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Abstract—Speech recognition-based biometric access control
systems are promising solutions that have resolved many is-
sues related to security and convenience. Speech recognition,
as a biometric modality, offers unique advantages such as
user-friendliness and non-intrusiveness, etc. However, developing
robust and accurate speaker identification and authentication
systems pose challenges due to variations in speech patterns
and environmental factors. Integrating deep learning techniques,
especially AutoEncoder and Generative Adversarial Network
models, has shown promising results in addressing these chal-
lenges. This article presents a novel approach based on the
combination of two deep learning models, namely, AE and GAN
for speech recognition-based biometric access control. In the
model architecture, the AutoEncoder takes the MFCC coefficients
as input, and the encoder converts the latter to the latent space,
whereas the decoder reconstructs the data. Then, speech features
extracted from the latent space are used in the GAN generator to
generate additional speech data. The discriminator network has
a dual role, serving as both a feature extractor and a classifier.
The first extracts relevant features from generated samples, while
the latter distinguishes between generated and authentic samples
that come from AutoEncoder. This strategy outperforms DNN
and LSTM models on VoxCeleb 2, LibriSpeech, and Aishell-
1 datasets. The models are trained to minimize Mean Squared
Error (MSE) for both the generator and discriminator, aiming
at achieving highly realistic datasets and a robust, interpretable
model. This approach addresses challenges in feature extraction,
data augmentation, realistic biometric samples generation, data
variability handling, and data generalization enhancement, pro-
viding therefore, a comprehensive solution.

Keywords—Speaker identification; speech recognition; biomet-
ric access control; authentication; verification

I. INTRODUCTION

Speech recognition systems [1] have become increasingly
important in various domains, including biometric access con-
trol, where the identification and authentication of individuals
based on their unique voice characteristics are crucial. These
systems aim, securely, to use biological or behavioral charac-
teristics to authenticate and authorize individuals for access to
a physical location, a device, or a system. It relies on unique
and measurable traits that are specific to an individual, making
it difficult to forge or replicate. These characteristics can

include physiological characteristics such as fingerprints, face
features, iris patterns, and voiceprints, as well as behavioral
characteristics such as typing patterns, gait, and signature
dynamics as shown in Fig. 1. The main function of this

Fig. 1. Biometric categories.

paradigm is to collect biometric data, convert it into a digital
template, and then compare this template to templates stored in
a database. If the comparison results in a match, the individual
is given access. Otherwise, access is blocked. Fig. 2 presents
a system architecture based on speech recognition.

Fig. 2. Biometric access control architecture based on speech recognition.

Biometric access control systems based on speech recogni-
tion offer numerous advantages [2], such as universality, non-
intrusiveness, high authentication security, and convenience
i.e., bypassing the use of memorized passwords or access
cards, audit trail (keep track and accountability), and faster pro-
cessing than the traditional one. This concept is a powerful and
convenient way to improve security and access management in
a variety of areas, such as physical facilities, digital systems,
and digital transactions. . . etc. However, to achieve reliable and
robust performance, it is essential to develop accurate speaker
identification and authentication mechanisms.
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Deep learning models are characterized by their ability
to learn sophisticated patterns and representations from data,
providing a strong foundation for tackling the complexities of
speech recognition [3]. Hence, providing powerful tools for im-
proving the accuracy and effectiveness of its tasks. In this con-
text, the use of AutoEncoder models for feature extraction [4]
has shown promising results in identifying and authenticating
speakers. The AutoEncoder model, a type of neural network
architecture, has gained significant attention in recent years due
to its capability to learn meaningful and compact representa-
tions of input data. AutoEncoders can be leveraged to extract
discriminative features from raw speech signals. By training
the AutoEncoder model on a large dataset of labeled speech
samples, it can learn to encode the essential characteristics of a
speaker’s voice into a lower-dimensional representation, which
facilitates efficient and accurate speaker identification and
authentication processes. However, this model faces several
challenges among them:

• Lack of Realism in Generated Samples: Because Au-
toEncoders concentrate on recreating the input data,
they may produce generated samples that are exces-
sively similar to the training data and are devoid of
variation.

• Noisy or incomplete reconstructions: AutoEncoders
may have trouble accurately reconstructing the input
speech signals, mainly when there is noise or fluctu-
ation.

• Limited Generalization of novel data: Because Au-
toEncoders tend to concentrate on recreating well-
known patterns from the training set, they may have
trouble in generalizing novel or unseen data.

• Incapability to Distinguish: AutoEncoders are typi-
cally unsupervised models concentrating on feature
learning and reconstruction. The capacity to discrim-
inate is essential for precise authentication in a bio-
metric access control context.

• Limited data augmentation: AutoEncoders can be used
for limited data augmentation by reconstructing and
producing synthetic samples. The produced samples,
however, may not represent the whole range of vari-
ability included in the training data.

• Adversarial Attacks: AutoEncoders can be vulnerable
to adversarial attacks [5], which include making tiny
and purposeful changes to input data in order to
trick the model. In the case of speech recognition
systems, this might include discreetly changing a voice
recording to deceive the system into providing access
to an unauthorized user.

• Inadequate Temporal Information: Traditional Au-
toEncoders struggle with sequential data, which is
an issue in speech recognition, where the order of
the input (i.e., the sequence of sounds or words) is
important. Recurrent or convolutional AutoEncoders,
for example, can alleviate this, although they are more
sophisticated and computationally intensive.

Generative Adversarial Network (GAN) is a promising
paradigm that consists of two main components: a generator

and a discriminator. The generator produces synthetic data
and the discriminator tries to differentiate between real and
synthetic data. In the context of biometric access control using
speech recognition [6], GANs can be applied to generate
synthetic speech data to augment the training dataset [7],
which can help address data scarcity issues, increase the
diversity of the training data, and improve the robustness and
generalization of the speech recognition system. Synthetic data
generated by the GAN can be combined with real training
data to create a more comprehensive and representative dataset
for training speaker identification or authentication models,
mitigating most AE model issues. It’s important to note that
GAN training can be challenging and may suffer from issues
[8] such as training instability requiring careful tuning of
hyperparameters and balancing the training dynamics between
the generator and discriminator, lack of control over generated
data, GANs typically generate data based on random noise in-
put, resulting in limited control over specific characteristics of
the generated speech samples, lack of feature extraction: GANs
primarily focus on generating data and may not explicitly learn
meaningful features from the input speech samples, and data
augmentation: GANs are commonly used for data augmenta-
tion by generating synthetic samples. However, without the
guidance of meaningful features, the generated samples may
not effectively capture the desired variations and characteristics
of real speech data. The combination of AutoEncoder (AE) and
Generative Adversarial Networks (GAN) models, for biometric
access control based on speech including speaker identification
and authentication, resolves many problems and drawbacks
related to feature extraction, data augmentation, and generating
realistic biometric samples. To this end, the main goal is to
contribute to the advancement of this research by leveraging
the capabilities of deep learning through a novel approach that
combines both models in a manner complementary to each
other, providing control, stability, better feature learning, and
enhanced data augmentation capabilities, leading to improved
speech recognition performance.

The key contributions of this project can be outlined as
follows:

• Introducing a novel approach rooted in deep learning
models, specifically AutoEncoder and Generative Ad-
versarial Network in biometric access control through
speech recognition context. This integrated model
enhances system performance, accuracy, robustness,
and efficiency.

• Employing the AutoEncoder (AE) model as an un-
supervised method for extracting meaningful and dis-
criminative features, reducing dimensionality, and ad-
dressing storage and computational challenges asso-
ciated with raw audio data analysis. Additionally,
features are extracted from the latent space and uti-
lized in the Generative Adversarial Network (GAN)
to augment the training dataset, enhancing model
generalization, mitigating overfitting, and alleviating
data scarcity issues, resulting in the creation of high-
quality, realistic biometric samples.

• Proposing a GAN model where the generator network
produces synthetic speech data resembling that from
the latent space representation, thereby expanding
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the training dataset. This approach improves model
generalization, reduces overfitting, and addresses data
scarcity, leading to the generation of high-quality
biometric samples. The discriminator in this proposal
serves two roles: feature extraction and classification.
The former extracts features from generated sam-
ples, capturing more informative and efficient fea-
tures, while the latter distinguishes between generated
samples from both models, enhancing overall system
performance.

• Application of this approach to diverse datasets, in-
cluding VoxCeleb 2, Aishell-1, and LibriSpeech, has
yielded positive results when compared to outcomes
from Deep Neural Network (DNN) and Long Short-
Term Memory (LSTM) models.

The remainder of this article is organized as follows: Section
II provides related works on speech recognition systems for
biometric access control. Section III presents the proposed
solution. Section IV presents the results and analysis of the
experiments conducted, highlighting the performance gains
achieved through the AutoEncoder-GAN-based approach. Sec-
tion V presents a discussion. Finally, Section VI concludes the
article with a summary of the findings and discusses potential
directions for future research in this field.

II. RELATED WORK

In the literature, there is a lot of research related to bio-
metric access control based on speech recognition topics, in-
cluding speaker identification and authentication, and speaker
verification. This section presents an overview of some works
and propositions published recently that achieved significant
results.

Najim Dehak et al [9] proposed two speaker verification
systems models, In which the first one is based on SVM, by
using the cosine similarity, and the second one utilises directly
the cosine similarity in the final phase which decides the
final score. The experiments are done through three different
methods in the variability space, which are within-class covari-
ance normalization, linear discriminate analysis, and nuisance
attribute projection. Their study conducted on the combination
of LDA with WCCN has achieved good results compared to
the other ones. The test was carried out using the NIST 2008
Speaker Recognition Evaluation dataset.

Yen Lei et al [10] presented a new approach based on deep
learning speaker recognition using a phonetically that aims
at improving speaker recognition performance by using an i-
vector model [11] to represent the speech signal (extract the
main features) and DNN model is used to replace the UDM-
GMM [12] paradigm in order to train the model. The experi-
ments proved that this approach has significantly improved the
i-vector speaker recognition system.

Another research done by [13] has proposed d-vector
instead of i-vector that aims at extracting hidden layers of a
DNN as features. D-vector represents the averaged activations
from the last hidden layer of DNN. Experiments of this
approach have proved its efficiency in a small-footprint text-
dependent speaker task. Generally, this scheme underperforms
the predecessor based on i-vector-DNN.

Another research made by [14] has proposed a multi-
task deep learning scheme based on the j-vector method that
consists of extracting features from multitask DNN using
probabilistic linear discriminant analysis (PLDA). This scheme
has achieved good results than the predecessor models (i-
vector, d-vector).

The Authors in [15] have proposed a new scheme based
on deep neural network DNN to extract speech features called
as x-vector. This latter represents the fixed-dimensional em-
beddings of variable-length traits. Furthermore, this research
tackled also data augmentation by adding the noise and the
reverb to the existing dataset to improve the efficiency of the
model in the text-independent speaker tasks. Effectively, this
approach has achieved better findings than the ones based on
the i-vector and d-vector. Another research conducted by [16]
has proposed a new end-to-end architecture based on neural
networks, especially DNN and LSTM to speaker verification in
the text-dependent context that aims at mapping the utterances
to a score and joining them to optimize the representation
of the speaker. In the same area, the authors of [17] have
proposed another approach based on the end-to-end attention
model. They use the CNN model to extract the noise-robust
frame-level features that will become utterance-level speaker
vectors using the attention model. This approach proves its
effectiveness on Windows 10 “Hey Cortana”.

Another research carried out by [18] in the context of
text independence has presented a new end-to-end approach
based on the deep learning model to optimize the triple loss
function using Residual Net block and measuring the similarity
by Euclidean distance within trials. The findings show that
this approach outperforms that based on conventional i-vector
schemes, namely on short utterances.

In [19], the authors have proposed a new generalized
End-to-end model based on LSTM. The training process has
relied on the large number of utterances forming a batch.
This scheme aims at optimizing the loss function through
the training process in an efficient manner. The experiments
show that this platform has achieved good results. N. Le et al
[20] have proposed a new approach based on deep learning
model, namely CNN. The main objective of this proposition
is to optimize the deep speaker embedding through intra-class
loss distance variance regularization compactness. The findings
have proved that this approach accelerates the convergence of
the training model, which enhances the model’s performance.

Another research carried out by the authors in [21] has
presented an end-to-end optimized scheme based on deep
convolutional features extractor combined with self-attentive
and large-margin loss functions in the text-independent tasks
context. They use a modular neural network instead probabilis-
tic linear discriminant analysis (PLDA) classifier. This work
made use of the experiments on VoxCeleb and NIST-SRE 2016
and has achieved an enhancement model than the others based
on i-vectors.

The authors in [22] have suggested a novel approach for
learning speaker embeddings based on a simulated model of
GAN, especially the discriminator. This architecture aims to
maximize mutual information, improving the model perfor-
mance on the VoxCeleb corpus. Experiments show that this
model outperforms the model based on i-vector and that based
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on triples loss systems.

Many works are proposed to optimize the performance
of speech recognition tasks and provide a robust system
using deep learning model. Each research has focused on one
aspect or more, such as data augmentation, features extraction,
denoising and de-reverberation. The proposed solution has
designed a new architecture based on deep learning models,
namely AutoEncoder and Generative Adversarial Network in
a complementary manner to improve the model performance
by minimizing the loss function. The MFCC is used to extract
features and the model AE to capture the meaningful speech
representation and GAN is used to generate speech data from
the latent space of the model AE.

III. PROPOSED SCHEME

The proposed scheme is based on two models which
are AE and GAN models as depicted in Fig. 3. At first,
the speech inputs are collected, and their Mel-Frequency
Cepstral Coefficient (MFCC) characteristics are extracted and
used for training and tuning the model. Generally, The AE
model comprises three components: Encoder, latent space, and
Decoder. The encoder captures the main representation of the
meaningful speaker speech features extracted from MFCC and
produces the latent space, the latter will be used to reconstruct
the input data. In this model, the Latent space will be extracted
and used as input to the generator of the GAN model to
generate more real data from it. The generated samples will
be then used as input to the discriminator. This latter plays
two roles, namely a features extractor and a classifier. At first,
the discriminator extracts features from the generated samples
and then feeds to the classification between that extracted and
that comes from the AutoEncoder i.e. the decoder, to make a
decision. This section presents more details of this model.

Fig. 3. AutoEncoder-Generative adversarial network model architecture.

A. Data Preprocessing

Generally, the preprocessing process [23] is crucial for
preparing the data. This phase involves the capture and split-
ting of data into segments, feature extraction, noise removal,
features normalization, and data loading, etc. Among the main
steps that represent the backbone of the model namely in the
context of the biometric access control based on speech, is
feature extraction. To this end, the proposed architecture in-
volves the adoption of the Mel-frequency Cepstral coefficients
(MFCC).

1) Mel-Frequency Cepstral Coefficients: MFCC [24] is a
technique that consists of extracting features from the signal.
In the speech processing context, this method is widely used to
capture the spectral features of sound well-suitable for various
machine learning and deep learning tasks including speech
recognition and speech analysis. Simply this technique is an
amount of coefficients that represent the shape of the speech
power spectrum signal. Fig. 4 represents the components of the
MFCC. To calculate the coefficients of MFCC, some steps are
crucial as depicted in the figure. After capturing the speech sig-
nal, the first step is breaking the signal into frames (windowing
process) and then applying the Fast Fourier Transform (FFT) to
determine the power spectrum of each frame. Following that
mel-scale filter bank processing is performed on the power
spectrum by the formula 1:

mel(f) = 2595log10(1 +
f

700
) (1)

Where mel(f) represents the frequency on mels and f represents
the frequency on Hz. The power spectrum is converted then
by log domain and the Discrete Cosine Transform (DCT) is
applied to get the coefficients of MFCC through the Eq. 2:

Ĉn =

k∑
n=1

(logŜk)cos[n(k − 1

2
)
π

k
] (2)

Where k, Ŝk, andĈn represent, respectively the mel cepstrom
coefficients numbers, the filter bank output and the MFCC
coefficients.

Fig. 4. MFCC architecture.

B. AutoEncoder model

The AutoEncoder (AE) model is a sort of neural network
architecture used for feature learning, dimensionality reduc-
tion, and data reconstruction. It is especially effective for
extracting relevant representations from biometric data and
may be used in a wide range of biometric modalities, in
various applications, namely Feature learning, data denoising,
data compression, Anomaly detection, Privacy preservation,
biometric template protection...etc. An AutoEncoder’s primary
principle is to learn a compact and efficient representation of
incoming data. It is made up of an encoder and a decoder
as shown in Fig. 5. The encoder takes raw data as input and
converts it to a lower-dimensional latent space representation.
The fundamental traits and qualities of the data are captured by
this latent space representation, and the decoder uses this later
to attempt to recreate the original input data. The objective
is to maintain the information required for reconstruction in
the latent space. AE is an unsupervised model that aims at
minimizing the loss function between the input data and the
reconstructed data, capturing the most relevant representations.

The proposed solution incorporates the use of AutoEncoder
to capture the relevant representation of the inputs from MFCC
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coefficients, optimizing the speech processing system. The
main objective of MFCC is extracting features and converting
the input signal into coefficients that are retained as features
which represent the main relevant features. The AutoEncoder
takes these coefficients as input and converts them into latent
space, reducing therefore, the dimensionality of the represen-
tation represented by the coefficients, and extracting the main
relevant representation. The other network i.e. decoder network
reconstructs the representation from that reduced (latent space).
The main goal of this proposition is to get the most salient and
compact representation from MFCC coefficients in a lower-
dimensional space by training the AutoEncoder model.

Fig. 5. AutoEncoder architecture.

C. GAN model

Generative Adversarial Network (GAN) is a generative
model that is distinguished by two distinct networks, each with
its unique set of attributes called Generator and Discriminator.
The first seeks to produce realistic data from a specific class,
while the second is used to determine whether the generated
data is realistic or phony, as shown in Fig. 6: GAN is a
deep-learning class used especially to produce synthetic data
from the raw data input. In the scope of biometric access
control, the generator takes a random noise as input and
attempts to produce biometric data samples that mimic actual
biometric data, while the objective of the Discriminator is to
distinguish between the generated samples and the real ones,
generally a binary classifier. The training procedure comprises
a competition between the generator and the discriminator. As
training advances, the generator improves at creating more
realistic data, while the discriminator improves at differenti-
ating between actual and phony data. This repeated procedure
should result in high-quality synthetic data that is difficult
to differentiate from genuine data. GANs may be used for
a variety of reasons in the context of biometric access control,
including data augmentation, Privacy-Preserving Research,
Training Data Generation, Data Imputation, and Adversarial
Attacks and Defense.

To this end, the proposed scheme extracts the latent space
from the AutoEncoder model and uses it as input in the
Generative Adversarial Network (GAN) model namely the
Generator. This latter Generates more speech data from those
reduced features, producing then data simulated to that of
input. Whereas the discriminator in this architecture plays
two roles, namely a features extractor and a classifier. At
first, the discriminator takes the generated samples as input,
extracts relevant features and then distinguishes them from that
produced and trained by the AE model, especially the decoder.

Fig. 6. GAN architecture.

IV. EXPERIMENTS AND RESULTS ANALYSIS

In this section, the experiments carried out by the labora-
tory team are presented, describing therefore, the datasets, the
metrics and the implementation details of the proposed model,
and finally the analysis of the result.

A. Datasets

In this model, three different datasets have been used,
which are VoxCeleb 2, Aishell-1 And LibriSpeech.

VoxCeleb: It is an open-source dataset that is widely used
in the experiments of speech processing tasks [25]. It contains
videos interviews uploaded to YouTube. There are two types
of VoxCelb datasets, VoxCeleb 1 and VoxCeleb 2. The first
one has over 100,000 utterances For celebrities, whereas the
VoxCeleb 2 has over a million utterances. In the proposed
solution, the experiments have occurred on the VoxCeleb 2.

Aishell-1: This dataset is used also in the speech prepro-
cessing tasks[26]. It is an open-source and freely accessible
speech dataset that contains Mandarin speech captured with
a high-fidelity microphone (44.1 kHz, 16-bit). The Aishell-1
dataset was created by downsampling the audio collected by
the high-fidelity microphone to 16 kHz. A set of 400 speakers
from various accent areas in China took part in the record
capture.

LibriSpeech: is an open-source corpus, available in [27]. It
contains 1000 hours of speech sampled at 16KHz and is gen-
erated from audiobooks in the LibriVox project. This dataset
is used mainly in speech preprocessing including speech
recognition and speaker identification. Table I represents the
specification of the used datasets:

TABLE I. DATASETS SPECIFICATION

Speakers Utterances Hours
VoxCeleb 2 6112 1 128 246 2442

Aishell 1 400 141 925 Over 170
LibriSpeech 2087 252 702 1000

B. Evaluation Metrics

Generally, a metric is a method used to evaluate a system’s
performance on a specific task. The main metric objective is
measuring the quality of classifications or predictions carried
out by a system or model. A loss or error function [28] is
a function that determines how much the output or predicted
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value departs from reality or actual value aiming at optimizing
the model (either maximizing or minimizing issues). The Mean
Squared Error (MSE) [29] is a loss function that measures the
error between the observed and predicted values. The average
of errors squared is calculated by this Eq. 3.

MSE =

∑
(yi − ŷi)

2

n
(3)

Where yi represents the observed value, ŷi represents the
predicted value, and n is the observations number In this
study, the MSE metric is used in the AutoEncoder model to
evaluate its performance, and the Binary Cross Entropy (BCE)
metric is also used in the GAN model that represents the
difference between the predicted probability distribution and
the reel one. On one hand, BCE is used to solve the binary
classification issues, evaluating then, the model’s performance.
On the other hand, is used to quantify the training loss,
minimizing therefore, the loss function of the model during
training.

C. Implementation Configuration and Results Analysis

In the proposed scheme, the PyToch library, written in
Python programming language, has been used for training
networks based on deep learning models. This model has
adopted Graphics Processing Unit (GPU), due to its efficiency
in Neural Network processing. After capturing the MFCC
coefficients from the speech, 13 coefficients, The latter are
then fed to the AE model namely, the encoder that converts
the inputs to latent space, reducing therefore the dimension-
ality and capturing essential speech features. These high-
level features serve to reconstruct the speech data from the
bottleneck layer and aim at generating outputs that closely
resemble the original data input. The model training aims
at minimizing the reconstruction loss between the original
and reconstructed speech. In the training of the AutoEncoder,
the chosen specifications include 8 dimensions as the latent
dimension, 64 as the batch size, and 0.001 as the learning rate.
Within the first part of the proposed architecture, the AE model
is implemented with input dimensions set to 8. The encoder
network consists of 128 units or neurons in the hidden layer,
employing the Rectified Linear Units (ReLU) as an activation
function. The use of ReLU introduces non-linearity, facilitating
the model in learning complex relationships within the data.
The learning rate and the network size are identified using
different settings based on the try-and-error approach to choose
the best configuration in terms of performance.

At the beginning of the training process, the weights are
initialized at random and then gradually updated. To solve
the model overfitting challenges, different methods are used
such as the regularization of the parameters to promote lower
values of weight, and adding dropout layers within the encoder
and the decoder, furthermore, the loss function regularization
has been adopted to promote certain desired behaviors in the
latent space. The data mapping process is carried out from
the 128-dimensional hidden representation to the latent space
representation. The Adam optimizer has been deployed. The
loss function is selected as the Mean Squared Error (MSE) as
mentioned before.

In this proposition, the latent space features are extracted
representing the high-level speech representation to feed it

into the GAN model, namely the generator network. This
latter takes the high-level representations (more relevant speech
features) as input to generate more speech data in a manner
that resembles real speech. The architecture of the generator
is composed of three fully connected linear layers with ReLU
activation functions between them. The Tanh activation func-
tion has been applied in the final layer to ensure that the
generated values are bounded within the range [-1,1]. The
other GAN network, i.e., the discriminator, plays two roles
in this architecture, a features extractor and a classifier. At
first, the discriminator takes the generated samples from the
generator, tries to extract the relevant representations and then
feeds them to the classifier to distinguish them from those that
come from the decoder of the AE model. The structure of the
discriminator is similar to that of the generator. It consists of
three fully connected layers with ReLU activation functions.
In the final layer, the sigmoid activation function has been
applied, which produces values within the range [0,1] where
1 identifies the real data, and 0 identifies the fake ones. Both
the generator and the discriminator are adversarial trained. i.e.
competing against each other. This process helps us to refine
the ability of the generator to generate more high-level quality
speech data, and therefore, achieve a robust system based
on the combination of two promising deep learning models,
AutoEncoder and Generative Adversarial Network, especially
in the speech recognition tasks. Fig. 7 represents AE-GAN
model training process using three different datasets, with the
loss versus training epochs to illustrate how well the model
learns. The experiments incorporate different utterances from
three different datasets, including VoxCeleb 2, LibriSpeech,
and Aishell-1. These datasets are divided into three parts for
each dataset, 80% for training, 10% for validation, and 10%
for test.

Experimentation involved assessing the proposed deep AE-
GAN model by utilizing the state-of-the-art models, namely
the Deep Neural Network (DNN) model and Long Short Term
Memory (LSTM) model, using the datasets mentioned above
to describe the experiment findings. Table II lists the overall
loss function of the models that are used in the test process
during various research phases. As shown in the table, the
AE-GAN model has a high score in training and validation in
three different datasets, which are LibriSpeech, VoxCeleb 2,
and Aishell 1, it has achieved respectively in training loss,
0.0574, 0.0876, and 0.0886, and in validation loss 0.0581,
0.0888, and 0.0889. Compared to the results of DNN and
LSTM models, they have gotten in the training phase values
ranging from 0.07 and 0.168, while in the validation phase,
huge values ranging between 0.30 and 0.48, proving generally
the overfitting of the models. The proposed scheme has proved
its efficiency and outperformed the performance of DNN and
LSTM models in three different datasets. Fig. 8 depicts the
results of the experiments carried out over the datasets using
the DNN and LSTM models.

V. DISCUSSION

Deep Neural Networks (DNNs) and Long Short-Term
Memory networks (LSTMs) are reference models in speech
recognition-based biometric access control context, and have
been widely used in many studies. DNNs have demonstrated
their performance in learning hierarchical representations from
raw audio data. Their ability to handle complex features with
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Fig. 7. AE-GAN model training loss curve vs epoch.

TABLE II. AVERAGE LOSS PER EPOCH FOR TRAINING AND VALIDATION

Dataset Model Loss function
Train Validation

LibriSpeech
DNN 0.079 0.334

LSTM 0.095 0.307
AE-GAN 0.0574 0.0581

VoxCeleb 2
DNN 0.152 0.298

LSTM 0.168 0.287
AE-GAN 0.0876 0.0888

Aishell 1
DNN 0.084 0.389

LSTM 0.079 0.486
AE-GAN 0.0886 0.0889

deep increased network has contributed to their standing in the
field. However, this model struggles with capturing long-range
dependencies in sequential data, which is crucial for speech
recognition tasks. Simultaneously, LSTMs are recognized for
their effectiveness in modeling temporal dependencies within
sequential data, making them well-suited for capturing long-
term patterns in speech sequences. They have addressed the
vanishing gradient issues that are inherent in traditional Re-
current Neural Networks (RNNs), making them more adept at
learning from sequential data. But to capture complex patterns
effectively, LSTMs require more data.

The AE-GAN’s ability to leverage the latent space features
extracted by the AutoEncoder to enhance the generative capa-
bilities of the GAN is a potential advantage. In scenarios with
limited labeled data, the AE-GAN’s capacity for generating
high-quality and realistic speech samples may prove advanta-
geous. Additionally, its ability to address overfitting challenges
through regularization techniques and dropout layers may con-

tribute to superior performance in diverse speech recognition
tasks. Although the proposed model offers several advantages,
it may face challenges in scenarios where there is insufficient
diversity in the training data, potentially leading to biased
representations. If the dataset lacks sufficient variation in
terms of speakers, accents, or speech characteristics, the model
may struggle to generalize well to a broader range of real-
world scenarios. Augmenting the dataset with more diverse
samples could enhance the model’s robustness. Additionally,
the model’s performance may be sensitive to hyperparameter
settings, necessitating careful tuning. Implementing automated
hyperparameter tuning methods or conducting a thorough sen-
sitivity analysis may help identify robust configurations more
efficiently. The computational complexity of the model, espe-
cially in training large-scale datasets, could pose limitations in
terms of time and resource requirements. The computational
costs related to the training deep learning models, including
the proposed AE-GAN model, are a significant consideration.
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Fig. 8. The results of DNN and LSTM models with VoxCeleb, aishell, and libriSpeech datasets.

There are several solutions that contribute to mitigating these
costs among them, efficient GPU utilization can be essential,
optimizing the model architecture and exploring parallelization
techniques can contribute to faster training times. Additionally,
the use of transfer learning from pre-trained models can alle-
viate the need for extensive training on large datasets. Another
potential solution is the exploration of model quantization
techniques, reducing the precision of model weights to accel-
erate inference. Leveraging distributed training across multiple
GPUs or utilizing cloud-based computing resources can further
expedite the training process. Implementing early stopping and
model checkpointing strategies can optimize training efficiency
by preventing unnecessary iterations. Generally, a nuanced
understanding of the AE-GAN model’s strengths, a transparent
acknowledgement of study limitations, and proactive strategies
to address computational costs collectively contribute to a
robust evaluation framework for advancing the field of speech
recognition.

VI. CONCLUSION AND FUTURE WORK

This paper has proposed a new approach based on speech
recognition for speaker identification and authentication that is
considered as the main and crucial task in the speech-based
biometric access control scenario. The model has proved its
efficiency and robustness based on the combination of AE
and GAN models. The proposed model provides an optimized
platform integrating the features learning and tackling the
data augmentation and generalization issues, especially the
speech dataset, and data imputation such as reconstructing
degraded audio or denoise and tuning the hyperparameters
of the models. This approach has been implemented on three
different datasets: VoxCeleb2, LibriSpeech, and Aishell-1, and
has achieved good results in terms of performance, compared
to AE and GAN models. However, the proposed scheme
is expensive in terms of time-consuming, especially in the
training phase where there are two models AE and GAN. In
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future endeavors, the focus will be on this aspect to optimize
the proposed scheme.
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