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Abstract—Multispectral pedestrian detection has wide ap-
plications in fields such as autonomous driving and intelli-
gent surveillance. Mining complementary information between
modalities is one of the most effective approaches to improve
the performance of multispectral pedestrian detection. However,
the inevitable introduction of redundant information between
modalities during the fusion process leads to feature degradation.
To address this challenge, we propose a multiscale differen-
tial fusion algorithm that leverages complementary information
between modalities to suppress feature degradation caused by
noise propagation along the network. We compare our algorithm
with other cross-modal fusion pedestrian detection algorithms on
the LLVIP and cleaned KAIST datasets. Experimental results
demonstrate that our algorithm outperforms others, particularly
in nighttime scenes where our algorithm achieves a 7.28%
improvement in recall rate compared to the baseline on the
cleaned KAIST dataset.

Keywords—Pedestrian detection; multispectral pedestrian detec-
tion; attention mechanism; cross-modal fusion.

I. INTRODUCTION

Pedestrian detection plays an important role in autonomous
driving systems. In well-illuminated conditions, pedestrian
detection achieves high precision. In poor lighting conditions,
the appearance of pedestrians becomes blurred. Obstacles,
overlapping figures, and varying distances contribute to these
differences. As a result, nighttime pedestrian detection cur-
rently faces significant challenges [1].

Many advanced algorithms based on visible light images
achieve notable performance improvements. Recent studies
involving these images have validated their effectiveness,
including in nighttime environments [2]. Due to the poor
quality of nighttime visible light images, deep convolutional
neural networks struggle to learn effective features. Image
enhancement techniques show remarkable performance in en-
hancing the contrast between the foreground and background
of an image. Some studies utilize enhanced image for feature
extraction [3]. However, the majority of machine vision and
deep learning models tend to perform poorly in highly chal-
lenging low-light scenarios [4]. Infrared images can highlight
the thermal radiation characteristics of target objects, allowing
for the capture of details such as human contours. Therefore,
it possesses unique advantages in scenarios with insufficient
lighting, adverse weather conditions, or concealed surveillance.

Despite the significant advantages of multimodal input
data, effectively fusing information between modalities has
become the core challenge and focus of algorithmic research.

Li [5] et al. compared six fusion architectures which in-
tegrate color and thermal modalities at different position.
Based on different fusion stages, it can be classified into
early fusion, halfway fusion, and late fusion. Late fusion is
currently the more commonly employed method, capable of
mitigating the influence of modality and feature misalignment.
However, it encounters challenges in network convergence and
high computational complexity. We observed that discussions
rarely address both the redundancy and complementarity of
modalities. Crucially, the spread of redundant information can
have detrimental effects in networks. This paper focuses on
examining and mitigating these negative impacts by leveraging
differential information of modalities in the backbone network
to reduce redundancy.

The Non-Local neural network (Non-Local) [6] enhances
inputs by calculating similarity in the channel direction. We
conjecture that constructing an attention map by calculat-
ing similarity between pedestrian features could effectively
allocate increased attention to those with blurred character-
istics. In multispectral scenarios, there also exists a certain
level of correlation both between channel dimensions and
between spatial dimensions. Therefore, this paper proposes
a dual-branch attention mechanism, named Dual Non-Local,
which is based on both channel and spatial information. It
establishes long-range dependencies between channels and
spaces. Simultaneously, we utilize bright channel prior (BCP)
algorithm to address low-light image compensation issues, and
employ a multiscale feature fusion module to integrate visible
and infrared modalities. Our work achieves superior results
compared to some methods on the public available datasets
KAIST and LLVIP.

We summarize the contributions of our work as follows:

1) A novel fusion approach is proposed for mining
complementarity and reducing feature degradation.
This technique involves the cross-fusion of comple-
mentary information from different modalities within
the backbone network. The outputs of the backbone
network for each modality is effectively integrated
through this method.

2) A dual-branch attention mechanism based on channel
and spatial attention. We embed positional informa-
tion into attention map, and reduced the compu-
tational complexity of spatial attention. Ultimately,
we build a dual-branch 3D attention mechanism that
collaborates between spatial and channel dimensions.
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II. RELATED WORK

A. Pedestrian Detection

Pedestrian detection has high practical value in various
applications, eg., autonomous driving and video surveillance.
It receives extensive research attention in the field of com-
puter vision. Pedestrian detection has undergone a significant
transformation from handcrafted features to depending on deep
convolutional networks for feature extraction [7]. Based on
channel features or Deformable Part Models (DPM), there are
two approaches to pedestrian detection that rely on handcrafted
features. In 2009, P. Dollar et al. offered a fresh approach
Integral Channel Features (ICF) [8], which utilized integral
images for rapid feature computation. By combining channel
feature pyramids with a cascaded classifier, they achieved
faster detection results. ICF was the basis of channel features.
Filtered Channel Features (FCF) [9] was optimization methods
derived from ICF. Conventional algorithms were contingent
upon manual design and frequently yielded diminished levels
of detection accuracy. With Convolutional Neural Networks
(CNNs) demonstrating outstanding feature extraction capabili-
ties across various object detection tasks, pedestrian detection
methods focused on leveraging deep learning techniques to
enhance detection performance recently. The emergence of
single-stage and two-stage algorithms, such as Faster R-CNN
[10], [11], was a substantial potential for advancing accuracy
and speed in pedestrian detection. Once in all weather condi-
tions, especially during nighttime scenes, visible-light-based
detection methods struggle to be effective. Simultaneously,
infrared images complements visible light images, enabling the
capture of pedestrian contours even in nighttime conditions.
Detecting pedestrians in all weather conditions using multi-
spectral images of color-thermal pairs has become a research
hotspot.

B. Multispectral Pedestrian Detection

Effectively integrating infrared and visible light modali-
ties is a challenging problem. In 2015, Hwang [12] et al.
collected multispectral datasets, KAIST. The authors pro-
posed the multispectral Aggregated Channel Features (ACF)
method, incorporating intensity and gradient information from
the thermal channel as additional channel information. An
increasing number of multispectral pedestrian detection al-
gorithms emerged based on this dataset. Liu [13] confirmed
that multimodal pedestrian detection outperforms single-modal
detection in terms of performance. Liu also investigated four
fusion architectures: early fusion, mid-fusion, late fusion, and
confidence fusion. They concluded that halfway fusion is
the most effective fusion architecture. Inspired by Faster R-
CNN, Konig [14] et al. proposed an effective multispectral
RPN (Region Proposal Network)+BDT (Enhanced Decision
Tree) model. In addition to investigating the fusion stages of
multispectral images, another research approach involved using
an illumination-aware network to weight the two modalities.
Illumination-aware Faster R-CNN (IAF R-CNN) [5] intro-
duced an illumination-weighting mechanism, forming a unified
detection framework with separate subnetworks for visible
light and infrared, along with a weighting layer. That means
in low-light conditions, the network emphasized the features
learned from the infrared sub network. In well-illuminated
conditions, it focused on the visible light subnetwork. Our

work is closely related to the conclusions drawn in [14]. We
employed YOLOv7 [15] as our baseline and investigated the
positive impact of low-light image enhancement techniques on
the performance of multispectral pedestrian detection.

C. Attention Mechanism

In deep learning, the attention mechanism emulates the
human visual and cognitive system, enabling neural networks
to focus attention on relevant parts. Due to its outstanding
performance, the attention mechanism is widely utilized in
machine vision. Squeeze-and-Excitation Networks (SENet)
[16] achieved adaptive channel-wise feature recalibration by
modeling interdependencies between channels. Convolutional
Block Attention Module (CBAM) [17] combined a channel
attention module with a spatial attention module, allowing
channel attention and spatial attention to operate sequentially.
This enabled the network to simultaneously learn dependen-
cies between channels and positional information. Non-Local
neural network [6] combined self-attention with the general
non-local mean method, establishing a long-range dependency
model for transmitting long-range information. Non-Local
maintained consistent feature scales between input and output,
so it can be employed without modifying the network architec-
ture. Criss-Cross Attention Network (CCNet) [18] and Global
Context Network (GCNet) [19] were improvements derived
from Non-Local. Similarity-based Attention Module (SimAM)
[20] suggested that attention in the human brain often work
in synergy, thus a unified attention mechanism was more in
line with the working mechanism of neurons in the human
brain. This paper introduces a new attention mechanism that
combines the ideas of SimAM and Non-Local.

III. PROPOSED METHOD

The structure of this paper is depicted in Fig. 1. This
model utilizes YOLOv7 as the baseline and integrates it with
an illumination compensation module, a multiscale fusion
module, and a detection module, forming a unified detection
architecture. Our model consolidates the methods of image en-
hancement and differential fusion into a cohesive framework,
thoroughly addressing the redundancy and complementarity
across different modalities.

A. Illumination Compensation Network

The atmospheric scattering model is commonly employed
to represent the degradation process of hazy images and is
sometimes used for image enhancement tasks in low-light
conditions as well [21]. Original image captured by the camera
can be expressed as:

I = tJ +A (1− t) (1)

where, I is original image, J is restoration function of the
image, A is environmental light description function, and t is
medium propagation description function.

Wang [22] demonstrated that well-exposed images have at
least some pixels with high illumination, unless these pixels
are in shadow or covered by a black object. We visualize the
Bright Channel on the KAIST dataset in Fig. 2. Most visible
light images on the KAIST dataset are in underexposed scenes.
We adopt unsupervised low-light Image enhancement network
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Fig. 1. The overall structure of proposed method. The network takes multispectral images of color-thermal pairs as inputs.

Fig. 2. The bright channel visualization of KAIST. We selected several
low-light images and calculated the brightest pixels in R, G, B channels for

each image, denoted as bright channel.

for outputing adjusted image that is guided by a unsupervised
loss LBCP . The parameters in Eq. (1) are reinterpreted as Eq.
(2):

Ip = tpJp +A (1− tp ) (2)

where, A and tp is environment light and the illumination map,
respectively. Jp represents enhanced output images and Ip is
observed images. According to BCP [22], We adopted Eq. (3)
as the brightest intensity:

Jbright
p = max

c∈r,g,b

(
max
q∈Φ(p)

Jc
q

)
(3)

where, Jbright
p represents the brightest intesity in r,g,b chan-

nels, q is the pixels centered at p, and c is different channels
in RGB images. Additionally, the brightest intesity becomes
Jbright
p → 1. Assuming that A is known, t̃ represents the

illumination map, which is considered as a constant within
a patch.

By taking the maximum operator between the left and
right sides of Eq. (3), we obtain an initial illumination map
formulation as shown in Eq. (4):

t̃p = 1−max
c,q

(
1− Icq
1−Ac

)
. (4)

where t̃p is the illumination value at pixel p, Icq is observed
image, q is pixel centered at p, and c is different channels in
RGB images. Under the supervision of the initial illumination
map, we obtain enhanced illumination map tp through Illu-
mination Compensation Network. Substituting tp into Eq. (2),
we get enhanced output images as Eq. (5):

Jp =
Ip −A

tp
+A (5)

The darkest pixels in the bright channel of the image can be
considered as environment light. To adjust dark spots and black
objects in real life, we take the average value of the darkest
0.1% pixels (denoted as K) in the bright channel of the image
as the environment light, as shown in Eq. (6):

A =
1

|K|
∑
p∈K

Ip (6)

To address oversaturation, this paper similarly utilizes the
output from Eq. (7) as the attention map:

Tattention = T γ (7)

where T is thermal image, and γ(γ > 1) controls the curvature
of the attention map.

The enhancement network alters the feature scale and
utilizes the attention map to optimize spatial weights. In
summary, our final illumination compensation network is il-
lustrated in Fig. 3. The visible light features are compensated
by the infrared images, effectively enhancing the distinguisha-
bility of the RGB images.

B. Multiscale Fusion Module

In all weather conditions, visible light images provide more
information about pedestrians in well-illuminated conditions
while in low-light conditions, thermal images provide more in-
formation. Most multispectral approaches extract features from
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Fig. 3. The structure of Illumination Compensation module. Tattention fed
to five convolutional layers to adjust visible light feature. t̃ is an initial

illumination map.

two streams and directly combine them either by element-wise
addition or by channel concatenation. However, these mehods
overlook the complementarity between the two modalities.
The propagation of redundant information between modalities
through the network also have adverse effects.

Inspired by the differential modality information [23], we
propose a fusion module: Differential Fusion Module(DFM),
to enhance the mutual suppression and enhancement, as shown
in Fig. 4. The features obtained by element-wise subtraction
of the two modalities reflect their complementary information,
ingeniously excluding redundant information from feature fu-
sion. This element-wise subtraction also prevents interference
from features learned from another modality in the previous
fusion from affecting the next fusion. Integrated within the
architecture of YOLOv7, we perform multiscale feature fusion
at the position illustrated in Fig. 1. In multispectral pedestrian

Fig. 4. The structure of differential fusion module. FR and FT are visible
light features and thermal features. We obtain FD by subtracting

element-wise.

detection task, it is crucial to effectively integrate valuable in-
formation between modalities and mitigate interference caused
by redundant information.

We applied DFM at Conv3, Conv4, Conv5 layers of the
Backbone. The outputs feed into multiscale feature fusion
network. To further enhance crucial features, we employ the
Dual Non-Local attention mechanism before pyramid feature
network. This helps to improve pedestrian feature expression
effectively. DFM involves using a differencing mechanism,
where FR and FT are subtracted element-wise to obtain the

feature FD. The equation for FD is as follows:

FD1 = FR − FT (8)

FD2 = FT − FR (9)

where, FR and FT represent the extracted features from the
visible light image and infrared image, respectively. FD is the
difference between FR and FT .

Subsequently, FD is obtained through a global average
pooling layer(GAP) and a tanh activation layer in order to get
the attention map in the channel direction. That attention map
is multiplied with the input visible light features and infrared
features separately, producing DR and DT . The cross addition
is applied to FT and DR, as well as FR and DT . Differential
features yields the output features.

GAP computes the mean of the two-dimensional images
within each channel, obtaining an attention map in the channel
direction that contains global information. DR is present in the
visible light features but absent in the infrared image features
while DT is present in the infrared image features but absent
in the visible light features. The formulation of differential
feature is as follows:

F
′

R = FR +DT (10)

F
′

T = FT +DR (11)

where F
′

R is the output of FR, and F
′

T is the output of FT .

After cross-complementary feature fusion at three scales in
the Backbone, the deep semantic information is concatenated.
The deep semantic information needs to be fed into the Dual
Non-Local module to enhance crucial information before the
feature pyramid network. There is a high degree of correlation
between pedestrian features, so establishing long-range depen-
dencies is beneficial for modeling the similarity relationships
between pedestrian features.

C. Dual Non-Local Attention Mechanism

Capturing long-range dependencies is crucial in pedestrian
detection task. Long-range dependencies in image can only be
formed through the successive convolutional layers in deep
neural networks, named large receptive field. Inspired by
SENet and Non-Local, we proposed a 3D attention mechanism
called Dual Non-Local, as illustrated in the Fig. 5. Does long-
range dependency work effectively in multi-pedestrian scenes?
Undoubtedly, there is some correlation among the extracted
features of pedestrians. The feature similarity matrices between
each pixel and the feature similarity matrices between each
channel assist in providing blurred pedestrian features with
the weights of clear pedestrian features. Spatial attention and
channel attention were applied concurrently for enhancing
pedestrian feature. Dual Non-Local Network consists of a
Spatial Attention Module (SAM) and a Channel Attention
Module (CAM), which share the same input, denoted as
x ∈ RC×H×W . There is a similar attention map computed
for each position in Non-Local Network [19], thus, we use
global attention maps to reduce computational cost.

In spatial attention module, we reshape the input into m,
m ∈ R1×C×(H∗W ). A 1×1 convolutional operation is imposed
to x for getting global information of channels, denoted as n,
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Fig. 5. The structure of dual non-Local network consists two branch attention mechanisms. SAM uses a shared attention map δ(n
′
) globally for reducing

computation, while CAM calculates attention maps in different dimensions.

n ∈ R1×H×W . Before multipling with m, n
′

passes through
a softmax function. Global channel information was reshaped
to n

′ ∈ R1×(H∗W )×1. In order to get the similarity between
H ∗ W pixels, we multiply m and n

′
. ys is the output of

spatial attention module, ys = m
⊗

δ(n
′
), where δ is softmax

function. ys is formulated as follows:

ys =

N∑
j=1

xjδ (n
′) (12)

where, N is the number of pixels and ys is shared globally as
a spatial attention map.

In channel attention module, this paper innovatively per-
forms pooling operations separately in the x and y dimensions,
injecting positional information into channel attention map.
After pooling in the x dimension, features are denoted as
Fx, Fx ∈ RC×H×1, and in the y dimension are denoted as
Fy , Fy ∈ RC×1×W , correspondingly. Fx performs a 1 × 1
filter, followed by a reshape function, to obtain θx, φx, where
θx ∈ RC×1×H and φx ∈ RC×H×1. Dot product is carried out
between θx and φx to obtain the weights between channels
refered to Wx, Wx ∈ RC×C in dimension y. In a similar way,
Wy , Wy ∈ RC×C , represents the weights between channels in
dimension x.

We suggest x and y dimensions play the same important
role in channel attention, so the total channel weight distri-
bution is considered to be the sum of the weight distribu-
tion in both dimension x and dimension y, denoted as W ,
W = Wx + Wy . Followed by a 1 × 1 filter and reshape
operation, x generates gx, gx ∈ RC×(H∗W ), in order to obtain
the final channel attention output yc by applying the learned
channel attention weights (W ). To recover the features to their
original input dimensions, we use a 1 × 1 filter to generate

weights Wz . The final channel attention output is formulated
as follows:

yc = Wz(W
⊗

gx) (13)

Finally, there is a shortcut between input and output as a
residual structure. The network retains the input x, only learns
the difference between output and input, and the data flows
across layers to avoid the gradient disappearing during the
training process. We denoted the final response of x as z,
and we summarized the formulation between every pixel as
follows:

zi =Wz

NC∑
j=1

(
f (CWi , CWj) + f (CHi, CHj)

NC

)
(gx · xj)

+m
⊗

δ(n
′
) + xi

(14)
where i represents a position in image, and j is all possible
positions. NC is number of channels, f (CWi

, CWj) and
f (CHi, CHj) are the similarity between channels calculated
by dot product.

The total loss is defined as (16):

LBCP =
1

N

∑
p

{
(
tp − t̃p

)2
+ λ

∑
i,j∈Φ(p)

wij (ti − tj)
2}

(15)

L = LBCP + αLY OLOv7 (16)

where N is the number of pixels, Φ(p) is the pixels within a
3×3 patch centered at p, wij represents affinity matrix between
Φ(p), and λ controls balance between the data term and
the smoothing term. Integrating detection and enhancement
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loss during training is beneficial for obtaining image with
prominent pedestrian features for pedestrian detection.

IV. EXPERIMENTS

In order to demonstrate the effectiveness of the model we
proposed, we present the detection results on two datasets,
cleaned KAIST and LLVIP.

A. Dataset

1) KAIST: The KAIST dataset, proposed by Hwang [12]
et al., consists of multispectral pedestrian data captured by
specialized hardware with a beam splitter. It comprises 95,328
pairs of color and thermal images. However, this dataset is
derived from consecutive frames of a video causing a high
similarity in adjacent images, so we perform data clean.
Finally, we get 7601 pairs of images as training set, and 2252
pairs of images as testing set. Additionally, we adopted the
re-annotated labels by Li [24] and Hangil [25] for the training
and test sets, respectively, to enhance label quality.

2) LLVIP: The LLVIP [26] dataset consists of rigorously
aligned pairs of images in both time and space, which is used
for pedestrian detection in low-light conditions. The entire
dataset comprises 15,488 pairs of color-thermal images.

B. Evaluation Metrics

We use the Recall and Average Precision (AP) as evaluation
metrics to evaluate the proposed model effectively. Here, we
use TP (True Positive), FP (False Positive) to represent true
positive predictions and false positive predictions, respectively.
Recall is the ratio of detected pedestrians in ground truth.
Recall = TP

TP+FP .

C. Implementation Details

In this paper, we built our network based on YOLOv7 and
added a illumination compensation network at the input, which
enhances the visible light by using the bright channel prior.
In the Backbone, differential fusion module was performed
on the feature inputs of Conv3, Conv4, and Conv5 to reduce
redundancy in modal fusion. Finally, an innovative attention
mechanism was added for long-term dependencies, facilitating
direct transmission of high-level semantics.

The experiments were conducted on an NVIDIA GeForce
RTX 4080 GPU, Intel(R) Core(TM) i7-13700F CPU, using
the PyTorch framework and public code YOLOv7. We set the
batch size to 8, epoch to 100, and resize input images to 640×
640. K-means clustering provided nine anchor boxes for the
KAIST dataset: [44,65], [26,111], [33,141], [41,117], [43,153],
[58,116], [52,146], [59,178], [71,152]. We used some training
tricks such as mosaic augmentation and random cropping to
enhance the network’s generalization.

D. Results Analysis

We conduct a comparison between our algorithm, Halfway
Fusion and IAF R-CNN on the cleaned KAIST dataset. Here,
we primarily discuss the potential advantages of our method,
such as how our framework utilizes a Halfway Fusion ar-
chitecture for integration, and we identify key methodologies

that are beneficial in enhancing detection performance. The
pedestrian detection results are presented in Table I. For the
cleaned KAIST dataset, proposed method achieves the best
detection performance in terms of Recall 64.17%.

TABLE I. COMPARISON ON CLEANED KAIST DATASET IN TERMS OF
RECALL

Method DAY NIGHT ALL

Halfway Fusion [13] 59.98 50.77 58.27
IAF R-CNN [5] 65.22 56.62 62.14
YOLOv7 [15] 66.11 49.89 60.98

Ours 68.23 57.17 64.17

Compared to IAF R-CNN, our method is equally compet-
itive, maintaining a high recall rate while our inference time
is only 0.096s/image, as opposed to 0.210s/image for IAF
R-CNN. We record comparison of inference time using an
NVIDIA GeForce RTX 4080 GPU in Table II. This advantage
is attributed to the real-time nature of the single-stage object
detection algorithm, but the improvement in recall rate is
due to our differential fusion module effectively mining the
complementary features of pedestrian characteristics, reducing
redundant noise interference in feature propagation. However,
the effectiveness of DFM is limited by the requirement that
the input pairs of visible and infrared images must be strictly
aligned. Misaligned image pairs transmit incorrect differential
information, and the noise is amplified by the network. This
limitation calls for the use of more sophisticated image acqui-
sition instruments to be adequately addressed.

TABLE II. COMPARISION OF INFERENCE TIME USING AN NVIDIA
GEFORCE RTX 4080 GPU

Method IAF R-CNN [5] YOLOv7 [15] Ours

Time(s.) 0.210 0.041 0.096

In Table III, IV and V, we compare our algorithm with
YOLOv7. Moreover, we explored three versions input of
YOLOv7: a) RGB branch; b) thermal branch; c) concat thermal
image and visible light image as input. Directly concatenat-

TABLE III. COMPARISON ON CLEANED KAIST DATASET FOR
NIGHTTIME SCENES IN TERMS OF AVERAGE PRECISION, RECALL, AND

ACCURACY.

Method AP/% Recall/% Accuracy/%

YOLOv7 RGB 39.73 35.54 88.03
YOLOv7 T 49.24 18.74 92.65

YOLOv7 T+RGB 55.58 49.89 80.35
Ours 64.20 57.17 86.50

TABLE IV. COMPARISON ON CLEANED KAIST DATASET FOR DAYTIME
SCENES IN TERMS OF AVERAGE PRECISION, RECALL, AND ACCURACY

Method AP/% Recall/% Accuracy/%

YOLOv7 RGB 60.97 60.26 80.05
YOLOv7 T 44.57 14.68 89.89

YOLOv7 T+RGB 66.05 66.11 72.73
Ours 63.83 68.23 81.47
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(a) some examples (b) detail comparsion

Fig. 6. The visualizations of enhanced features from Illumination compensation network a) some examples; b) detail comparison.

TABLE V. COMPARISON ON CLEANED KAIST DATASET FOR ALL
WEATHER SCENES IN TERMS OF AVERAGE PRECISION, RECALL, AND

ACCURACY

Method AP/% Recall/% Accuracy/%

YOLOv7 RGB 54.30 52.44 81.63
YOLOv7 T 46.01 15.96 90.90

YOLOv7 T+RGB 62.60 60.98 76.01
Ours 63.94 64.17 82.96

ing the visible light image and thermal image did not lead
to a significant improvement. We achieve improvements of
3.19%, 2.12%, and 7.28% on the all weather, daytime, and
nighttime test sets in terms of Recall, respectively. Our method
demonstrate better performance in both accuracy and Recall,
indicating the effectiveness of our fusion strategy. Illumination
compensation network enhances pedestrian features in low-
light scenarios. Thus, we obtained the highest performance in
nighttime scenes.

There are some visualizations for enhancced images as
the outputs of Illumination Compensation Network in Fig.
6. We observed that obstacles in blue boxes have a high
similarity to pedestrians, especially in low-light scenarios.
The illumination compensation network is advantageous in
suppressing background features and enhancing foreground
characteristics. That enables the network to concentrate more
on pedestrian targets, free from background interference. In
the third line of Fig. 6b, pedestrian feature is clearer in blue
box. However, the multispectral images of color-thermal pairs
must be aligned. When misalignments occur, our model leads
to worse results, which requires more sophisticated image
acquisition instruments.

In addition to the quantitative analysis,we also provide
several qualitative results on the cleaned KAIST dataset in
Fig. 7. Upon observation, it is evident that our method excels
in generating precise bounding boxes and accurately detecting
pedestrians, especially in challenging scenarios when com-

pared to the baseline model.

Gradient-weighted Class Activation Mapping (Grad-CAM)
is a method for visualizing the attention mechanisms of deep
neural networks. Our Dual Non-Local module constructs a
unified attention framework based on the similarity of channel
and spatial features, making it particularly suitable for single-
object detection scenarios. The feature similarity between
different types of targets may cause confusion in the attention
map. In single object detection tasks, our Dual Non-Local
module demonstrates superior performance compared to Non-
Local and SimAM. These three similar attention mechanisms
have consistent input and output dimensions. We removed all
other modules in Fig. 1, retaining only the attention module.
We replaced this position with different attention mechanisms
and trained using the RGB images from LLVIP.

Using Grad-CAM, we visualized the outputs of Dual Non-
Local, Non-Local, and SimAM, as shown in Fig. 8. Our Dual
Non-Local model focuses more attention on the entirety of
pedestrians, while Non-Local and SimAM distribute attention
more precisely, but they both have the issue of some pedestrian
regions not receiving attention. Comparatively, although the
attention regions of Dual Non-Local are less precise, all pedes-
trian regions receive attention intensely. This also validates that
features of clear pedestrians can rectify those pedestrians with
blurred features.

E. Ablation Experiment

Our model achieves a leading performance. Nevertheless,
the specific contributions of each module to the results re-
mained uncertain. To address this, we design some ablation
experiments to verify it. The comparsion results are presented
in Table VI.

1) Illumination Compensation Module(IC): To figure out
the impact of the illumination compensation network, we
design a new network that uses the concatenated outputs
of the illumination compensation network as the input of
backbone, by removing the multiscale fusion network and
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(a) visible light images (b) baseline detection results (c) our detection results (d) ground truth

Fig. 7. The visualizations of baseline and our algorithm. It contains a) visible light images; b) baseline detection results; c) our detection results; d) ground
truth. According to the results, our method generate more target boxes correctly. Our method performs better when visible light images are in low-light

condition.

TABLE VI. ABLATION RESULTS ON THE CLEANED KAIST DATASET IN
TERMS OF PRECISION

Method DAY/% NIGHT/% ALL/%

YOLOv7_4c 72.73 80.35 76.01
YOLOv7+IC 73.98 84.09 79.90

YOLOv7+MFM 74.20 84.61 78.45
YOLOv7+DNL 73.10 80.53 76.56

YOLOv7+IC+MFM 79.87 86.11 81.39
YOLOv7+IC+DNL 74.41 84.05 80.04

YOLOv7+DNL+MFM 74.57 85.26 79.48
YOLOv7+DNL+MFM+IC(Ours) 81.47 86.50 82.96

attention mechanism. Thanks to the (15), the proposed LBCP

loss also has contributions to performance improvement, by
distinguishing foreground from background as effectively as
possible.

2) Multiscale Fusion Module (MFM): As shown, the one-
branch methods are undoubtedly inferior to the two-branch

approach. However, the crucial factor is fusion stage while
halfway fusion structure achieves the best performance. For
the two-branch method, we created two separate backbones to
process visible and infrared images. It’s worth noting that, dur-
ing this experiment, we omitted the illumination compensation
network. Both modalities were fed directly into their respective
backbones. According to the results, it is evident that DFM
plays a crucial role in improving detection performance, which
resonates with our initial conjecture. Although DFM requires
strictly aligned image pairs as input, this outcome provides
strong experimental support for future research on pedestrian
detection in more challenging environments.

F. Other Dataset

To demonstrate the generalization capability of our algo-
rithm, we conducted experiments not only on the cleaned
KAIST dataset, but also on another multispectral pedestrian
detection benchmark called LLVIP. The majority of the LLVIP
dataset were captured in low-light nighttime conditions. We
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(a) original
image

(b) Dual
Non-Local

(c) Non-Local (d) SimAM

Fig. 8. The Grad-Cam visualizations between non-local, SimAM, and our
dual non-local.

recorded the performance of the LLVIP dataset in Table VII,
with mAP as the evaluation metric.

TABLE VII. COMPARISON ON LLVIP DATASET FOR ALL WEATHER
SCENES IN TERMS OF AVERAGE PRECISION, RECALL, AND ACCURACY

Method AP/% Recall/% Accuracy/%

YOLOv4 T+RGB 50.90 57.10 74.00
YOLOv7 T+RGB 79.60 71.89 94.34

Ours 83.76 78.16 97.81

V. CONCLUSION AND FUTURE WORK

In this paper, we investigated to integrate color-thermal
image pairs effectively, leveraging the complementarity and
exclusivity between modalities to enhance detection perfor-
mance. We proposed an algorithm based on multiscale feature
fusion. Specifically, we performed image enhancement on the
input visible light image and simultaneously improved the
Backbone network through integrating two modalities using
differential information in Conv3, Conv4, and Conv5 convolu-
tional layers. Our approach demonstrated outstanding perfor-
mance on the cleaned KAIST and LLVIP datasets. Particularly
in nighttime scenarios, we achieved a improvement of 7.28%
in terms of Recall compared to the baseline on the cleaned
KAIST dataset. We suggested that the proposed Dual Non-
Local attention mechanism is also effective for other single
object detection tasks, which is part of our future work. The
findings of this paper offer a novel approach to combine image
enhancement techniques and feature fusion for multispectral
pedestrian detection, with potential applications beyond pedes-
trian detection. In our future work, we aim to further explore
the complementarity between modalities and reduce redundant
information between modalities in more challenging weather
conditions, such as rain and snow scenarios.
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