
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

1149 | P a g e

www.ijacsa.thesai.org

MG-CS: Micro-Genetic and Cuckoo Search

Algorithms for Load-Balancing and Power

Minimization in Cloud Computing

Jun ZHOU
*
, Youyou Li

College of Artificial Intelligence, Jiaozuo University, Jiaozuo, Henan, 454000, China

Abstract—Cloud computing has emerged as a transformative

technology, offering remote access to various computing

resources. However, efficiently managing these resources while

curbing escalating energy consumption remains a critical

challenge. In response, this paper presents the Micro-Genetic

Algorithm with Cuckoo Search (MG-CS), a novel approach for

enhancing cloud computing efficiency. MG-CS optimizes load

balancing and power reduction and significantly contributes to

reducing operational costs, ensuring compliance with service

level agreements, and enhancing overall service quality. Our

experiments showcase MG-CS's versatility in achieving a well-

balanced distribution of workloads, resource optimization, and

substantial energy savings. This multifaceted approach redefines

cloud resource management, offering an environmentally

sustainable and cost-effective solution. By introducing MG-CS,

this research addresses the pressing challenges in cloud

computing, aligning it with environmental responsibility and

economic efficiency.

Keywords—Resource utilization; cloud computing; energy

consumption; optimization

I. INTRODUCTION

Cloud computing enables cloud users to access a wide
range of configurable computing resources, such as networks,
servers, storage, services, and applications, conveniently and
on-demand [1]. It has become a transformative technology
widely discussed and currently prevalent in numerous
commercial sectors. The cloud environment is categorized into
private, public, and hybrid/federated clouds [2]. A private
cloud represents a dedicated computing environment
exclusively utilized by a single organization. It offers benefits
like isolation, customization, and heightened security. The
hosting can either be on-premises or managed by a third-party
provider [3].

On the other hand, a public cloud operates as a shared
cloud computing environment accessible to the general public.
It provides advantages such as convenience, cost-effectiveness,
and scalability, with resources delivered by third-party service
providers via the Internet [4]. A hybrid/federated cloud
integrates elements of both private and public clouds. This
approach enables organizations to distribute workloads across
multiple cloud deployment models, offering flexibility,
seamless integration, and redundancy. Multi-provider clouds
are becoming increasingly popular in cloud infrastructure,
where multiple providers are used to distribute workloads
across the environment. Organizations can enhance flexibility,

redundancy, and resource allocation by leveraging multiple
providers. Moreover, there are specialized cloud environments
designed to cater to specific services [5]. IoT cloud services are
a prime example that caters to IoT devices' data analysis and
management. These services are equipped with capabilities to
process and derive insights from the massive volumes of IoT-
generated data efficiently. Mobile cloud services employ cloud
computing to provide applications and services to mobile
devices. This approach allows mobile users to access cloud
applications and data, providing flexibility, scalability, and
improved performance [6].

Cloud computing encompasses three primary cloud service
models, each catering to specific needs: Software-as-a-Service
(SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-
Service (IaaS) [7]. Software applications are provided to users
over the Internet by SaaS, a cloud computing model that uses a
subscription-based approach. SaaS enables users to access and
utilize these applications via a web browser, eliminating the
need for local installation and maintenance. The responsibility
of hosting, maintaining, and updating the software lies with the
SaaS provider. PaaS, however, provides developers with a
platform and environment to build, deploy, and manage
applications without the complexities of managing the
underlying Infrastructure. PaaS includes essential tools,
runtime environments, databases, and other services required
for seamless application development and deployment. Finally,
IaaS grants users’ access to virtualized computing resources
via the Internet. Users can rent virtual machines, storage, and
networking components pay-as-you-go. IaaS empowers
organizations with the flexibility to create and manage their
virtual data centers without the burden of owning physical
hardware.

Cloud computing is built upon service-oriented
architecture, which enables it to offer various services such as
Database-as-a-Service (DbaaS), Identity-as-a-Service (IDaaS),
and the broader concept of Anything-as-a-Service (XaaS). This
architecture has revolutionized resource management in
industry and academia, providing an efficient and dynamic
approach [8]. The cloud system's dynamic nature is a crucial
characteristic, accommodating numerous users, devices,
networks, organizations, and resources that frequently connect
and disconnect from the system. This adaptability is essential
for meeting the diverse needs of cloud users. Several factors
come into play when deciding on the appropriate cloud service
model to implement. These factors include flexibility,
scalability, interoperability, and service control. Evaluating

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

1150 | P a g e

www.ijacsa.thesai.org

these aspects is crucial in determining the best-fit cloud service
model to address specific requirements and optimize
performance.

In the context of cloud computing, users have the flexibility
to request resources from both the cloud service provider and
the cloud resource broker. When functioning as a cloud service
provider, the cloud resource broker is responsible for selecting
the most suitable resource, considering the user's stipulated
time constraints and budget considerations. This dynamic
approach ensures the seamless delivery of on-demand services
to users. Nevertheless, the proliferation of users and
applications within the cloud ecosystem can lead to an
escalation in workload and web application traffic, particularly
for those deployed on virtual machines (cloud resources). To
manage this expanding landscape effectively, the cloud
resource broker necessitates a proficient algorithm capable of
distributing tasks equitably among the active virtual machines.
Such an algorithm becomes instrumental in minimizing the
proportion of tasks that are rejected due to resource constraints.
The overarching goal of load distribution within the cloud
milieu is to optimize several critical aspects, including
scalability, response time, and resource utilization.

Effective load-balancing not only leads to the attainment of
minimum makespan times for tasks but also contributes to
overall system performance enhancement. Furthermore, load-
balancing acts as a preventive measure against system
bottlenecks stemming from disparities in load distribution. This
realm presents substantial research challenges within the realm
of cloud computing, focusing on the equitable distribution of
workload among virtual machines. Load-balancing in the cloud
encompasses two pivotal stages: task scheduling and virtual
machine monitoring. Task scheduling, a well-recognized
optimization problem (NP-Complete), becomes intricate due to
the heterogeneous resource configuration within the cloud and
the swift fluctuations in on-demand requests. The intricate
nature of this landscape renders the prediction and computation
of all conceivable task-resource mappings within the cloud
environment arduous.

Consequently, the development of an efficient task-
scheduling algorithm assumes paramount importance. Such an
algorithm is instrumental in the judicious distribution of tasks,
thereby mitigating scenarios where certain virtual machines
endure overload or under-load conditions. These algorithms
play a pivotal role in fostering balanced resource utilization
and fostering optimal performance within cloud computing
systems. As a result, they constitute an indispensable
component in the pursuit of achieving equilibrium and
excellence within the dynamic cloud computing landscape.

Various techniques, including meta-heuristic algorithms,
machine learning, and deep learning, have been integrated into
cloud load balancing strategies to address the increasing
demand for cloud services and ensure optimal resource
utilization. Meta-heuristic algorithms, such as Ant Colony
Optimization (ACO) [9], Particle Swarm Optimization (PSO)
[10], sine cosine algorithm [11], and imperialist competitive
algorithm [12], provide efficient methods for task scheduling
and resource allocation, contributing to equitable workload
distribution and enhanced system performance. Machine

learning techniques enable cloud systems to learn from
historical data, adapt to changing workloads, and make real-
time load-balancing decisions [13-15]. Deep learning, with its
neural networks, enhances predictive accuracy and aids in
proactive load management [16, 17]. Cloud load balancing
ensures that the various components of these transportation
systems, such as ticketing, scheduling, and real-time tracking,
operate efficiently and respond to dynamic demands [18, 19].
By utilizing the power of cloud computing and the
aforementioned advanced techniques, public transportation
services can offer improved reliability, scalability, and cost-
effectiveness, ultimately benefiting commuters and the
environment.

The demand for cloud services has led to the rapid
expansion of extensive data centers, resulting in a significant
increase in electricity consumption. This heightened energy
consumption has raised concerns about its environmental
impact and economic sustainability. Researchers have explored
innovative approaches to optimize cloud resource management
to address these challenges while simultaneously upholding
high-quality service levels. In this context, the integration of
metaheuristic algorithms has shown great promise in tackling
complex optimization problems frequently encountered in
cloud computing. Our paper introduces a novel approach, the
Micro-Genetic and Cuckoo Search (MG-CS) algorithm, which
is tailored for power reduction and load-balancing in cloud
computing. The primary contribution of this research is the
development of an efficient and multifaceted approach that
concurrently addresses various critical objectives:

 Load balancing excellence: MG-CS aims to achieve a
well-balanced distribution of workloads across cloud
resources, ensuring optimal resource utilization and
averting potential performance bottlenecks.

 Dedicated power minimization: Our approach reduces
energy consumption within cloud data centers,
promotes environmental sustainability, and optimizes
operational costs.

 Strategic cost reduction: We target minimizing resource
wastage and optimizing cloud service delivery to make
cloud infrastructure more cost-effective.

 Time optimization initiatives: MG-CS endeavors to
improve response times and task completion rates,
enhancing the overall user experience and operational
efficiency of cloud services.

 SLA compliance assurance: Our approach ensures that
cloud services meet predefined service level agreements
(SLAs), aligning with performance and availability
requirements defined by consumers.

 QoS elevation strategies: The research aims to elevate
the quality of cloud services, covering aspects of
reliability, scalability, and data security, thereby
providing an enhanced user experience and meeting
customer expectations.

The paper is organized as follows: Section II provides an
overview of related work, Section III details our proposed load
balancing framework using the MG-CS algorithm, Section IV

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

1151 | P a g e

www.ijacsa.thesai.org

presents the experimental results, and Section V concludes our
research, summarizing the contributions and potential future
directions.

II. RELATED WORK

Yakhchi, et al. [20] presented a method rooted in the CS
algorithm to identify over-utilized hosts within a cloud
environment. Subsequently, they employed the Minimum
Migration Time (MMT) policy to systematically transfer VMs
from over-utilized hosts to alternative hosts, ensuring that the
migration process did not inadvertently lead to new instances
of over-utilization. Following this, the researchers categorized
all hosts except the over-utilized ones as underutilized, aiming
to efficiently relocate VMs from these underutilized hosts to
different hosts and transition the former to a sleep mode. This
strategic maneuver effectively optimized both resource
utilization and energy consumption. The research employed
simulation using the CloudSim simulator, yielding compelling
results. Specifically, their approach yielded the lowest energy
consumption compared to several well-established algorithms,
reaffirming the efficacy of their proposed method.

Sharma, et al. [21] have employed the bat algorithm as an
approach to cloud load balancing. The bat Algorithm draws
inspiration from the echolocation behavior of bats and has been
proposed for this purpose. Bats, in their pursuit of prey, exhibit
erratic flight patterns by altering various parameters such as
velocity, pulse emission rate, position, frequency, and
loudness. These alterations are made based on the proximity
between the bat and its prey. The adjustment of velocities and
positions of bats is incorporated in a manner similar to the PSO
algorithmic. The bat algorithm is structured to achieve optimal
results by running the algorithm through multiple iterations. In
the context of this study, the bat algorithm is utilized to
determine the most suitable server from a pool of available
servers for the execution of incoming tasks. When a new task
is introduced into the task pool, the load balancer initiates the
bat algorithm to identify the best-suited server that matches the
requirements of the incoming task. The bat algorithm takes into
account factors such as task type and required resources when
selecting the optimal VM for task execution. Upon selecting
the appropriate server, the load balancer allocates the task to
that server. If the load on the chosen server surpasses that of all
other servers, the task is then distributed across multiple
servers.

Devaraj, et al. [22] introduced an innovative load-balancing
algorithm named FIMPSO, which represents a hybrid
amalgamation of the Firefly (FF) algorithm and the Improved
Multi-Objective Particle Swarm Optimization (IMPSO)
technique. The FIMPSO algorithm synergizes the strengths of
the FF algorithm to effectively narrow down the search space
while harnessing the capabilities of the IMPSO technique to
attain enhanced responsiveness. The IMPSO algorithm takes a
unique approach to select the global best (gbest) particle. It
does so by considering the proximity of a point to a line,
enabling the identification of candidates for the gbest particle.
This method significantly refines the search process, ultimately
facilitating the pursuit of an optimal solution. The proposed
FIMPSO algorithm is validated through its notable
accomplishment in load balancing. This achievement translates

to improved resource utilization and diminished task response
times. The outcomes of simulations underscore the superiority
of the FIMPSO model in comparison to alternative methods.
Specifically, the FIMPSO algorithm exhibited exceptional
performance metrics such as average response time (13.58ms),
CPU utilization (98%), memory utilization (93%), reliability
(67%), and throughput (72%). Additionally, the FIMPSO
algorithm achieved an impressive makespan of 148,
outperforming all other methodologies considered for
comparison.

Jena, et al. [23] introduced an inventive approach to
dynamically balance the load across VMs utilizing a hybrid
strategy named QMPSO, which amalgamates a modified
Particle Swarm Optimization (MPSO) technique with an
enhanced Q-learning algorithm. Within the QMPSO algorithm,
this fusion mechanism fine-tunes the velocity of MPSO by
incorporating insights from both the global best (gbest) and
personal best (pbest) solutions. These solutions are derived
from the optimal actions identified through the improved Q-
learning algorithm. The primary objectives driving this
hybridization are to elevate the performance of virtual
machines through load balancing, amplify the throughput of
VMs, and uphold equilibrium between task priorities by
optimizing their waiting times. To validate the robustness of
the QMPSO algorithm, a comprehensive comparison was
conducted. The algorithm's outcomes, gleaned from both
simulation-based assessments and actual platform
measurements, were juxtaposed with those generated by
existing load-balancing and scheduling algorithms. The
empirical evidence unequivocally demonstrated the superiority
of the proposed QMPSO algorithm, underscoring its prowess
in achieving load-balancing and fine-tuning the performance of
virtual machines within a cloud environment.

Sefati, et al. [24] harnessed the Grey Wolf Optimization
(GWO) algorithm as a means to attain effective load-balancing
while considering the resource reliability capacity. In this
endeavor, the GWO algorithm was employed to discern nodes
that were either idle or occupied within the cloud environment.
Once these nodes were identified, the algorithm proceeded to
compute the threshold and fitness function for each node. The
researchers conducted a simulation using CloudSim, wherein
the proposed approach, leveraging the GWO algorithm, was
assessed in comparison to other load-balancing methods. The
results of this assessment highlighted significant advantages,
including reduced costs and response times. Moreover, the
solutions obtained were deemed optimal, serving as a testament
to the efficacy of the load-balancing methodology founded on
the GWO algorithm.

Latchoumi and Parthiban [25] have introduced a
groundbreaking approach, termed the Quasi-Oppositional
Dragonfly Algorithm for Load-balancing (QODA-LB), with
the primary aim of attaining optimal resource scheduling
within a cloud computing framework. The QODA-LB
algorithm strategically integrates three pivotal variables –
execution time, execution cost, and charge – to formulate an
objective function. This objective function serves as the
foundation for task allocation to Virtual Machines (VMs),
predicated on their inherent potential. A noteworthy aspect of
the QODA-LB algorithm is the incorporation of the Quasi-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

1152 | P a g e

www.ijacsa.thesai.org

Oppositional Based Learning principle. This principle confers
a distinctive edge by elevating the standard convergence rate of
the Dragonfly algorithm (DA). The integration of this principle
enhances the efficacy of load-balancing and resource
scheduling within the cloud environment. A comprehensive
series of experiments was meticulously conducted to assess the
QODA-LB algorithm's performance. The ensuing results were
scrutinized from diverse angles to validate its heightened
efficiency. The outcomes of simulations substantiated the
algorithm's exceptional load-balancing efficiency, positioning
it as a superior alternative to other foundational approaches for
load-balancing and resource scheduling in the realm of cloud
computing.

Haris and Zubair [26] introduced a dynamic load-balancing
algorithm named Mantaray modified multi-objective Harris
hawk optimization (MMHHO) that draws inspiration from
hybrid optimization algorithms. This innovative approach
leverages the strengths of the Harris Hawk Optimization
(HHO) algorithm, enhancing its search space through
integration with the Manta Ray Foraging Optimization
(MRFO) algorithm. The hybridization process strategically
melds various factors, including cost, response time, and
resource utilization, to streamline the load-balancing process.
The MMHHO algorithm sets its sights on optimizing system
performance by bolstering VM throughput, achieving
equilibrium in load distribution among VMs, and harmonizing
task priorities by adjusting their waiting times. The
implementation of the MMHHO-based load-balancing
algorithm is realized through the utilization of the CloudSim
tool. This platform provides the means to assess the algorithm's
effectiveness across various parameters and compare its
performance against other established load-balancing
algorithms. Upon meticulous analysis and simulation, the
results unequivocally underscore the supremacy of the
proposed MMHHO load-balancing scheme. In terms of system
performance and efficiency, the MMHHO algorithm surpasses
its counterparts, thereby validating its potential to elevate load-
balancing processes and enhance the overall effectiveness of
the system.

III. PROPOSED LOAD-BALANCING FRAMEWORK

A. Problem Statement

The importance of autonomic load-balancing in the cloud
computing domain stems from its capacity to elevate
throughput through the optimized utilization of resources. The
load-balancing strategies and power management strategies put
forth in this proposal are geared towards the automatic and
efficient allocation of computational resources within the cloud
infrastructure. This is achieved by evaluating the suitability of
all tasks concerning resource availability. The effectiveness of
the load-balancing approach is determined using intersection
formulas, with the most common ones being represented by
Eq. (1) and Eq. (2). These formulas play a crucial role in the
assessment of task-resource mapping, enabling the system to
achieve improved performance and better resource allocation
in the cloud environment.

 √ (1)

 [

]

 (2)

Fig. 1 depicts the architecture of the load-balancing
framework, encompassing three fundamental stages:

 Optimal resource utilization: This phase focuses on
achieving efficient resource utilization by effectively
managing cloud resources and handling the workload
coming from cloud users. Clustering and VM
deployment support are employed to ensure optimal
resource provisioning.

 Workload submission and demand-based processing:
During this phase, cloud users submit their requests and
workloads based on their specific demands. The system
takes into account energy consumption while
processing and managing the workload.

 Minimizing power consumption: The framework
emphasizes minimizing power consumption to reduce
the environmental impact and operational costs within
the cloud.

Fig. 1. Proposed load-balancing framework

Key terminologies and components within the load balance
framework are as follows:

 Cloud users: Entities, whether individuals or businesses,
who make use of cloud storage services to conveniently
manage, store, and access their computing resources
from any location.

 SLA administration: Service-level agreements (SLAs)
provide assurance to customers and enable cloud
providers to prioritize the fulfillment of their particular
needs and expectations. Active management of SLAs is
crucial, as they represent more than just guidelines and
function as contracts.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

1153 | P a g e

www.ijacsa.thesai.org

 Workload scheduling and clustering: This method
clusters and schedules similar workloads to the
corresponding virtual machines based on Quality of
Service (QoS) and SLA considerations.

 QoS management: This component is responsible for
managing any Quality of Service (QoS) specifications
linked to workload access, ensuring that the workload is
effectively handled in accordance with its specific QoS
requirements.

Algorithm 1 outlines the process of grouping workloads
based on their center points by optimizing an objective
function to achieve the minimal value. The algorithm aims to
create clusters by utilizing the designated center points as
group representatives. Each workload in a cluster is highly
likely to belong to the cluster represented by its nearest center
point. However, workloads can only belong to a single cluster,
except for the center point, which may be part of multiple
clusters.

Algorithm 1. Workload clustering

No of Clusters commit to complete which will be decided by C.

STEP-1: START

STEP-2: The non-empty subclasses of object C will be divided at
random.

STEP-3: Cluster centroids are currently the separating seed points of
clusters.

STEP-4: An object will be paired with another object whose seed
points are closer.

STEP-5: END

B. Micro-genetic Algorithm

Genetic Algorithms (GAs) belong to the family of
Evolutionary Algorithms (EAs) and are widely recognized as
one of this family's earliest and most well-known members. In
GAs, elitism, which involves preserving the best individuals
(solutions) in the population, is promoted through two
fundamental mechanisms:

 Environmental selection: Environmental selection aims
to remove the worst-fitted individuals from the current
population, ensuring they do not contribute to the next
generations. This allows the fittest individuals to have a
higher chance of survival and progression.

 Parent selection: In the parent selection process, the
algorithm promotes generating offspring solutions from
the population's best individuals (the elite solutions).
Non-elite solutions are excluded from this process,
further reinforcing the elitism aspect of the algorithm.

Micro-GAs (MGs) are a specific type of GA with minimal
populations. Due to the use of such small populations, MGs
exhibit a high level of elitism. In MGs, the environmental
selection has lower survivor rates than canonical GAs, as the
focus is on preserving only the best solutions. Additionally, the
parent selection process only allows elite solutions to generate
offspring, further enhancing the elitism effect. The genetic
algorithm demonstrates the capability to quickly generate high-
quality local optimal solutions while maintaining

competitiveness in the long term. This makes it an effective
approach for solving problems with computationally intensive
fitness functions.

Nevertheless, when dealing with problems that encompass
high-dimensional parameter spaces, attaining the convergence
of all model parameters within a specified margin of error can
present difficulties and consume a substantial amount of time.
As the count of model parameters expands, the genetic
algorithm necessitates a larger population size, resulting in an
increased volume of cost-function analyses. This can be
computationally expensive, especially when dealing with high-
dimensional problems. In such scenarios, micro-genetic
algorithms offer a viable alternative. These algorithms operate
with very small populations, which help reduce the
computational burden while maintaining a high level of elitism.
The smaller population size allows for a more focused search,
and the algorithm can swiftly converge to promising solutions
without the need for a large number of cost-function
evaluations.

C. Cuckoo Search Algorithm

The CS algorithm is inspired by the egg-laying strategy of
cuckoo birds, where they lay their eggs in the nests of other
bird species. This nature-inspired optimization technique
simulates this behavior to explore complex search spaces and
discover optimal solutions. Cuckoos employ a Levy flight
strategy to select nests, frequently opting for nests where the
host bird has recently deposited its own eggs. This behavior
enhances the likelihood of their eggs successfully hatching.
Notably, certain female cuckoos mimic the colors and patterns
of host eggs to decrease the chances of their eggs being
rejected, thereby amplifying their reproductive success. The
foraging behavior of animals, including insects, follows a
quasi-random pattern, effectively resembling a random walk.
This behavior has been observed in many animals and has been
mathematically modeled as Lévy flights. Lévy flights involve
making successive movements with step lengths drawn from a
Lévy distribution, which allows for long jumps that facilitate
efficient exploration of large search spaces. Based on this
concept, researchers have applied Lévy flights to optimization
and search problems, resulting in the development of the CS
algorithm. Preliminary results have shown promising
capabilities of this algorithm in finding optimal solutions for a
wide range of optimization problems. By imitating the natural
behavior of cuckoos and incorporating Lévy flights, the
Cuckoo Search Algorithm offers a powerful and efficient
approach for tackling complex optimization challenges. The
CS algorithm models the natural behavior of cuckoos and can
be described using the following idealized rules:

 Each cuckoo lays a single egg at a time, selecting a nest
at random for deposit. Nests with superior egg quality
(improved solutions) are more likely to persist across
subsequent generations.

 The count of available host nests is constant,
represented as 'n,' and the host bird has a probability of
detecting an alien egg within the range of [0, 1].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

1154 | P a g e

www.ijacsa.thesai.org

 When an alien egg is detected, the host bird has the
choice to either discard it or desert the nest to construct
a new one at a distinct location.

To simplify, this final assumption can be approximated
using a probability of pa for each of the n nests. With these
rules in mind, the fundamental steps of the CS algorithm can
be succinctly summarized in pseudocode as follows:

1) Initialize the population of cuckoos (solution

candidates).

2) Evaluate the quality (fitness) of each cuckoo.

3) Identify the best cuckoos and their nests for further

reproduction

4) Repeat until stopping criteria are met:

5) Generate new cuckoo solutions by performing Levy

flights

6) Evaluate the fitness of newly generated cuckoos

7) Replace the old cuckoos with the new cuckoos in the

nests based on their fitness

8) Abandon and rebuild nests (cuckoos) with a probability

of pa

9) If a host bird discovers an alien egg with probability pa:

10) Throw away the alien egg or abandon the nest and

build a new one

11) Identify the best solution found and return it as the

final result

In the CS algorithm, the movement of each cuckoo from
generation t to t+1 is represented by a vector x with entries
Xi(t+1) and is calculated by Eq. (3).

Xi(t+1) = Xi(t) + α ⊕ Lévy(u) (3)

Where Xi(t) is the current position of the i
th
 cuckoo at

generation t, α > 0 is the step size, which depends on the scale
of the given problem, ⊕ represents entry-wise multiplication,
and Lévy(u) is determined using the Lévy flight, a random step-
length process. The expression for Lévy(u) is given by:

Lévy(u) = t^(-λ) (4)

Where λ is a parameter, typically within the range 1 < λ ≤
3, t is the current generation. The Lévy flight results in a
power-law step-length distribution with a heavy tail, making
cuckoos more exploratory. In the real world, if a cuckoo's egg
closely resembles the host's eggs, it is less likely to be
discovered by the host bird. To mimic this behavior, the CS
algorithm performs a random walk in a biased way with some
random step sizes. This biased random walk, guided by the
Lévy flight, allows the algorithm to explore the search space
more effectively, discovering better solutions in complex
optimization problems.

D. MG-CS Algorithm

Consider a cloud environment with multiple VMs where
diverse workloads are dynamically generated based on user
demands. The goal is to efficiently distribute these workloads
across the available VMs to ensure optimal resource utilization,
prevent overloads or under-utilization, and ultimately enhance
the overall performance of the cloud system. The algorithm
follows the steps described below.

 Initialization: The algorithm begins by randomly
entering tasks into a task memory divided into
replaceable and non-replaceable tasks. Various
parameters such as states, positions, steps, and visual
parameters are set up during this phase.

 Task selection: The algorithm selects tasks from the
task memory for further processing.

 Crossover and mutation: The selected tasks undergo
crossover and mutation operations to generate new
potential solutions.

 Patronize: The algorithm evaluates the fitness level of
each potential solution.

 New tasks and convergence: The algorithm tracks the
best MG values and investigates their behaviors. If the
fitness of MG exceeds the predefined threshold
(bulletin value), the MG's fitness is updated in the
bulletin.

 Filter and external memory: The algorithm uses a filter
to refine the solutions and stores valuable information
in the external memory, facilitating feedback with both
sides of the task memory.

 Final solution: The CS step performs the optimal
solution chosen from the population and decodes it to
determine the most appropriate resource assignment to
tasks based on their availability and throughput.

IV. EXPERIMENTAL RESULTS

The experiment was conducted in CloudSim, a simulation
tool devised by cloud laboratories situated in Melbourne.
Within this experiment, a total of 50 tasks were examined
within a simulation framework encompassing 25 VMs. Each
VM was equipped with 2048 MB of RAM. Fig. 2 to 7 present
various performance metrics and comparisons of the proposed
MG-CS method with existing approaches in a cloud simulation
environment. The experiments were conducted with different
numbers of workloads and servers. Fig. 2 depicts the
availability rate in relation to various workloads. MG-CS
exhibited a diverse spectrum of results, with an availability rate
of up to 55% with 500 workloads. As the workload increased,
the availability rate decreased, reaching 90% with 3000
workloads. Fig. 3 provides an illustration of the reliability rate
as it correlates with different workloads. The MG-CS again
demonstrated a diverse range of results. It achieved a reliability
rate of up to 48% with 1000 workloads, which decreased as the
workload increased. Ultimately, it achieved a reliability rate of
72% with 3000 workloads, outperforming the existing system's
performance.

In Fig. 4, the resource utilization pattern is displayed
alongside varying workloads. The MG-CS approach
demonstrated notable efficacy, achieving a peak resource
utilization of 80% when subjected to 2500 workloads. Fig. 5
provides a visual representation of the SLA violation rates in
relation to varying workloads. Notably, the MG-CS system
presented a remarkably low violation rate compared to its
counterparts. Specifically, it exhibited a mere 4% violation rate
when confronted with 500 workloads and a slightly higher

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

1155 | P a g e

www.ijacsa.thesai.org

10.5% violation rate when handling 3000 workloads. Fig. 6
presents the energy consumption during workload processing.
The introduced MG-CS approach effectively minimized energy
consumption in comparison to comparative ones. To illustrate,
when subjected to 2000 workloads, the energy consumption
was notably reduced to 400 kW. Fig. 7 provides a visual
contrast of execution times across diverse methodologies and
workloads. Impressively, the MG-CS system consistently
accomplished the processing of 500 to 3,000 workloads within
a time span of 5000 to 6,000 seconds. This remarkable
efficiency in execution time sets the MG-CS approach apart
from existing techniques, highlighting its superior
performance.

Fig. 2. Availability comparison

Fig. 3. Reliability comparison

Fig. 4. Resource utilization comparison

Fig. 5. SLA violation comparison

Fig. 6. Energy consumption comparison

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

1156 | P a g e

www.ijacsa.thesai.org

Fig. 7. Execution time comparison

The experimental results, as presented in Fig. 2 to 7, reveal
the significant impact of the proposed MG-CS approach on
various performance metrics in a cloud simulation
environment. Notably, the results illustrate the adaptability and
efficacy of MG-CS across a range of workloads and server
configurations. In terms of availability, Fig. 2 demonstrates
that MG-CS exhibited a diverse spectrum of results, achieving
an availability rate of up to 55% with 500 workloads. As the
workload increased, availability decreased but remained
robust, reaching 90% with 3000 workloads. Similarly, in
Fig. 3, the reliability rate showcased a wide range of outcomes.
MG-CS achieved a reliability rate of up to 48% with 1000
workloads, surpassing existing systems. Fig. 4 showcases the
resource utilization pattern, with MG-CS achieving a
remarkable peak utilization of 80% when subjected to 2500
workloads, signifying its efficiency. In terms of SLA violation
rates (Fig. 5), MG-CS demonstrated an impressively low
violation rate, with just 4% for 500 workloads and a slightly
higher 10.5% for 3000 workloads, highlighting its ability to
meet service level agreements. Furthermore, Fig. 6 illustrates
the energy consumption during workload processing, with
MG-CS effectively minimizing energy consumption, reducing
it to 400 kW when subjected to 2000 workloads. Lastly, Fig. 7
provides a visual contrast of execution times, underscoring
MG-CS's remarkable efficiency in processing 500 to 3,000
workloads within a period of 5,000 to 6,000 seconds. These
findings emphasize the significance of the MG-CS approach in
enhancing cloud resource management, achieving load
balance, and optimizing operational efficiency while meeting
service level agreements and reducing energy consumption.

Table I presents the dimensions of diverse synthetic
datasets along with the associated task quantities. The "extra-
large" dataset encompasses 800-1000 tasks, and each task's
magnitude falls within the range of 100,000-200,000MI.
Similarly, the "large" dataset comprises 600-700 tasks, with
task sizes ranging from 70,000-100,000MI. Correspondingly,
the "medium-sized" dataset entails 400-500 tasks, and the tasks
vary in size between 50,000-70,000MI. Likewise, the "small-
sized" dataset encompasses 100-200 tasks, with task sizes
spanning from 30,000-50,000MI. It is noteworthy to mention
that task sizes were generated randomly during runtime, and
their size is denoted in Millions of Instructions (MI).

Moreover, the research utilized a total of 80 servers, each
characterized by distinct resource capacities and loads. Each
server hosted different types of VM instances, featuring
varying CPU and memory capacities, as outlined in Table II.
Fig. 8 illustrates the outcomes obtained through the proposed
method concerning CPU utilization. The graph clearly
demonstrates that, in comparison to FIMPSO, MG-CS
consistently achieved the highest CPU utilization across all
task categories.

TABLE I. DATASETS DESCRIPTION

Type of tasks Size of tasks (MI) Number of tasks

Small 100-200 30000-50000

Medium 400-500 50000-70000

Large 600-700 70000-100000

Extra-large 800-1000 100000-200000

TABLE II. TYPES OF VM INSTANCES

Type of tasks Memory capacity (GB) CPU capacity (MIPS)

Small 5 10000

Medium 10 20000

Large 15 25000

Extra-large 20 35000

Fig. 8. CPU utilization comparison.

V. CONCLUSION

This paper presented MG-CS, a load-balancing resource
allocation approach aimed at improving the utilization of cloud
resources. The proposed method's experimental results
demonstrate its effectiveness in addressing various QoS
factors, including availability, reliability, resource utilization,
SLA violation, energy Consumption, and execution time. The
proposed method is compared with existing algorithms for QoS
parameter efficiency, and the experimental results show that
the MG-CS technique outperforms existing GA and BAT
algorithms in terms of cost, timing, and energy. The
experimental findings prove that MG-CS is the effectiveness of
MG-CS in accomplishing both optimal scheduling and load-
balancing objectives. Furthermore, the approach ensures the
preservation of superior QoS standards while steadfastly
adhering to SLA requirements during cloud services. In the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 11, 2023

1157 | P a g e

www.ijacsa.thesai.org

future, the researchers plan to incorporate artificial intelligence
self-learning methods to facilitate large-scale data sources. The
method can enhance its performance and adaptability by
integrating AI capabilities in handling complex and dynamic
cloud environments. These advancements are expected to
contribute to more efficient and robust cloud resource
allocation, making cloud services more reliable and cost-
effective for users.

MG-CS offers several notable benefits in the context of
cloud load balancing and power minimization. It excels in
achieving superior load distribution across cloud resources,
ensuring optimal resource utilization, and averting performance
bottlenecks. Moreover, the MG-CS algorithm effectively
reduces energy consumption within cloud data centers,
promoting environmental sustainability and cost efficiency.
The method optimizes cloud service delivery, enhancing
resource utilization and minimizing operational expenses.
Furthermore, the approach enhances response times, task
completion rates, and overall QoS, improving the user
experience. However, like any approach, there are limitations
to consider. The computational complexity of MG-CS may
pose challenges in large-scale cloud environments.
Additionally, the algorithm's performance could be influenced
by the specific workload characteristics, and it may require
fine-tuning for optimal results. Moreover, while MG-CS
demonstrates robust performance in our experiments, its
generalizability to diverse cloud infrastructures and real-world
scenarios may need further investigation. These limitations
underscore the need for ongoing research to fine-tune and
adapt MG-CS for various cloud computing contexts and
scenarios.

REFERENCES

[1] B. Pourghebleh, A. A. Anvigh, A. R. Ramtin, and B. Mohammadi, "The
importance of nature-inspired meta-heuristic algorithms for solving
virtual machine consolidation problem in cloud environments," Cluster
Computing, pp. 1-24, 2021.

[2] V. Hayyolalam, B. Pourghebleh, M. R. Chehrehzad, and A. A. Pourhaji
Kazem, "Single‐objective service composition methods in cloud
manufacturing systems: Recent techniques, classification, and future
trends," Concurrency and Computation: Practice and Experience, vol. 34,
no. 5, p. e6698, 2022.

[3] V. Hayyolalam, B. Pourghebleh, A. A. P. Kazem, and A. Ghaffari,
"Exploring the state-of-the-art service composition approaches in cloud
manufacturing systems to enhance upcoming techniques," The
International Journal of Advanced Manufacturing Technology, vol. 105,
no. 1-4, pp. 471-498, 2019.

[4] K. N. Qureshi, G. Jeon, and F. Piccialli, "Anomaly detection and trust
authority in artificial intelligence and cloud computing," Computer
Networks, vol. 184, p. 107647, 2021.

[5] Q. Yu, L. Chen, and B. Li, "Ant colony optimization applied to web
service compositions in cloud computing," Computers & Electrical
Engineering, vol. 41, pp. 18-27, 2015.

[6] B. Pourghebleh and N. J. Navimipour, "Data aggregation mechanisms in
the Internet of things: A systematic review of the literature and
recommendations for future research," Journal of Network and Computer
Applications, vol. 97, pp. 23-34, 2017.

[7] F. Ebadifard and S. M. Babamir, "Autonomic task scheduling algorithm
for dynamic workloads through a load balancing technique for the cloud-
computing environment," Cluster Computing, vol. 24, no. 2, pp. 1075-
1101, 2021.

[8] I. Z. Yakubu and M. Murali, "An efficient meta-heuristic resource
allocation with load balancing in IoT-Fog-cloud computing

environment," Journal of Ambient Intelligence and Humanized
Computing, vol. 14, no. 3, pp. 2981-2992, 2023.

[9] M. Dorigo, M. Birattari, and T. Stutzle, "Ant colony optimization," IEEE
computational intelligence magazine, vol. 1, no. 4, pp. 28-39, 2006.

[10] T. M. Shami, A. A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M. A.
Summakieh, and S. Mirjalili, "Particle swarm optimization: A
comprehensive survey," IEEE Access, 2022.

[11] L. Abualigah and A. Diabat, "Advances in sine cosine algorithm: a
comprehensive survey," Artificial Intelligence Review, vol. 54, no. 4, pp.
2567-2608, 2021.

[12] S. Mahmoudinazlou, A. Alizadeh, J. Noble, and S. Eslamdoust, "An
improved hybrid ICA-SA metaheuristic for order acceptance and
scheduling with time windows and sequence-dependent setup times,"
Neural Computing and Applications, pp. 1-19, 2023.

[13] B. M. Jafari, M. Zhao, and A. Jafari, "Rumi: An Intelligent Agent
Enhancing Learning Management Systems Using Machine Learning
Techniques," Journal of Software Engineering and Applications, vol. 15,
no. 9, pp. 325-343, 2022.

[14] S. R. Abdul Samad et al., "Analysis of the Performance Impact of Fine-
Tuned Machine Learning Model for Phishing URL Detection,"
Electronics, vol. 12, no. 7, p. 1642, 2023.

[15] S. P. Rajput et al., "Using machine learning architecture to optimize and
model the treatment process for saline water level analysis," Journal of
Water Reuse and Desalination, 2022.

[16] S. Aghakhani, A. Larijani, F. Sadeghi, D. Martín, and A. A. Shahrakht,
"A Novel Hybrid Artificial Bee Colony-Based Deep Convolutional
Neural Network to Improve the Detection Performance of Backscatter
Communication Systems," Electronics, vol. 12, no. 10, p. 2263, 2023.

[17] W. Anupong et al., "Deep learning algorithms were used to generate
photovoltaic renewable energy in saline water analysis via an oxidation
process," Water Reuse, vol. 13, no. 1, pp. 68-81, 2023.

[18] S. Vairachilai, A. Bostani, A. Mehbodniya, J. L. Webber, O.
Hemakesavulu, and P. Vijayakumar, "Body Sensor 5 G Networks
Utilising Deep Learning Architectures for Emotion Detection Based On
EEG Signal Processing," Optik, p. 170469, 2022.

[19] M. Khodayari, J. Razmi, and R. Babazadeh, "An integrated fuzzy
analytical network process for prioritisation of new technology-based
firms in Iran," International Journal of Industrial and Systems
Engineering, vol. 32, no. 4, pp. 424-442, 2019.

[20] M. Yakhchi, S. M. Ghafari, S. Yakhchi, M. Fazeli, and A. Patooghi,
"Proposing a load balancing method based on Cuckoo Optimization
Algorithm for energy management in cloud computing infrastructures," in
2015 6th International Conference on Modeling, Simulation, and Applied
Optimization (ICMSAO), 2015: IEEE, pp. 1-5.

[21] S. Sharma, A. K. Luhach, and S. Sinha, "An optimal load balancing
technique for cloud computing environment using bat algorithm," Indian
J Sci Technol, vol. 9, no. 28, pp. 1-4, 2016.

[22] A. F. S. Devaraj, M. Elhoseny, S. Dhanasekaran, E. L. Lydia, and K.
Shankar, "Hybridization of firefly and improved multi-objective particle
swarm optimization algorithm for energy efficient load balancing in cloud
computing environments," Journal of Parallel and Distributed Computing,
vol. 142, pp. 36-45, 2020.

[23] U. Jena, P. Das, and M. Kabat, "Hybridization of meta-heuristic
algorithm for load balancing in cloud computing environment," Journal of
King Saud University-Computer and Information Sciences, vol. 34, no. 6,
pp. 2332-2342, 2022.

[24] S. Sefati, M. Mousavinasab, and R. Zareh Farkhady, "Load balancing in
cloud computing environment using the Grey wolf optimization
algorithm based on the reliability: performance evaluation," The Journal
of Supercomputing, vol. 78, no. 1, pp. 18-42, 2022.

[25] T. P. Latchoumi and L. Parthiban, "Quasi oppositional dragonfly
algorithm for load balancing in cloud computing environment," Wireless
Personal Communications, vol. 122, no. 3, pp. 2639-2656, 2022.

[26] M. Haris and S. Zubair, "Mantaray modified multi-objective Harris hawk
optimization algorithm expedites optimal load balancing in cloud
computing," Journal of King Saud University-Computer and Information
Sciences, vol. 34, no. 10, pp. 9696-9709, 2022.

