 38.2 14 11.5 10 7.1 28.6 38.3 

Solution 2 16 12 25 10.0 5.1 49 16 10.0 12 7.1 25 29 

Solution 3 16 12 25 9.8 7.11 27.4 16 9.8 12 5.1 25 48 

Solution 4 18 14 22.2 9.2 5.1 44.5 18 9.2 14 5.1 22.2 44.6 

Solution 5 20 16 20 8.6 7.11 17.3 20 8.6 14 7.1 30 17.4 

Solution 6 20 18 10 7.8 5.1 34.6 20 7.8 16 7.1 20 9 

Solution 7 22 18 18.2 7.2 7.11 1.4 22 7.2 18 5.1 18.2 29.2 

Solution 8 24 20 16.6 5.6 5.1 9 24 5.6 20 5.1 16.7 8.9 

Quantity : 5500 Bicycles 

Solution 1 20 14 30 17.5 10.1 42.3 20 17.5 14 10.2 30 41.7 

Solution 2 22 16 27.2 16.3 7.3 55.2 22 16.3 16 7.3 27.3 55.2 

Solution 3 24 18 25 15.5 10.2 34.2 24 15.5 18 10.2 25 34.2 

Solution 4 26 20 23.1 14.3 7.2 49.6 26 14.3 20 7.3 23.1 49 

Solution 5 28 22 21.4 13.5 10.3 23.7 28 13.5 22 10.2 21.4 24.4 

Solution 6 30 24 20 12.3 7.2 41.5 30 12.3 24 7.3 20 40.7 

Solution 7 32 26 18.8 11.5 10.3 10.4 32 11.5 24 10.2 25 11.3 

Solution 8 34 28 17.6 10.5 7.2 31.4 34 10.5 24 7.3 29.4 30.5 

TABLE V.  GA AND NSGAII AVERAGE OF REFINEMENT PERCENTAGE 

Quantity 2000 3500 5500 Total Average 

Time 17.6% 20.7% 22.9% 20.4 

Cost 25.8% 27.7% 36.03% 29.8 

Time and Cost 20.5% 25.6% 30.5% 25.5 
 

VI. CONCLUSION 

In this paper, a genetic-based approach was introduced for 
the supply and manufacturing of mass customization products. 
The approach integrated the supply and manufacturing phases 
to achieve the best possible solution with minimal time and 
cost.  

The study presented two techniques utilizing Genetic 
Algorithms: one for solving single objectives of time and cost, 
and another for optimizing both objectives simultaneously 
using the multi-objective NSGAII. 

Experimental results, including numerical and graphical 
analyses, demonstrated the significant improvements of the 

proposed approach compared to traditional factory methods. 
On average, the proposed model enhances time optimization 
by 20.4%, cost optimization by 29.8%, and both time and cost 
optimization by 25.5%. 

VII. FUTURE WORKS 

Optimization constitutes a vast and dynamically evolving 
field that accommodates numerous artificial intelligence 
technologies. In the context of our planning model, we have 
the flexibility to refine and tailor it further by adopting novel 
hybrid heuristics and metaheuristic search techniques, 
including adaptive algorithms, self-adaptive algorithms, or 
combinations of existing methods. Moreover, our future work 
includes exploring the potential of applying machine learning 
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as an optimizer within our model. On a parallel front, the 
domain of supply chain optimization offers a rich landscape 
for exploration. We aim to extend the horizons of optimization 
by considering the comprehensive optimization of the entire 
supply chain network, employing new evolutionary 
algorithms, machine learning, and deep learning approaches. 
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