
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 11, 2023 

1118 | P a g e  

www.ijacsa.thesai.org 

The Hybrid Jaro-Winkler and Manhattan Distance 

using Dissimilarity Measure for Test Case 

Prioritization Approach 

Siti Hawa Mohamed Shareef, Rabatul Aduni Sulaiman*, Abd Samad Hasan Basari 

Department of Software Engineering, Faculty of Computer Science and Information Technology, 

University Tun Hussein Onn Malaysia, Batu Pahat, Malaysia
 

 

 
Abstract—Software product line (SPL) is a concept that has 

revolutionized the software development industry. It refers to a 

set of related software products that are developed from a 

common set of core assets but can be customized to meet specific 

customer requirements. Integrating SPL techniques into test case 

prioritization (TCP) can greatly enhance its effectiveness. By 

considering variability across different products within an SPL, 

it becomes possible to prioritize test cases based on their 

relevance to specific product configurations. However, the 

concept itself still has certain issues, such as in finding the highest 

rate of early failure detection. Various solutions have been 

proposed to mitigate this problem, among them is to improve the 

calculation of string distance using hybrid technique to achieve a 

high degree for similarity. Dissimilarity-based Technique (DBP) 

is the basis for our ranking method. The objective is to identify 

further weaknesses in the product lines as well as the differences 

between the experiment and real-world applications. Our focus is 

to enhance hybrid techniques that produce the highest rate of 

early failure detection. In this paper, early fault detection is 

selected as the performance goal. In order to choose the optimal 

methods for DBP for TCP, a comparison between several string 

distance measures was conducted. This study proposed hybrid 

techniques that combined Jaro-Winkler and Manhattan string 

distance namely New Enhanced Hybrid Technique 1 (NEHT1), 

New Enhanced Hybrid Technique 2 (NEHT2) and New 

Enhanced Hybrid Technique 3 (NEHT3). The case study was 

generated using the PLEDGE tool based on a Feature Model 

(FM). Six test cases were used in the experiment. Result shows 

the effectiveness of the combination where it achieved higher 

degree of similarity for T1 vs. T4, T2 vs. T3, T2 vs. T6, and T3 vs. 

T6, as well as perfect degree of similarity for NEHT1 (100.00%). 

The result proves that the combination of both techniques 

improve SPL testing effectiveness compared to existing 

techniques. 
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I. INTRODUCTION 

Software product line (SPL) is a collection of related 
software products that share a common set of core assets while 
also offering variations to address diverse customer needs [1]. 
The characteristics may be constant throughout all SPL-derived 
products, or they may be varied and present in only some of 
them [2]. Instead of building each product from scratch, SPL 
approach emphasizes systematic reuse, enabling efficient 

development and maintenance of multiple products. SPL 
streamlines development, reduces redundancy, and enhances 
consistency across products [3]. Many industries implement 
SPL due to its ability to handle different phases of 
development using the commonality and variability concepts 
[4]. 

Software product line testing (SPLT) involves testing the 
shared components and individual product variants within an 
SPL [5]. It ensures the quality, compatibility, and correctness 
of both the common core assets and the unique features of each 
product. This type of testing addresses the challenges posed by 
varying configurations, shared components, and differing 
features, while maintaining overall product line quality [6]. 
Similar to testing in non-configurable code, testing in SPL 
experiences the coincidental correctness phenomena, which 
makes it more challenging to detect errors in these systems [7]. 
However, the testing of a single software system is a highly 
difficult and expensive stage of the software development 
process, according to the author [8]. 

Test case prioritization (TCP) is the process of ordering test 
cases based on certain criteria to optimize testing efforts [9]. 
Even though a few trailing test cases are not exercised, these 
test suites uncover bugs at the earliest possible time [10]. It 
presents a significant difficulty for software testing [11]. In the 
context of SPL, prioritization becomes complex due to the 
diversity of features and configurations [12]. Researchers 
suggested TCP procedures, where test cases were restructured 
and carried out in accordance with a given objective, to boost 
the efficacy and efficiency of testing [13]. A hybrid approach 
that considers both similarity and dissimilarity should be 
adopted for effective TCP in SPL development. Similarity 
refers to the degree to which two or more test cases share 
common characteristics or requirements while dissimilarity 
refers to the differences between test cases [14]. Techniques 
like Jaro-Winkler distance and Manhattan distance can be used 
to compare test cases for similarity, dependencies, and impact. 
Prioritizing test cases ensures that critical defects are identified 
early and that testing resources are allocated efficiently. 

SPL has gained prominence in modern software 
development by allowing the creation of multiple products 
with shared features and components. TCP plays a vital role in 
ensuring the quality and reliability of these products. Hybrid 
string distance, a combination of various string similarity 
metrics, presents a promising approach to enhancing TCP in 
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SPL [15]. Hybrid string distance for TCP in SPL faces 
challenges such as diverse feature sets, low scalability, requires 
careful consideration of appropriate metrics, and low 
adaptability to dynamic changes [16]. Managing multiple 
product variants, selecting appropriate metrics, and ensuring 
the hybrid approach remains effective and adaptable to 
evolving requirements are essential for successful 
implementation. To optimize outcomes in TCP using hybrid 
string distance in SPL, several objectives should be pursued 
including comprehensive metric selection, feature-driven 
prioritization, and scalable algorithm design, adaptability to 
changes, and empirical validation and evaluation. The hybrid 
approach should consider specific product variant features, 
create a mechanism for prioritizing test cases based on these 
features, and ensure scalability without compromising 
performance. Finally, the approach should be tested on real-
world SPLs to demonstrate improvements in TCP accuracy, 
coverage, and overall software quality. 

This paper addresses the limitations of current TCP 
methods that struggle to accurately gauge the semantic 
similarity between test cases, resulting in less than optimal 
prioritization outcomes. To tackle this issue, the study poses a 
research question: “Which new hybrid technique can offer the 
highest early failure detection rate in TCP?” 

The research introduces an innovative TCP approach that 
combines Hybrid Jaro-Winkler and Manhattan distance, 
integrating a dissimilarity measure. The main contribution lies 
in enhancing the precision and efficacy of TCP. This technique 
is used to overcoming the difficulties linked to precisely 
measuring semantic similarity. This method aims to advance 
software testing by significantly enhancing prioritization 
outcomes by providing a more robust and dependable approach 
for early failure detection in TCP. 

The following section outlines the relevant literature. 
Section III present the proposed approach in detailed, 
incorporating the experimental settings and a combination of 
string distance measures whereas Section IV discuss on the 
results and discussion are presented, leading to the conclusions, 
in Section V. 

II. RELATED WORK 

Incorporating TCP techniques like reordering test cases 
based on fault detection rate can significantly enhance the 
effectiveness of software testing by enabling early fault 
detection [17]. In the context of TCP for SPL, the term string 
distance refers to the measurement of the similarity or 
dissimilarity of various strings that stand in for test cases [8]. 
With this method, test cases are ranked according to how 
distinctive or diverse they are from one another in terms of the 
testing functionality, or the areas of the code covered. String 
distance allows for better resource allocation by identifying 
redundant or overlapping test cases [18]. However, according 
to Halim et al. [1], neglecting string distance would result in 
inefficient testing processes and delayed bug fixes. Therefore, 
incorporating string distance in TCP is essential for efficient 
software development [19, 20]. 

Similarity-based prioritization (SBP) focuses on identifying 
test cases that are similar to each other based on certain criteria, 

such as code coverage or functionality [1, 21]. The idea behind 
SBP is that if one test case covers a particular aspect of the 
software, then similar test cases are likely to cover the same 
aspect as well [22]. This approach is effective in reducing 
redundancy in testing efforts by selecting a representative 
subset of test cases [23]. However, dissimilarity-based 
prioritization (DBP) considers the diversity among test cases. 
DBP aims to select a diverse set of test cases that covers 
different aspects of the software under test [23, 24]. By 
considering dissimilarities between test cases, this approach 
ensures comprehensive coverage and reduces the risk of 
missing critical defects [25]. 

Sulaiman et al. [25] suggested a measurement based on 
maximal distance of dissimilarity measure for SPL, which 
assures thorough coverage and lowers the possibility of 
overlooking important faults. The study is based on the test 
case generated from a statechart in comparison to current work, 
which is based on the FM in the context of the SPL domain. By 
increasing string distance and prioritizing based on similarity, 
Halim et al. [1] suggested rearranging test cases to increase the 
rate of problem identification. The work compared various 
string distance measures and prioritization algorithms in order 
to determine the best methods for similarity-based on 
hybridization of Jaro-Winkler and Hamming distance equation. 

Fault detection has been improved in existing studies via 
the use of new and enhanced hybrid techniques for string 
distance equations. Recent work by Pospisil et al. [26] aimed to 
enhance adaptive random TCP for model-based test suites 
using original technique for Jaccard, Manhattan distance and 
similarity functions. All of the examined systems achieved 
improved fault detection performance as a result of the 
proposed improvement. Another study by Kumar et al. [9] 
employed Item-based Collaborative Filtering (ICF) to prioritize 
and decrease the number of products before testing. Hamming 
string distance was used to calculate the degree of similarity 
between products. Results of the study show that this approach 
was able to reduce test suite size. Compared to the works by 
Pospisil et al. [26] and Kumar et al. [9], the current study 
concentrated more on using a hybrid string distance method to 
determine the degree of dissimilarity and then locate the 
distance with the greatest similarity reading. 

III. PROPOSED APPROACH 

The ranking method we use is based on dissimilarity. Our 
objective is to find further weaknesses in the product lines 
being evaluated as well as the point of difference between test 
case and real world. The study concentrates on the following 
research question: 

RQ1: Which new enhanced hybrid technique produces the 
best early failure detection rate? 

We start by outlining the conditions of our experiment 
before going on to describe the findings. 

A. Experimental Settings 

The experiment was carried out on Windows 11 with an 
AMD Ryzen 5 5625U processor running at 2.30 GHz and 8GB 
of RAM. The authors developed a New Enhanced Hybrid 
Techniques (NEHT) by improving string distance using three 
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hybrid techniques to evaluate the comparability of similarity 
and dissimilarity measures. For the purpose of generating 
configuration and prioritizing processes, this technique's 
similarity and dissimilarity measures will be assessed using 
current Feature Model (FM), Software Product Line Online 
Tool (SPLOT) and Product Line EDitor and tests GEneration 
(PLEDGE) tools. In SPL, FM allows for the systematic 
representation and management of features, their dependencies, 
and variations across different products [27]. SPLOT is a web-
based tool that allows users to create incredibly dynamic Ajax-
based setup and reasoning user interfaces [28], while PLEDGE 
is an open-source tool that selects and prioritizes product 
configurations, maximizing the feature interactions covered 
[29]. In order to test the SPL, the author selects an FM for 
machine learning based on the Global Positioning System 
(GPS) created by Saini et al. 2023 [8] as in Fig. 1. Due to the 
fact that not all possible feature combinations are viable, 
feature diagrams are used to limit the variety of a product line. 
Based on the FM in Fig. 1, the .xml files will be produced 
using SPLOT. The .xml file will be used to generate the six test 
cases displayed in Table I after being run using PLEDGE. An 
ordered list of configurations is often the outcome of a 
sampling method. 

B. Hybrid of String Distance 

The purpose of the proposed approach is to find 
dissimilarity between two test cases. Two strings distances 
were chosen to develop the proposed approach which is Jaro-
Winkler and Manhattan distances. Jaro-Winkler distance is a 
string distance algorithm that measures the similarity between 
two strings [30]. It has been widely used in various fields, 
including TCP. Meanwhile, Manhattan distance is a popular 
metric used in TCP and works by first creating a matrix of all 

possible pairs of test cases [15]. It is used to measure the 
distance between two points on a grid-like system, where the 
distance is calculated by adding the absolute differences of 
those coordinates. In software testing, this metric helps 
prioritize test cases based on their proximity to each other. 

The selection of the Hybrid Jaro-Winkler and Manhattan 
Distance Using Dissimilarity Measure for TCP Approach is 
grounded in its distinctive ability to address the challenges 
prevalent in existing TCP approaches. The hybrid nature of the 
chosen method combines the strengths of Jaro-Winkler and 
Manhattan string distance, offering a comprehensive solution 
for accurately capturing semantic similarity between test cases. 
The integration of a dissimilarity measure further enriches the 
approach, enhancing the precision of TCP. The decision to 
adopt this method is motivated by its potential to significantly 
improve prioritization results and contribute to more effective 
early failure detection in TCP. 

By improving two string distance techniques, this method 
will produce a new hybrid technique that is precise in obtaining 
faster early failure detection rate. Fig. 2 describes the 
combinations of two string distance to develop the three new 
enhanced hybrid techniques. New enhanced hybrid technique 1 
(NEHT1) modifies existing Jaro equation, and Manhattan 
equation replaces value of m and t with value of test cases (T1, 
T2). New enhanced hybrid technique 2 (NEHT2) combines 
Jaro-Winkler and Manhattan equations, replaces m value with 
n value and t with value of test cases (T1, T2), adds value of 
test cases, divides with n value and multiply with 1-dj. New 
enhanced hybrid technique 3 (NEHT3) combines Jaro and 
Manhattan equations where the formula replaces value of m 
with n and t with value of test cases (T1, T2). 

TABLE I.  CONFIGURATIONS OF GPS FEATURE MODEL 

Test Case Configuration 

T1 {GPS, Routing, Traffic Avoiding, Interface, Auto-rerouting, Screen, Touch} 

T2 {GPS, Routing, Radio, Interface, 3D Map, AM, FM, Digital, Keyboard, Screen, LCD} 

T3 {GPS, Routing, Traffic Avoiding, Radio, Interface, Auto-rerouting, AM, FM, Digital, Screen, LCD} 

T4 {GPS, Routing, Interface, 3D Map, Keyboard, Screen, LCD} 

T5 {GPS, Routing, Traffic Avoiding, Interface, 3D Map, Auto-rerouting, Screen, Touch} 

T6 {GPS, Routing, Radio, Interface, Auto-rerouting, AM, FM, Digital, Keyboard, Screen, Touch} 

 

Fig. 1. Feature model of GPS [8]. 
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Fig. 2. New enhanced hybrid techniques. 

IV. RESULT AND DISCUSSION 

Table II shows the similarity and dissimilarity percentages 
between different pairs of test cases (T1, T2, T3, T4, T5, T6), 
with NEHT1, NEHT2, and NEHT3 representing different 
methods or conditions. The values range from 0% (complete 
dissimilarity) to 100% (complete similarity). Since this is an 
initial result, results use a single FM to represent a dataset. For 

NEHT1, T1 vs T4, T2 vs T3, T2 vs T6, and T3 vs T6 recorded 
complete similarity (100.00%), proving the formula is very 
effective in similarity calculation. Values for NEHT2 and 
NEHT3 were similar in T1 vs. T4, T2 vs. T3, T2 vs. T6, and 
T3 vs. T6, which means both proposed techniques provide a 
consistent way to determine similarity level. The majority of 
the results show that NEHT1 is effective at determining the 
degree of similarity. 

TABLE II.  CALCULATION FOR DEGREES OF SIMILARITY AND DISSIMILARITY 

Test Case 
NEHT1 NEHT2 NEHT3 NEHT1 NEHT2 NEHT3 

Similarity (%) Dissimilarity (%) 

T1 vs T2 86.79 82.25 70.95 13.21 17.75 29.05 

T1 vs T3 97.90 83.40 83.79 2.10 16.60 16.21 

T1 vs T4 100.00 71.42 71.42 0.00 28.58 28.58 

T1 vs T5 99.56 95.92 95.95 0.44 4.08 4.05 

T1 vs T6 97.90 83.40 83.79 2.10 16.60 16.21 

T2 vs T3 100.00 87.87 87.87 0.00 12.13 12.13 

T2 vs T4 99.65 89.26 89.99 0.35 10.74 10.01 

T2 vs T5 93.70 76.68 73.27 6.30 23.32 26.73 

T2 vs T6 100.00 87.87 87.87 0.00 12.13 12.13 

T3 vs T4 94.57 79.68 77.49 5.43 20.32 22.51 

T3 vs T5 96.94 79.87 79.59 3.06 20.13 20.41 

T3 vs T6 100.00 87.87 87.87 0.00 12.13 12.13 

T4 vs T5 98.81 78.95 79.21 1.19 21.05 20.79 

T4 vs T6 94.57 79.68 77.49 5.43 20.32 22.51 

T5 vs T6 96.94 79.87 79.59 3.06 20.13 20.41 

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 11, 2023 

1122 | P a g e  

www.ijacsa.thesai.org 

Fig. 3 and Fig. 4 show similarity and dissimilarity rates of 
fault detection for the proposed methods (NEHT1, NEHT2, 
NEHT3). The similarity percentages vary for different methods 
and test cases. Similar variations may be seen in the 
dissimilarity percentage, which illustrates how the different 
approaches of assessing differences differ. There is no uniform 
trend in how the methods rank similarity or dissimilarity across 
all test cases. Some test cases consistently show high similarity 
across all methods, while others show varying degrees of 
dissimilarity. The author claims that this enhancement will 
increase the SBP technique's effectiveness [1]. Sulaiman et al. 
[25] stated that similarity and dissimilarity strategies were 

introduced to tackle scalability problem in the current priority 
technique. This method provides a straightforward, scalable, 
and efficient method for prioritizing and reducing the number 
of test cases. TCP for SPL can be significantly improved by 
leveraging high similarity in calculation of string distance. 
High similarity values are advantageous in locating similar test 
cases across various SPL. As a result, fewer testing efforts are 
duplicated, and the existing test cases can be reused. 
Furthermore, low dissimilarity values can improve coverage, 
ensure effective bug correction, and improve the fault 
localization. 

 
Fig. 3. Similarity rate of fault detection result. 

 
Fig. 4. Dissimilarity rate of fault detection result. 
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V. CONCLUSION 

One of the main advantages of SPLT is its ability to save 
time and resources. Testers can concentrate on the common 
characteristics shared by all products in the software family 
rather than testing each product individually. This makes it 
possible to quickly find and fix errors, at the same time 
shortens the development process and lowers expenses. For 
DBP, dissimilarity test case has been proven to be one of the 
techniques that can speed up failure detection process. This 
research employed six different test cases to be tested using 
three proposed hybrid techniques based on the combination of 
Jaro-Winkler and Manhattan string distances for early fault 
identification rate. The findings indicated that NEHT1 has a 
higher rate of fault identification compared to the other two 
proposed techniques. In order to increase the success rate of 
NEHT1's fault identification, we plan to make improvements 
to it in the future. In addition, we intend to use a variety of case 
study types for this research project. The limitations of current 
test case prioritization methods, particularly their struggles in 
accurately capturing semantic similarity, render them 
unsuitable for the challenges at hand. Traditional approaches 
fall short in providing a comprehensive solution for the 
nuanced characteristics of test cases. The proposed method is 
chosen to overcome these limitations by introducing a hybrid 
technique that specifically addresses the semantic aspects of 
test cases. This strategic choice is aimed at mitigating the 
deficiencies of existing methods and advancing the field of 
TCP towards a more precise and effective paradigm. 

ACKNOWLEDGMENT 

This research was supported by Ministry of Higher 
Education (MOHE) through Fundamental Research Grant 
Scheme (FRGS/1/2022/ICT01/UTHM/03/2). 

REFERENCES 

[1] S. A. Halim, D. N. A. Jawawi, and M. Sahak, “Similarity Distance 
Measure and Prioritization Algorithm for Test Case Prioritization in 
Software Product Line Testing,” Journal of Information and 
Communication Technology, vol. 18, no. 1, pp. 57–75, 2019, doi: 
10.32890/jict2019.18.1.8281. 

[2] T. Ferreira, S. R. Vergilio, and M. Kessentini, “Variability testing of 
software product line: A preference-based dimensionality reduction 
approach,” Inf Softw Technol, vol. 152, no. September 2021, p. 107031, 
2022, doi: 10.1016/j.infsof.2022.107031. 

[3] S. Langstrom, “An Investigative Study of Testing Strategy and Test 
Case Creation in a Hardware-Software Co-design Environment Using 
Software Product Line Theory,” Open Access in DiVA, 2021. 

[4] R. A. Sulaiman, D. N. A. Jawawi, and S. A. Halim, “Cost-effective test 
case generation with the hyper-heuristic for software product line 
testing,” Advances in Engineering Software, vol. 175, Jan. 2023, doi: 
10.1016/j.advengsoft.2022.103335. 

[5] P. Martou, K. Mens, B. Duhoux, and A. Legay, “Test scenario 
generation for feature-based context-oriented software systems,” Journal 
of Systems and Software, vol. 197, Mar. 2023, doi: 
10.1016/j.jss.2022.111570. 

[6] J. Lee, S. Kang, and P. Jung, “Test coverage criteria for software 
product line testing: Systematic literature review,” Inf Softw Technol, 
vol. 122, no. December 2019, p. 106272, 2020, doi: 
10.1016/j.infsof.2020.106272. 

[7] T. T. Nguyen, K. T. Ngo, S. Nguyen, and H. D. Vo, “Detecting false-
passing products and mitigating their impact on variability fault 
localization in software product lines,” Inf Softw Technol, vol. 153, Jan. 
2023, doi: 10.1016/j.infsof.2022.107080. 

[8] A. Saini, Rajkumar, A. Kumari, and S. Kumar, “A Proposed Method of 
Machine Learning based Framework for Software Product Line 
Testing,” 2022 International Conference on 4th Industrial Revolution 
Based Technology and Practices, ICFIRTP 2022, pp. 10–13, 2022, doi: 
10.1109/ICFIRTP56122.2022.10059409. 

[9] S. Kumar, Rajkumar, and M. Rani, “Collaborative Filtering-based Test 
Case Prioritization and Reduction for Software Product-Line Testing,” 
in IEEE Region 10 Annual International Conference, 
Proceedings/TENCON, Institute of Electrical and Electronics Engineers 
Inc., Oct. 2019, pp. 498–503. doi: 10.1109/TENCON.2019.8929705. 

[10] A. D. Shrivathsan et al., “Novel Fuzzy Clustering Methods for Test Case 
Prioritization in Software Projects,” Symmetry (Basel), vol. 11, no. 11, 
Nov. 2019, doi: 10.3390/sym11111400. 

[11] Z. Q. Zhou, C. Liu, T. Y. Chen, T. H. Tse, and W. Susilo, “Beating 
Random Test Case Prioritization,” IEEE Trans Reliab, vol. 70, no. 2, pp. 
654–675, 2021, doi: 10.1109/TR.2020.2979815. 

[12] I. Hajri, A. Goknil, F. Pastore, and L. C. Briand, “Automating system 
test case classification and prioritization for use case-driven testing in 
product lines,” Empir Softw Eng, vol. 25, no. 5, pp. 3711–3769, Sep. 
2020, doi: 10.1007/s10664-020-09853-4. 

[13] M. L. Mohd-Shafie, W. M. N. W. Kadir, H. Lichter, M. Khatibsyarbini, 
and M. A. Isa, “Model-based test case generation and prioritization: a 
systematic literature review,” Softw Syst Model, vol. 21, no. 2, pp. 717–
753, Apr. 2022, doi: 10.1007/s10270-021-00924-8. 

[14] S. Akhmedova, V. Stanovov, and Y. Kamiya, “A Hybrid Clustering 
Approach Based on Fuzzy Logic and Evolutionary Computation for 
Anomaly Detection,” Algorithms, vol. 15, no. 10, Oct. 2022, doi: 
10.3390/a15100342. 

[15] M. Khatibsyarbini, “A Study of Test Case Prioritization Technique 
Based on String Distance Metrics,” Universiti Teknologi Malaysia, 
Johor Bahru, 2019. 

[16] U. Markiegi, A. Arrieta, L. Etxeberria, and G. Sagardui, “Dynamic test 
prioritization of product lines: An application on configurable simulation 
models,” Software Quality Journal, vol. 29, no. 4, pp. 943–988, Dec. 
2021, doi: 10.1007/s11219-021-09571-0. 

[17] T. K. Akila and M. Arunachalam, “Test case prioritization using 
modified genetic algorithm and ant colony optimization for regression 
testing,” International Journal of Advanced Technology and Engineering 
Exploration, vol. 9, no. 88, pp. 384–400, Mar. 2022, doi: 
10.19101/IJATEE.2021.874727. 

[18] M. Khatibsyarbini, M. A. Isa, D. N. A. Jawawi, H. N. A. Hamed, and M. 
D. Mohamed Suffian, “Test Case Prioritization Using Firefly Algorithm 
for Software Testing,” IEEE Access, vol. 7, pp. 132360–132373, 2019, 
doi: 10.1109/ACCESS.2019.2940620. 

[19] S. Khoshmanesh and R. Lutz, “Does Link Prediction Help Detect 
Feature Interactions in Software Product Lines (SPLs)?,” in Proceedings 
- 7th International Workshop on Artificial Intelligence and 
Requirements Engineering, AIRE 2020, 2020, pp. 87–90. doi: 
10.1109/AIRE51212.2020.00020. 

[20] C. Birchler, S. Khatiri, P. Derakhshanfar, S. Panichella, and A. 
Panichella, “Single and Multi-objective Test Cases Prioritization for 
Self-driving Cars in Virtual Environments,” Proc ACM Hum Comput 
Interact, vol. 5, no. CSCW1, Apr. 2021, doi: 10.1145/1122445.1122456. 

[21] S. Ali et al., “Towards Pattern-Based Change Verification Framework 
for Cloud-Enabled Healthcare Component-Based,” IEEE Access, vol. 8, 
pp. 148007–148020, 2020, doi: 10.1109/ACCESS.2020.3014671. 

[22] H. Hemmati, “Advances in Techniques for Test Prioritization,” in 
Advances in Computers, Academic Press Inc., 2019, pp. 185–221. doi: 
10.1016/bs.adcom.2017.12.004. 

[23] S. Lity, M. Nieke, T. Thum, and I. Schaefer, “Retest test selection for 
product-line regression testing of variants and versions of variants,” 
Journal of Systems and Software, vol. 147, pp. 46–63, Jan. 2019, doi: 
10.1016/j.jss.2018.09.090. 

[24] E. Ufuktepe and T. Tuglular, “Application of the law of minimum and 
dissimilarity analysis to Regression Test Case Prioritization,” IEEE 
Access, vol. 11, pp. 57137–57157, 2023, doi: 
10.1109/ACCESS.2023.3283212. 

[25] R. A. Sulaiman, D. N. A. Jawawi, and S. A. Halim, “A Dissimilarity 
with Dice-Jaro-Winkler Test Case Prioritization Approach for Model-



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 11, 2023 

1124 | P a g e  

www.ijacsa.thesai.org 

Based Testing in Software Product Line,” KSII Transactions on Internet 
and Information Systems, vol. 15, no. 3, pp. 932–951, Mar. 2021, doi: 
10.3837/tiis.2021.03.007. 

[26] T. Pospisil, J. Sobotka, and J. Novak, “Enhanced Adaptive Random Test 
Case Prioritization for Model-Based Test Suites,” Acta Polytechnica 
Hungarica, vol. 17, no. 7, pp. 125–144, 2020, doi: 
10.12700/APH.17.7.2020.7.7. 

[27] M. Al-Hajjaji, T. Thum, M. Lochau, J. Meinicke, and G. Saake, 
“Effective product-line testing using similarity-based product 
prioritization,” Softw Syst Model, vol. 18, no. 1, pp. 499–521, 2019, doi: 
10.1007/s10270-016-0569-2. 

[28] M. Mendonca, M. Branco, and D. Cowan, “S.P.L.O.T. - Software 
product lines online tools,” Proceedings of the Conference on Object-

Oriented Programming Systems, Languages, and Applications, 
OOPSLA, no. May 2014, pp. 761–762, 2009, doi: 
10.1145/1639950.1640002. 

[29] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. Le Traon, 
“PLEDGE: A Product Line Editor and Test Generation Tool,” ACM 
International Conference Proceeding Series, pp. 126–129, 2013, doi: 
10.1145/2499777.2499778. 

[30] J. M. Keil, “Efficient Bounded Jaro-Winkler Similarity Based Search,” 
Lecture Notes in Informatics (LNI), Proceedings - Series of the 
Gesellschaft fur Informatik (GI), vol. P-289, pp. 205–214, 2019, doi: 
10.18420/btw2019-13.

 


