
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

1118 | P a g e

www.ijacsa.thesai.org

The Hybrid Jaro-Winkler and Manhattan Distance

using Dissimilarity Measure for Test Case

Prioritization Approach

Siti Hawa Mohamed Shareef, Rabatul Aduni Sulaiman*, Abd Samad Hasan Basari

Department of Software Engineering, Faculty of Computer Science and Information Technology,

University Tun Hussein Onn Malaysia, Batu Pahat, Malaysia

Abstract—Software product line (SPL) is a concept that has

revolutionized the software development industry. It refers to a

set of related software products that are developed from a

common set of core assets but can be customized to meet specific

customer requirements. Integrating SPL techniques into test case

prioritization (TCP) can greatly enhance its effectiveness. By

considering variability across different products within an SPL,

it becomes possible to prioritize test cases based on their

relevance to specific product configurations. However, the

concept itself still has certain issues, such as in finding the highest

rate of early failure detection. Various solutions have been

proposed to mitigate this problem, among them is to improve the

calculation of string distance using hybrid technique to achieve a

high degree for similarity. Dissimilarity-based Technique (DBP)

is the basis for our ranking method. The objective is to identify

further weaknesses in the product lines as well as the differences

between the experiment and real-world applications. Our focus is

to enhance hybrid techniques that produce the highest rate of

early failure detection. In this paper, early fault detection is

selected as the performance goal. In order to choose the optimal

methods for DBP for TCP, a comparison between several string

distance measures was conducted. This study proposed hybrid

techniques that combined Jaro-Winkler and Manhattan string

distance namely New Enhanced Hybrid Technique 1 (NEHT1),

New Enhanced Hybrid Technique 2 (NEHT2) and New

Enhanced Hybrid Technique 3 (NEHT3). The case study was

generated using the PLEDGE tool based on a Feature Model

(FM). Six test cases were used in the experiment. Result shows

the effectiveness of the combination where it achieved higher

degree of similarity for T1 vs. T4, T2 vs. T3, T2 vs. T6, and T3 vs.

T6, as well as perfect degree of similarity for NEHT1 (100.00%).

The result proves that the combination of both techniques

improve SPL testing effectiveness compared to existing

techniques.

Keywords—Test case prioritization; software product line;

dissimilarity-based technique; string distance; new enhanced

hybrid

I. INTRODUCTION

Software product line (SPL) is a collection of related
software products that share a common set of core assets while
also offering variations to address diverse customer needs [1].
The characteristics may be constant throughout all SPL-derived
products, or they may be varied and present in only some of
them [2]. Instead of building each product from scratch, SPL
approach emphasizes systematic reuse, enabling efficient

development and maintenance of multiple products. SPL
streamlines development, reduces redundancy, and enhances
consistency across products [3]. Many industries implement
SPL due to its ability to handle different phases of
development using the commonality and variability concepts
[4].

Software product line testing (SPLT) involves testing the
shared components and individual product variants within an
SPL [5]. It ensures the quality, compatibility, and correctness
of both the common core assets and the unique features of each
product. This type of testing addresses the challenges posed by
varying configurations, shared components, and differing
features, while maintaining overall product line quality [6].
Similar to testing in non-configurable code, testing in SPL
experiences the coincidental correctness phenomena, which
makes it more challenging to detect errors in these systems [7].
However, the testing of a single software system is a highly
difficult and expensive stage of the software development
process, according to the author [8].

Test case prioritization (TCP) is the process of ordering test
cases based on certain criteria to optimize testing efforts [9].
Even though a few trailing test cases are not exercised, these
test suites uncover bugs at the earliest possible time [10]. It
presents a significant difficulty for software testing [11]. In the
context of SPL, prioritization becomes complex due to the
diversity of features and configurations [12]. Researchers
suggested TCP procedures, where test cases were restructured
and carried out in accordance with a given objective, to boost
the efficacy and efficiency of testing [13]. A hybrid approach
that considers both similarity and dissimilarity should be
adopted for effective TCP in SPL development. Similarity
refers to the degree to which two or more test cases share
common characteristics or requirements while dissimilarity
refers to the differences between test cases [14]. Techniques
like Jaro-Winkler distance and Manhattan distance can be used
to compare test cases for similarity, dependencies, and impact.
Prioritizing test cases ensures that critical defects are identified
early and that testing resources are allocated efficiently.

SPL has gained prominence in modern software
development by allowing the creation of multiple products
with shared features and components. TCP plays a vital role in
ensuring the quality and reliability of these products. Hybrid
string distance, a combination of various string similarity
metrics, presents a promising approach to enhancing TCP in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

1119 | P a g e

www.ijacsa.thesai.org

SPL [15]. Hybrid string distance for TCP in SPL faces
challenges such as diverse feature sets, low scalability, requires
careful consideration of appropriate metrics, and low
adaptability to dynamic changes [16]. Managing multiple
product variants, selecting appropriate metrics, and ensuring
the hybrid approach remains effective and adaptable to
evolving requirements are essential for successful
implementation. To optimize outcomes in TCP using hybrid
string distance in SPL, several objectives should be pursued
including comprehensive metric selection, feature-driven
prioritization, and scalable algorithm design, adaptability to
changes, and empirical validation and evaluation. The hybrid
approach should consider specific product variant features,
create a mechanism for prioritizing test cases based on these
features, and ensure scalability without compromising
performance. Finally, the approach should be tested on real-
world SPLs to demonstrate improvements in TCP accuracy,
coverage, and overall software quality.

This paper addresses the limitations of current TCP
methods that struggle to accurately gauge the semantic
similarity between test cases, resulting in less than optimal
prioritization outcomes. To tackle this issue, the study poses a
research question: “Which new hybrid technique can offer the
highest early failure detection rate in TCP?”

The research introduces an innovative TCP approach that
combines Hybrid Jaro-Winkler and Manhattan distance,
integrating a dissimilarity measure. The main contribution lies
in enhancing the precision and efficacy of TCP. This technique
is used to overcoming the difficulties linked to precisely
measuring semantic similarity. This method aims to advance
software testing by significantly enhancing prioritization
outcomes by providing a more robust and dependable approach
for early failure detection in TCP.

The following section outlines the relevant literature.
Section III present the proposed approach in detailed,
incorporating the experimental settings and a combination of
string distance measures whereas Section IV discuss on the
results and discussion are presented, leading to the conclusions,
in Section V.

II. RELATED WORK

Incorporating TCP techniques like reordering test cases
based on fault detection rate can significantly enhance the
effectiveness of software testing by enabling early fault
detection [17]. In the context of TCP for SPL, the term string
distance refers to the measurement of the similarity or
dissimilarity of various strings that stand in for test cases [8].
With this method, test cases are ranked according to how
distinctive or diverse they are from one another in terms of the
testing functionality, or the areas of the code covered. String
distance allows for better resource allocation by identifying
redundant or overlapping test cases [18]. However, according
to Halim et al. [1], neglecting string distance would result in
inefficient testing processes and delayed bug fixes. Therefore,
incorporating string distance in TCP is essential for efficient
software development [19, 20].

Similarity-based prioritization (SBP) focuses on identifying
test cases that are similar to each other based on certain criteria,

such as code coverage or functionality [1, 21]. The idea behind
SBP is that if one test case covers a particular aspect of the
software, then similar test cases are likely to cover the same
aspect as well [22]. This approach is effective in reducing
redundancy in testing efforts by selecting a representative
subset of test cases [23]. However, dissimilarity-based
prioritization (DBP) considers the diversity among test cases.
DBP aims to select a diverse set of test cases that covers
different aspects of the software under test [23, 24]. By
considering dissimilarities between test cases, this approach
ensures comprehensive coverage and reduces the risk of
missing critical defects [25].

Sulaiman et al. [25] suggested a measurement based on
maximal distance of dissimilarity measure for SPL, which
assures thorough coverage and lowers the possibility of
overlooking important faults. The study is based on the test
case generated from a statechart in comparison to current work,
which is based on the FM in the context of the SPL domain. By
increasing string distance and prioritizing based on similarity,
Halim et al. [1] suggested rearranging test cases to increase the
rate of problem identification. The work compared various
string distance measures and prioritization algorithms in order
to determine the best methods for similarity-based on
hybridization of Jaro-Winkler and Hamming distance equation.

Fault detection has been improved in existing studies via
the use of new and enhanced hybrid techniques for string
distance equations. Recent work by Pospisil et al. [26] aimed to
enhance adaptive random TCP for model-based test suites
using original technique for Jaccard, Manhattan distance and
similarity functions. All of the examined systems achieved
improved fault detection performance as a result of the
proposed improvement. Another study by Kumar et al. [9]
employed Item-based Collaborative Filtering (ICF) to prioritize
and decrease the number of products before testing. Hamming
string distance was used to calculate the degree of similarity
between products. Results of the study show that this approach
was able to reduce test suite size. Compared to the works by
Pospisil et al. [26] and Kumar et al. [9], the current study
concentrated more on using a hybrid string distance method to
determine the degree of dissimilarity and then locate the
distance with the greatest similarity reading.

III. PROPOSED APPROACH

The ranking method we use is based on dissimilarity. Our
objective is to find further weaknesses in the product lines
being evaluated as well as the point of difference between test
case and real world. The study concentrates on the following
research question:

RQ1: Which new enhanced hybrid technique produces the
best early failure detection rate?

We start by outlining the conditions of our experiment
before going on to describe the findings.

A. Experimental Settings

The experiment was carried out on Windows 11 with an
AMD Ryzen 5 5625U processor running at 2.30 GHz and 8GB
of RAM. The authors developed a New Enhanced Hybrid
Techniques (NEHT) by improving string distance using three

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

1120 | P a g e

www.ijacsa.thesai.org

hybrid techniques to evaluate the comparability of similarity
and dissimilarity measures. For the purpose of generating
configuration and prioritizing processes, this technique's
similarity and dissimilarity measures will be assessed using
current Feature Model (FM), Software Product Line Online
Tool (SPLOT) and Product Line EDitor and tests GEneration
(PLEDGE) tools. In SPL, FM allows for the systematic
representation and management of features, their dependencies,
and variations across different products [27]. SPLOT is a web-
based tool that allows users to create incredibly dynamic Ajax-
based setup and reasoning user interfaces [28], while PLEDGE
is an open-source tool that selects and prioritizes product
configurations, maximizing the feature interactions covered
[29]. In order to test the SPL, the author selects an FM for
machine learning based on the Global Positioning System
(GPS) created by Saini et al. 2023 [8] as in Fig. 1. Due to the
fact that not all possible feature combinations are viable,
feature diagrams are used to limit the variety of a product line.
Based on the FM in Fig. 1, the .xml files will be produced
using SPLOT. The .xml file will be used to generate the six test
cases displayed in Table I after being run using PLEDGE. An
ordered list of configurations is often the outcome of a
sampling method.

B. Hybrid of String Distance

The purpose of the proposed approach is to find
dissimilarity between two test cases. Two strings distances
were chosen to develop the proposed approach which is Jaro-
Winkler and Manhattan distances. Jaro-Winkler distance is a
string distance algorithm that measures the similarity between
two strings [30]. It has been widely used in various fields,
including TCP. Meanwhile, Manhattan distance is a popular
metric used in TCP and works by first creating a matrix of all

possible pairs of test cases [15]. It is used to measure the
distance between two points on a grid-like system, where the
distance is calculated by adding the absolute differences of
those coordinates. In software testing, this metric helps
prioritize test cases based on their proximity to each other.

The selection of the Hybrid Jaro-Winkler and Manhattan
Distance Using Dissimilarity Measure for TCP Approach is
grounded in its distinctive ability to address the challenges
prevalent in existing TCP approaches. The hybrid nature of the
chosen method combines the strengths of Jaro-Winkler and
Manhattan string distance, offering a comprehensive solution
for accurately capturing semantic similarity between test cases.
The integration of a dissimilarity measure further enriches the
approach, enhancing the precision of TCP. The decision to
adopt this method is motivated by its potential to significantly
improve prioritization results and contribute to more effective
early failure detection in TCP.

By improving two string distance techniques, this method
will produce a new hybrid technique that is precise in obtaining
faster early failure detection rate. Fig. 2 describes the
combinations of two string distance to develop the three new
enhanced hybrid techniques. New enhanced hybrid technique 1
(NEHT1) modifies existing Jaro equation, and Manhattan
equation replaces value of m and t with value of test cases (T1,
T2). New enhanced hybrid technique 2 (NEHT2) combines
Jaro-Winkler and Manhattan equations, replaces m value with
n value and t with value of test cases (T1, T2), adds value of
test cases, divides with n value and multiply with 1-dj. New
enhanced hybrid technique 3 (NEHT3) combines Jaro and
Manhattan equations where the formula replaces value of m
with n and t with value of test cases (T1, T2).

TABLE I. CONFIGURATIONS OF GPS FEATURE MODEL

Test Case Configuration

T1 {GPS, Routing, Traffic Avoiding, Interface, Auto-rerouting, Screen, Touch}

T2 {GPS, Routing, Radio, Interface, 3D Map, AM, FM, Digital, Keyboard, Screen, LCD}

T3 {GPS, Routing, Traffic Avoiding, Radio, Interface, Auto-rerouting, AM, FM, Digital, Screen, LCD}

T4 {GPS, Routing, Interface, 3D Map, Keyboard, Screen, LCD}

T5 {GPS, Routing, Traffic Avoiding, Interface, 3D Map, Auto-rerouting, Screen, Touch}

T6 {GPS, Routing, Radio, Interface, Auto-rerouting, AM, FM, Digital, Keyboard, Screen, Touch}

Fig. 1. Feature model of GPS [8].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

1121 | P a g e

www.ijacsa.thesai.org

Fig. 2. New enhanced hybrid techniques.

IV. RESULT AND DISCUSSION

Table II shows the similarity and dissimilarity percentages
between different pairs of test cases (T1, T2, T3, T4, T5, T6),
with NEHT1, NEHT2, and NEHT3 representing different
methods or conditions. The values range from 0% (complete
dissimilarity) to 100% (complete similarity). Since this is an
initial result, results use a single FM to represent a dataset. For

NEHT1, T1 vs T4, T2 vs T3, T2 vs T6, and T3 vs T6 recorded
complete similarity (100.00%), proving the formula is very
effective in similarity calculation. Values for NEHT2 and
NEHT3 were similar in T1 vs. T4, T2 vs. T3, T2 vs. T6, and
T3 vs. T6, which means both proposed techniques provide a
consistent way to determine similarity level. The majority of
the results show that NEHT1 is effective at determining the
degree of similarity.

TABLE II. CALCULATION FOR DEGREES OF SIMILARITY AND DISSIMILARITY

Test Case
NEHT1 NEHT2 NEHT3 NEHT1 NEHT2 NEHT3

Similarity (%) Dissimilarity (%)

T1 vs T2 86.79 82.25 70.95 13.21 17.75 29.05

T1 vs T3 97.90 83.40 83.79 2.10 16.60 16.21

T1 vs T4 100.00 71.42 71.42 0.00 28.58 28.58

T1 vs T5 99.56 95.92 95.95 0.44 4.08 4.05

T1 vs T6 97.90 83.40 83.79 2.10 16.60 16.21

T2 vs T3 100.00 87.87 87.87 0.00 12.13 12.13

T2 vs T4 99.65 89.26 89.99 0.35 10.74 10.01

T2 vs T5 93.70 76.68 73.27 6.30 23.32 26.73

T2 vs T6 100.00 87.87 87.87 0.00 12.13 12.13

T3 vs T4 94.57 79.68 77.49 5.43 20.32 22.51

T3 vs T5 96.94 79.87 79.59 3.06 20.13 20.41

T3 vs T6 100.00 87.87 87.87 0.00 12.13 12.13

T4 vs T5 98.81 78.95 79.21 1.19 21.05 20.79

T4 vs T6 94.57 79.68 77.49 5.43 20.32 22.51

T5 vs T6 96.94 79.87 79.59 3.06 20.13 20.41

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

1122 | P a g e

www.ijacsa.thesai.org

Fig. 3 and Fig. 4 show similarity and dissimilarity rates of
fault detection for the proposed methods (NEHT1, NEHT2,
NEHT3). The similarity percentages vary for different methods
and test cases. Similar variations may be seen in the
dissimilarity percentage, which illustrates how the different
approaches of assessing differences differ. There is no uniform
trend in how the methods rank similarity or dissimilarity across
all test cases. Some test cases consistently show high similarity
across all methods, while others show varying degrees of
dissimilarity. The author claims that this enhancement will
increase the SBP technique's effectiveness [1]. Sulaiman et al.
[25] stated that similarity and dissimilarity strategies were

introduced to tackle scalability problem in the current priority
technique. This method provides a straightforward, scalable,
and efficient method for prioritizing and reducing the number
of test cases. TCP for SPL can be significantly improved by
leveraging high similarity in calculation of string distance.
High similarity values are advantageous in locating similar test
cases across various SPL. As a result, fewer testing efforts are
duplicated, and the existing test cases can be reused.
Furthermore, low dissimilarity values can improve coverage,
ensure effective bug correction, and improve the fault
localization.

Fig. 3. Similarity rate of fault detection result.

Fig. 4. Dissimilarity rate of fault detection result.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

1123 | P a g e

www.ijacsa.thesai.org

V. CONCLUSION

One of the main advantages of SPLT is its ability to save
time and resources. Testers can concentrate on the common
characteristics shared by all products in the software family
rather than testing each product individually. This makes it
possible to quickly find and fix errors, at the same time
shortens the development process and lowers expenses. For
DBP, dissimilarity test case has been proven to be one of the
techniques that can speed up failure detection process. This
research employed six different test cases to be tested using
three proposed hybrid techniques based on the combination of
Jaro-Winkler and Manhattan string distances for early fault
identification rate. The findings indicated that NEHT1 has a
higher rate of fault identification compared to the other two
proposed techniques. In order to increase the success rate of
NEHT1's fault identification, we plan to make improvements
to it in the future. In addition, we intend to use a variety of case
study types for this research project. The limitations of current
test case prioritization methods, particularly their struggles in
accurately capturing semantic similarity, render them
unsuitable for the challenges at hand. Traditional approaches
fall short in providing a comprehensive solution for the
nuanced characteristics of test cases. The proposed method is
chosen to overcome these limitations by introducing a hybrid
technique that specifically addresses the semantic aspects of
test cases. This strategic choice is aimed at mitigating the
deficiencies of existing methods and advancing the field of
TCP towards a more precise and effective paradigm.

ACKNOWLEDGMENT

This research was supported by Ministry of Higher
Education (MOHE) through Fundamental Research Grant
Scheme (FRGS/1/2022/ICT01/UTHM/03/2).

REFERENCES

[1] S. A. Halim, D. N. A. Jawawi, and M. Sahak, “Similarity Distance
Measure and Prioritization Algorithm for Test Case Prioritization in
Software Product Line Testing,” Journal of Information and
Communication Technology, vol. 18, no. 1, pp. 57–75, 2019, doi:
10.32890/jict2019.18.1.8281.

[2] T. Ferreira, S. R. Vergilio, and M. Kessentini, “Variability testing of
software product line: A preference-based dimensionality reduction
approach,” Inf Softw Technol, vol. 152, no. September 2021, p. 107031,
2022, doi: 10.1016/j.infsof.2022.107031.

[3] S. Langstrom, “An Investigative Study of Testing Strategy and Test
Case Creation in a Hardware-Software Co-design Environment Using
Software Product Line Theory,” Open Access in DiVA, 2021.

[4] R. A. Sulaiman, D. N. A. Jawawi, and S. A. Halim, “Cost-effective test
case generation with the hyper-heuristic for software product line
testing,” Advances in Engineering Software, vol. 175, Jan. 2023, doi:
10.1016/j.advengsoft.2022.103335.

[5] P. Martou, K. Mens, B. Duhoux, and A. Legay, “Test scenario
generation for feature-based context-oriented software systems,” Journal
of Systems and Software, vol. 197, Mar. 2023, doi:
10.1016/j.jss.2022.111570.

[6] J. Lee, S. Kang, and P. Jung, “Test coverage criteria for software
product line testing: Systematic literature review,” Inf Softw Technol,
vol. 122, no. December 2019, p. 106272, 2020, doi:
10.1016/j.infsof.2020.106272.

[7] T. T. Nguyen, K. T. Ngo, S. Nguyen, and H. D. Vo, “Detecting false-
passing products and mitigating their impact on variability fault
localization in software product lines,” Inf Softw Technol, vol. 153, Jan.
2023, doi: 10.1016/j.infsof.2022.107080.

[8] A. Saini, Rajkumar, A. Kumari, and S. Kumar, “A Proposed Method of
Machine Learning based Framework for Software Product Line
Testing,” 2022 International Conference on 4th Industrial Revolution
Based Technology and Practices, ICFIRTP 2022, pp. 10–13, 2022, doi:
10.1109/ICFIRTP56122.2022.10059409.

[9] S. Kumar, Rajkumar, and M. Rani, “Collaborative Filtering-based Test
Case Prioritization and Reduction for Software Product-Line Testing,”
in IEEE Region 10 Annual International Conference,
Proceedings/TENCON, Institute of Electrical and Electronics Engineers
Inc., Oct. 2019, pp. 498–503. doi: 10.1109/TENCON.2019.8929705.

[10] A. D. Shrivathsan et al., “Novel Fuzzy Clustering Methods for Test Case
Prioritization in Software Projects,” Symmetry (Basel), vol. 11, no. 11,
Nov. 2019, doi: 10.3390/sym11111400.

[11] Z. Q. Zhou, C. Liu, T. Y. Chen, T. H. Tse, and W. Susilo, “Beating
Random Test Case Prioritization,” IEEE Trans Reliab, vol. 70, no. 2, pp.
654–675, 2021, doi: 10.1109/TR.2020.2979815.

[12] I. Hajri, A. Goknil, F. Pastore, and L. C. Briand, “Automating system
test case classification and prioritization for use case-driven testing in
product lines,” Empir Softw Eng, vol. 25, no. 5, pp. 3711–3769, Sep.
2020, doi: 10.1007/s10664-020-09853-4.

[13] M. L. Mohd-Shafie, W. M. N. W. Kadir, H. Lichter, M. Khatibsyarbini,
and M. A. Isa, “Model-based test case generation and prioritization: a
systematic literature review,” Softw Syst Model, vol. 21, no. 2, pp. 717–
753, Apr. 2022, doi: 10.1007/s10270-021-00924-8.

[14] S. Akhmedova, V. Stanovov, and Y. Kamiya, “A Hybrid Clustering
Approach Based on Fuzzy Logic and Evolutionary Computation for
Anomaly Detection,” Algorithms, vol. 15, no. 10, Oct. 2022, doi:
10.3390/a15100342.

[15] M. Khatibsyarbini, “A Study of Test Case Prioritization Technique
Based on String Distance Metrics,” Universiti Teknologi Malaysia,
Johor Bahru, 2019.

[16] U. Markiegi, A. Arrieta, L. Etxeberria, and G. Sagardui, “Dynamic test
prioritization of product lines: An application on configurable simulation
models,” Software Quality Journal, vol. 29, no. 4, pp. 943–988, Dec.
2021, doi: 10.1007/s11219-021-09571-0.

[17] T. K. Akila and M. Arunachalam, “Test case prioritization using
modified genetic algorithm and ant colony optimization for regression
testing,” International Journal of Advanced Technology and Engineering
Exploration, vol. 9, no. 88, pp. 384–400, Mar. 2022, doi:
10.19101/IJATEE.2021.874727.

[18] M. Khatibsyarbini, M. A. Isa, D. N. A. Jawawi, H. N. A. Hamed, and M.
D. Mohamed Suffian, “Test Case Prioritization Using Firefly Algorithm
for Software Testing,” IEEE Access, vol. 7, pp. 132360–132373, 2019,
doi: 10.1109/ACCESS.2019.2940620.

[19] S. Khoshmanesh and R. Lutz, “Does Link Prediction Help Detect
Feature Interactions in Software Product Lines (SPLs)?,” in Proceedings
- 7th International Workshop on Artificial Intelligence and
Requirements Engineering, AIRE 2020, 2020, pp. 87–90. doi:
10.1109/AIRE51212.2020.00020.

[20] C. Birchler, S. Khatiri, P. Derakhshanfar, S. Panichella, and A.
Panichella, “Single and Multi-objective Test Cases Prioritization for
Self-driving Cars in Virtual Environments,” Proc ACM Hum Comput
Interact, vol. 5, no. CSCW1, Apr. 2021, doi: 10.1145/1122445.1122456.

[21] S. Ali et al., “Towards Pattern-Based Change Verification Framework
for Cloud-Enabled Healthcare Component-Based,” IEEE Access, vol. 8,
pp. 148007–148020, 2020, doi: 10.1109/ACCESS.2020.3014671.

[22] H. Hemmati, “Advances in Techniques for Test Prioritization,” in
Advances in Computers, Academic Press Inc., 2019, pp. 185–221. doi:
10.1016/bs.adcom.2017.12.004.

[23] S. Lity, M. Nieke, T. Thum, and I. Schaefer, “Retest test selection for
product-line regression testing of variants and versions of variants,”
Journal of Systems and Software, vol. 147, pp. 46–63, Jan. 2019, doi:
10.1016/j.jss.2018.09.090.

[24] E. Ufuktepe and T. Tuglular, “Application of the law of minimum and
dissimilarity analysis to Regression Test Case Prioritization,” IEEE
Access, vol. 11, pp. 57137–57157, 2023, doi:
10.1109/ACCESS.2023.3283212.

[25] R. A. Sulaiman, D. N. A. Jawawi, and S. A. Halim, “A Dissimilarity
with Dice-Jaro-Winkler Test Case Prioritization Approach for Model-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

1124 | P a g e

www.ijacsa.thesai.org

Based Testing in Software Product Line,” KSII Transactions on Internet
and Information Systems, vol. 15, no. 3, pp. 932–951, Mar. 2021, doi:
10.3837/tiis.2021.03.007.

[26] T. Pospisil, J. Sobotka, and J. Novak, “Enhanced Adaptive Random Test
Case Prioritization for Model-Based Test Suites,” Acta Polytechnica
Hungarica, vol. 17, no. 7, pp. 125–144, 2020, doi:
10.12700/APH.17.7.2020.7.7.

[27] M. Al-Hajjaji, T. Thum, M. Lochau, J. Meinicke, and G. Saake,
“Effective product-line testing using similarity-based product
prioritization,” Softw Syst Model, vol. 18, no. 1, pp. 499–521, 2019, doi:
10.1007/s10270-016-0569-2.

[28] M. Mendonca, M. Branco, and D. Cowan, “S.P.L.O.T. - Software
product lines online tools,” Proceedings of the Conference on Object-

Oriented Programming Systems, Languages, and Applications,
OOPSLA, no. May 2014, pp. 761–762, 2009, doi:
10.1145/1639950.1640002.

[29] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. Le Traon,
“PLEDGE: A Product Line Editor and Test Generation Tool,” ACM
International Conference Proceeding Series, pp. 126–129, 2013, doi:
10.1145/2499777.2499778.

[30] J. M. Keil, “Efficient Bounded Jaro-Winkler Similarity Based Search,”
Lecture Notes in Informatics (LNI), Proceedings - Series of the
Gesellschaft fur Informatik (GI), vol. P-289, pp. 205–214, 2019, doi:
10.18420/btw2019-13.

