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Abstract—In recent years, significant attention has been di-
rected towards the development of artificial empathy within the
engineering academic community. Replicating artificial empathy
necessitates the capability of agents to discern human emotions
and comprehend environmental risks. Analyzing acoustic data
in real environments offers a higher level of non-invasive pri-
vacy compared to video and camera data, limiting the agent’s
understanding to specific patterns. However, current studies are
negatively affected by subjective inferences from real data, which
can result in inaccurate predictions, leading to both false positives
and negatives, especially when contextual data and human speech
are involved. This paper work proposes the estimation of a
dangerous environment in accordance with the emotional speech
and additional ambient noises. In this approach we implement a
variational autoencoder model in conjunction with a classifier
for training the classification task. Additional regularization
techniques are applied to bridge the gap between the original
training data and the expected data. The classifier utilizes feature
data generated by the variational autoencoder to extract class
patterns and determine whether the environment is hazardous.
Emotional speech is classified as angry, sad, or scared emotions,
contributing to the classification of danger, while happy, calm, and
neutral emotions are considered safe. Various ambient noise types,
including gunfire and broken glass, are categorized as dangerous,
while real-life indoor noises like cooking, eating, and movements
are considered safe.

Keywords—Dangerous environment detection; speech analysis;
acoustic audio analysis; ambient noises; variational autoencoder
model; empathetic systems

I. INTRODUCTION

Ensuring the safety of individuals within indoor environ-
ments is a paramount concern, with implications spanning
from residential spaces to critical infrastructure. The ability
to accurately assess and respond to potential hazards is crucial
for safeguarding lives and minimizing risks. In recent years,
the pursuit of artificial empathy within the engineering domain
has gained significant traction, aiming to imbue computational
agents with the capacity to comprehend human emotions and
navigate environmental dangers. An avenue of exploration in
this pursuit involves the analysis of acoustic data, providing
a non-intrusive means of understanding the surrounding en-
vironment. Unlike more invasive data sources like video and
cameras, acoustic data analysis preserves privacy by focusing
on discernible patterns, presenting a valuable approach for
ensuring security in various settings.

The research presented in this paper addresses a critical
facet of safety by proposing a method for estimating hazardous

environments through the evaluation of emotional speech and
ambient noises. This approach not only advances the field of
artificial empathy but also holds substantial promise for real-
world applications, particularly in indoor acoustic analysis and
speech classification. The implications of this work extend
beyond the academic realm, offering tangible benefits for
society at large. The ability to accurately classify emotions and
distinguish between safe and hazardous sounds has significant
societal impact, enhancing security in public spaces, homes,
and workplaces. Moreover, in the realm of engineering, the
proposed method contributes to the refinement of hazard
detection systems, with potential applications in areas such
as smart home technologies, security surveillance, and other
safety-critical environments. This research sets the stage for
a more nuanced understanding of the acoustic environment,
bridging the gap between subjective inferences and objective
safety assessments, thereby paving the way for advancements
in both theoretical understanding and practical implementation.

Analyzing a diverse range of events, including human
speech and ambient sound, presents a formidable challenge
for artificial agents. Consequently, accurately judging environ-
mental characteristics becomes a complex endeavor. Moreover,
this task necessitates numerous sensors, such as cameras for
image and video processing, coupled or decoupled infrared
sensors, and other costly apparatus, making the practical imple-
mentation of artificial home assistants exceedingly challenging
to achieve. Addressing the challenges inherent in enhancing
their practical implementation involves different tasks, such
as managing real-time processes effectively, as evidenced in
related papers [1]–[3].

Another challenge is to ensure accurate object localiza-
tion such as in [4]–[7] where they proposed for example, a
convolutional recurrent neural network for joint sound event
localization and detection of multiple overlapping sound events
in three-dimensional space. In particular the sound event local-
ization and detection is extensively utilized by works based on
robotics navigation and natural interaction with surroundings.

Background noise treatments and reduction have been
extensible studied such as in [8]. The reduction of the noise
comes to fulfil two different targets, the human hearing safety
and the reduction of background noise to interpret another
sounds or a clear speech. The source separation of overlapped
sounds in acoustic event identification have studied in [9] to
feat one of the pending challenges. While in [10]–[13], a study
of event detection by ambient sounds analysis was performed,
trying to give realism to the scenario through the addition of
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diverse types of ambient sounds.

Among several challenges, to perform a precise and re-
alistic danger classification and estimation is especially re-
quired, considering subjective human perspectives and the
critical task of minimizing the false alarms [14]. Some studies
were carried trying to estimating hazardous environment from
ambient sounds with support vector machine models such
as in [15]. However the issue continue active and open to
date. The significance of false alarms cannot be overstated,
owing to the inherent subjectivity found in real-life scenarios.
Environmental sounds has been under-researched compared to
standard speech and music, and its understanding tend to be
subjective depending on the scenario and the listener [16].

Previous research endeavors have explored various ambient
sounds as cited in [17], yet remarkably, the emotional states
of individuals within the room have never been integrated into
the equation, amplifying the complexity of the challenge at
hand, and making it more realistic.

Furthermore, the usage of generative models have increased
in the study of human emotions and context analysis due to
the flexibility and versatility to represent and analize different
types of data present all together in the same audio frame [18]–
[24]. Generative models, particularly when integrated with
classifiers such as variational autoencoders (VAEs), prove to
be highly advantageous for classification tasks in the domain
of speech and also with ambient sound. The combination of
generative and discriminative capabilities allows for effective
feature extraction and representation learning, enhancing the
model’s ability to discern patterns in complex audio data. The
limitations of generative models in this context are primarily
associated with tasks that demand perfect data reconstruction.
Challenges arise when attempting to faithfully reproduce the
intricate details of diverse audio signals, including variations in
speech patterns, accents, and environmental sounds. However,
in classification tasks, where the focus is on discerning relevant
features rather than achieving precise data reconstruction, these
limitations are mitigated. The flexibility and adaptability of
generative models make them well-suited for classification
applications, offering a powerful and efficient approach to
audio analysis.

To the best of our knowledge, the detection of a dangerous
environment was never judged by an emotional speech analysis
in combination with ambient noises analysis with generative
models, such as a variational autoencoder (VAE) model that
learn the characteristics related with a subjective environment.
Additionally, the proposed model make an adjustment of the
difference among input data and expected data with phonetic
and prosody features.

II. PROPOSED APPROACH

A. Proposed Model

The proposed model falls under the category of semi-
supervised learning, which is a hybrid method combining
labeled and unlabelled data. In this approach, the classifier
learns from labeled examples and also utilizes information
from unlabelled data to enhance its performance. Within our
model, the VAE serves a dual purpose: it functions as an
unsupervised autoencoder, learning a condensed representation

of the data, and as a supervised classifier, predicting emotional
classes. This dual role is possible because the model incor-
porates both the reconstruction loss (unsupervised) and the
danger classification loss (supervised), allowing it to harness
the advantages of both labeled and unlabelled data. In essence,
our model is semi-supervised because it integrates labeled
emotional class data along with unlabelled Mel spectrogram
data during the training process, optimizing its performance.

The proposed classifier model utilizes the latent space gen-
erated by the VAE model. In our approach, these two models
operate independently; first, the VAE is trained separately, and
then the pre-trained encoder from the VAE, which has learned
from unsupervised data, functions as a feature extractor in the
classifier. This encoder transforms the data into a compact
representation, which is then processed through a classifier.
This classifier is specifically trained to predict danger labels
based on these encoded features, which are both from labeled
and unlabelled data. Consequently, our model is categorized as
a semi-supervised learning approach incorporating both types
of data during its training process.

Moreover, the regularization task in the extended VAE
provides additional control over the decoded data. This control
is achieved by utilizing pre-processed data and its representa-
tions within the VAE model, allowing for a more refined and
controlled learning process [25]–[28].

The phonetic and prosody characteristics of each value
derived from the input and decoded data, will be compared.
The aim is to ensure that the phonetic and prosody attributes of
the VAE representation closely match the pre-processed values
from the input data during the extended VAE training process.

In this approach, the classifier relies on the trained encoder
for its classification tasks. Consequently, the regularization pro-
cess also impacts the final results of the classifier. Classifying
the extended dataset containing dangerous patterns presents a
challenge for our classifier. This challenge arises not only from
the variations in volume and intonation between the actors’
utterances but also from the inclusion of surrounded noises
specific to the content of danger.

The prosodic control and regularization was previously
observed in [29], [30]. The phonetic and prosodic features
considered include spectral bandwidth, spectral contrast, and
formants from 1 to 5 extracted from each input audio’s
Mel spectrogram. Our proposed classifier, coupled with the
phonetic and prosodic regularized VAE method, encompasses
multiple tasks. The subsequent subsections will delve into the
specifics of each task involved in our approach.

The basic architecture of the hazardous environment clas-
sifier model can be observed in Fig. 1. The variational autoen-
coder is represented with an encoder, latent space and decoder
structure, while the classifier consumes data from the features
captured by variational autoencoder in the latent space.

B. Data Selection

In the process of data preprocessing, we obtained audio
samples from the Ravdess datasets and custom data from
distinct sources. Our primary objective was to construct a
coherent emotional audio dataset and convert these audios into
Mel spectrograms. Intermediate steps were taken to seamlessly
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Fig. 1. Proposed architecture of the hazardous classifier model.

integrate these diverse data types, involving tasks such as
aligning sampling rates, set at 44.1KHz.

Within the Ravdess dataset, audio clips exceeded three
seconds, with approximately 2 seconds of null data. Conse-
quently, trimming zero-data was imperative to obtain a high-
quality signal for further processing. Normalization of voices
to a standardized volume and noise reduction were performed,
particularly essential for downloaded patterns that exhibited
varying durations and significant zero data within different
frames.

The generation of Mel spectrograms involved utilizing the
short time Fourier transform (STFT) technique, followed by
mapping the spectrogram to a Mel scale. This method, precon-
figured with 128 Mel values, enabled a precise characterization
of the audio data.

Emotion selection involved three emotions from the
Ravdess dataset, excluding “Disgust” as it does not pertain
to a dangerous or non-dangerous environment precisely. The
chosen emotions (Neutral, Calm, Happy, Sad, Angry, Fearful)
were carefully balanced to ensure equal representation in the
dataset.

Regarding ambient noises, glass breaking and gun firing
were chosen to represent dangerous environments, while cook-
ing, eating noises, human steps, and opening/closing windows
represented safe environments. The specific quantities used are
detailed in the experiment section.

In our training approach, we focused on scenarios that
involve neutral, calm, and happy emotions coupled with typical
indoor noises like cooking, eating, and human movements. The
decision to exclude scenarios where both dangerous and non-
dangerous noises and speech coexist was deliberate. Training
artificial neural networks with such mixed data might lead
to the erroneous understanding that during routine, calm, or
happy speech, potentially dangerous events like gunfire or
breaking glass should be expected. This contradicts real-life
situations where such consistency is infrequent and therefore
was not incorporated into our training data to maintain the

model’s adherence to realistic scenarios.

C. Prosodic and Phonetic Regulariser Features’s Description

Detecting hazardous environments using ambient sounds
and speech poses a significant challenge, benefitting greatly
from a multifaceted approach involving various audio features.
In our research, we focus on employing spectral bandwidth,
spectral contrast, and formants 1 to 5 for this purpose.

Formants in speech processing refer to the resonant fre-
quencies of the vocal tract, manifesting as peaks in the sound
spectrum. They play a vital role in speech production and
perception, representing specific vocal tract configurations
through their frequencies. Notably, the first few formants
(such as F1, F2, F3, etc.) are pivotal in speech recognition,
differentiating speech sounds based on their positions and tran-
sitions. Although they are not typically regarded as prosodic
features, formants are instrumental in recognizing vowels and
consonants, providing essential phonetic information in speech
analysis [31].

Spectral contrast, another key feature, quantifies the am-
plitude disparity between peaks and valleys in the sound
spectrum. This metric captures variations in spectral energy,
indicating the sharpness or smoothness of transitions between
different frequency bands. Drastic changes in spectral contrast
signify specific events or objects in the environment. In danger
detection scenarios, abrupt increases in spectral contrast can
indicate events like glass breaking or gunshots. Monitoring
these shifts enables the identification of unusual and potentially
perilous situations [32].

Spectral bandwidth, the third feature under consideration,
refers to the width of the frequency spectrum of a sound.
It measures the dispersion of frequencies around the central
frequency. Sounds with broader spectral bandwidths encom-
pass a wider frequency range and are generally classified as
broadband sounds. In contexts where danger needs to be iden-
tified, wide spectral bandwidths indicate loud and potentially
hazardous noises, especially in otherwise quiet settings. For
instance, while the sounds of everyday activities like cooking
or eating are typically narrowband, noises such as gunfire or
explosions produce broad-spectrum signals. Analyzing spec-
tral bandwidth helps recognize the presence of such broad-
spectrum events, aiding in the detection of potential threats
[32].

By comprehensively analyzing formants, spectral contrast,
and spectral bandwidth, an acoustic system can effectively
differentiate between normal activities and events that might
pose a danger within a specific environment. These distinctive
features allow the system to identify specific sound patterns
associated with perilous situations, making them invaluable
tools in acoustic surveillance and safety systems.

D. Mathematical Definition of Proposed Model’s Regulariza-
tion

The additional phonetic-prosodic regularisation term
R(phopro(x), phopro(pθ(x|z))) was added to the well known
evidence lower bound (ELBO) of VAE [33], in order to make
each input datum x, to remain close to the corresponding
decoded datum in the vector of danger phopro(pθ(x|z)) and
phopro(x), respectively.
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The danger term to be added is as follows:

PhoProDiff R Loss = α ·R(phopro(x), phopro(pθ(x|z)))
(1)

PhoProDiff stands for phonetic-prosodic difference regu-
larization loss.

The prosodic regularised variational autoencoder loss func-
tion will finally be defined as follows.

L(ϕ, θ, x) = Eqθ (z|x)[logpθ
(x|z)]−DKL(qϕ(z|x)∥p(z))

+α ·R(phopro(x), phopro(pθ(x|z))
(2)

Letting α being 0 ≤ α ≤ 1. Assuming E as the
expected value, DKL as Kullback-Leibler Divergence, and R
as regularisation.

The R(phopro(x ), pθ(x |z )) term is defined as a mean
squared error for each spectral feature. Phonetic-Prosodic
regulariser over one spectral feature calculation can be defined
as follows.

R(phopro(x), phopro(pθ(x|z))) = (phopro(x)

−phopro(pθ(x|z))2
(3)

The combination of formants, spectral contrast, and spec-
tral bandwidth extracted from the actual pre-processed Mel
spectrogram data is represented as the phonetic and prosodic
vector phopro(x). This vector serves the purpose of enforc-
ing regularization, ensuring alignment with the phonetic and
prosodic attributes of the speech data.

The regularization based on phonetic and prosodic qualities
is applied during the training process [34].

III. EXPERIMENTS

A. Experiment Details

In our proposed methodology, we devised two distinct
models: the Variational Auto-Encoder (VAE) and the danger
classifier, each fulfilling specific roles. The proposed VAE op-
erates as an unsupervised learning tool, generating a condensed
data representation suitable for tasks like data generation and
denoising. However, it is not optimized for direct danger
classification.

Conversely, the danger classifier specialises in precisely
this task, classifying danger based on the acquired features.
It takes encoded features from the danger encoder and asso-
ciates them with corresponding danger and non-danger classes.
This separation allows for independent training processes and
facilitates the exploration of various classifier architectures
without impacting the proposed VAE. This design ensures the
versatility of the learned representation from the proposed VAE
for diverse downstream tasks, including danger classification.

Essentially, the proposed VAE learns a meaningful latent
representation of input data, which the danger classifier uti-
lizes for classification. This clear division of roles enhances

modularity and adaptability in the overall learning process.
Our danger classifier follows a supervised learning paradigm,
categorizing input data into distinct danger and non-danger
classes. Using an emotion dataset containing Mel spectrogram
images and corresponding danger labels, the classifier learns
to map these spectrograms to specific danger labels.

Our prosodic regularized variational auto-encoder model is
trained with emotionally expressive speech audio. We have
innovatively incorporated adjustments between speech and
ambient noise sounds, introducing a novel approach. Notably,
phonetic and prosodic adjustments have never been applied
to this kind of input data within an adapted auto-encoder.
Implementing our model under these conditions enables us to
capture danger data more realistically, emphasizing the value
of a generative model in extending real speech with authentic
sounds often present in genuine danger environments.

Regarding ambient noises, we utilized a total of 40 audio
clips. Ten audio clips were dedicated to glass breaking and
gunfire, randomly interspersed with angry, fearful, and sad
emotional audio clips. Similarly, there were ten audio clips,
for cooking or eating noises and indoor movements (such
as household steps), randomly distributed with happy, calm,
and neutral emotional audio clips. The glass-breaking sounds
varied, encompassing scenarios like breaking a window, ob-
jects falling and glass being thrown until breaking, as well
as handling glasses, considering the potential harm to third
parties in the room or the individual handling them. The gunfire
sounds included various types of guns such as standard guns,
pistols, and rifles. Additionally, we included gunfire from a
distance sufficient to be heard from a room in a house.

For each emotion, we collected four neutral audio clips
and eight audio clips from each of the other five emotions,
per actor. Our dataset comprises a total of 24 actors, ensuring
gender balance. In summary, from each actor, we utilized 40
audio clips, resulting in a total of 1056 audio clips used for
training and testing. In our study, we assumed our data was
initially separated, and we organized it placing speech at the
beginning followed by danger noises, creating 1-second audio
segments. While it is ideal for the data to be pre-separated, we
consider this task accomplished within our work.

In our speech processing experiments, we utilized two cate-
gories of training data: acted speech and real daily conversation
speech nuances. Acted speech, found in audiobooks, involves
actors simulating emotions. In contrast, daily conversation
speech nuances captures natural expressions from sources like
YouTube talk-shows, street conversations, and shop dialogues.
Both types of data were included in our study, restricted to
indoor nuances and speech. Acted speech for testing purposes
was sourced from the RAVDESS database [35], while daily
conversation nuances data was collected from diverse real-
world environment downloaded from Freesound public open
datasets.

Our combined dataset merged the RAVDESS database,
consisting of facial and vocal expressions in North American
English from 24 gender-balanced actors, with custom data
containing emotion- and ambient noise in present in the
environment. The dataset we compiled included 1056 audio
clips used for training and testing, recorded at 44.1kHz, from
12 actors, covering 6 selected emotions out of 8 available

www.ijacsa.thesai.org 1314 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No 11, 2023

emotions. Each emotion was associated with specific patterns,
enhancing authenticity. Sentences from the database, such as
”Kids are talking by the door” and ”Dogs are sitting by the
door,” were utilized. The training and testing data were divided
into 80 percent and 20 percent, respectively.

To maintain dataset consistency, we linked emotions to the
primary dataset. For instance, selecting a ”happy” emotion
from a male actor involved aligning emotional level sentences
with non dangerous ambient nuances, leveraging the similar
vocal characteristics in emotional patterns. Ambient noises
were randomly chosen while ensuring alignment in events that
tend to occur at the same time, or follows to one another,
such as angry, sad or scared speakers followed by a glass
broken or a gunfire. In the initial tests, 40 audio clips were
matched with each corresponding RAVDESS audio danger
pair randomly. Importantly, generative models were minimally
affected by these variations since they were incorporated
during the preprocessing steps.

Both the dangerous environment classifier and the proposed
VAE model utilized convolutional layers on pre-processed Mel
spectrogram data. The input size for the proposed VAE was
128 by 128 (resized) for both training and testing sets. The
proposed VAE’s encoder and decoder consisted of two hidden
layers, reducing data dimensions from 128 to 64 and then to
32 in the encoder, and restoring it from 32 to 64 and finally to
128 in the decoder. The proposed VAE featured a single output
for encoding and reconstructing data. The emotional classifier
received 32-sized data from the proposed VAE encoder and
included an output layer with a Softmax activation function
corresponding to the six mentioned emotion classes reduced
to danger and non-danger opposite classes.

B. Experimental Results

In contrast to traditional methods, our model excels by
achieving remarkable results with a limited dataset while
capturing intricate patterns present in genuine dangerous envi-
ronments. Unlike conventional speech models that require ex-
tensive datasets for comprehensive testing, our model displays
flexibility by leveraging robust, limited nuance patterns present
while in the presence of danger. This adaptability ensures
precise classification without distorting speaker characteristics
or imposing specific positional attributes. Generative models,
including our proposed model, comprehend data distributions,
enabling classification without excessive reliance on additional
patterns.

Nevertheless, our model encounters challenges in gen-
eralizing learned sentences across diverse data. However, it
excels in recognizing similar sentences and/or noises that share
common patterns.

The integration of the phonetic-prosodic regularized VAE
model with speech, ambient noises, and the dangerous envi-
ronment classifier results in enhanced classification accuracy
compared to the vanilla VAE with our classifier. Notably, the
incorporation of well-defined ambient noises such as gunfire
and glass broken like, improves the classification with sad and
neutral speech by reducing false positives and negatives in the
classification. The proposed VAE adeptly reconstructs patterns
collaborating with the classifier, automatically regenerating the

input data. The classifier benefit from the latent space features
of danger, impacting positively in the classification accuracy.

Our model achieves a test accuracy of 0.924 with extended
data, surpassing the vanilla VAE accuracy value of 0.909,
and outperforming the standard CNN-based model with 0.742.
Furthermore, it delivers superior results in fewer epochs,
underscoring its efficiency in accurate emotion classification.
However, when compared with the RavdessDB dataset, our
model with vanilla VAE with the additional classifier achieves
a validation accuracy of 0.575, whereas the proposed VAE with
additional classifier achieves 0.56. There are some ambient
noises such as the open and close of a windows and the metal-
lic stairs steps that could be confused and further misclassified
by AI models, due to their similarity content in other danger
noises such as glass broken and long distance gunfire. For
human earrings could be perfectly estimated, however for AI
models, there is much work to perform and great deals to
enhance.

In summary, the adaptability, efficient learning, and en-
hanced accuracy in environmental hazardous classification
make our model a promising advancement in this field.

The training loss/accuracy and the validation loss/accuracy
of the vanilla VAE model, can be observed in Fig. 2. At
the beginning of the accuracy result image we can observe
a jumping until getting a good accuracy of 1, which is
not observed in our models for training and validation. The

Fig. 2. Training / validation loss and accuracy over epochs of vanilla VAE
model.

confusion matrices for the training and validation of the vanilla
VAE model and the proposed phonetic-prosodic regularized
VAE model with our danger classifier are depicted in Fig. 3 and
4, respectively. The classes “0” and “1” represent “Safe” and
“Dangerous”, respectively. The training confusion matrix for
both models demonstrates accurate predictions for each class.
The imbalance in neutral classification is due to the limited
number of audios in the neutral class in the Ravdess datasets.
During training 287 audios of class “0” (Safe) and 436 audios
of class “1” (Danger) are correctly classified, while 97 audios
of class “0” and 24 audios of class “1” are misclassifications.
For validation, 83 audios of class “0” and 110 audios of class
“1” are correctly classified, while 13 audios of class “0” and
6 audios of class “1” are misclassifications. The training
loss/accuracy and the validation loss/accuracy of the phonetic-
prosodic regularized VAE model with speech and ambient
noises, can be observed in Fig. 5.

The confusion matrix for training and validation of the pro-
posed phonetic-prosodic regularized VAE model with speech
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Fig. 3. Confusion matrix for training the vanilla VAE model.

Fig. 4. Confusion matrix for validation of the vanilla VAE model.

and ambient noises, can be observed in Fig. 6 and 7. Phonetic-
prosodic regularized VAE model with speech and ambient
noises shows better predictions for danger class as “0” and
non-danger class as “1”. During training 384 audios of class
“0” (Safe) and 460 audios of class “1” (Danger) are correctly
classified. For validation, 96 audios of class “0” and 116
audios of class “1” are correctly classified, while there are
no misclassifications.

Fig. 5. Training / validation loss and accuracy over epochs of
phonetic-prosodic regularized VAE model with speech and ambient noises.

Fig. 6. Confusion matrix for training the phonetic and prosody regularized
VAE model with speech and ambient noises.

Fig. 7. Confusion matrix for validation of the phonetic and prosody
regularized VAE model with speech and ambient noises.

IV. CONCLUSION

Our proposed model demonstrates notable success in accu-
rate emotion classification, achieving a test accuracy of 0.924
with extended data—an improvement over the vanilla VAE
accuracy of 0.909 and the standard CNN-based model’s 0.742.
The efficiency of our model is further underscored by its
ability to deliver superior results in fewer epochs. However,
when confronted with the RavdessDB dataset, our model’s
performance, measured by validation accuracy, shows nuances.

The vanilla VAE with an additional classifier achieves
0.575, while the proposed VAE with an additional classifier
achieves 0.56. It is important to note that challenges persist,
particularly in discerning ambient noises like the opening and
closing of windows and metallic stair steps, which may be
prone to confusion and misclassification due to their similarity
with other potentially dangerous sounds. The complexity of
such audio distinctions poses a challenge for AI models,
necessitating ongoing efforts for improvement.
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In summary, our study introduces a method leveraging
generative models, specifically a variational autoencoder, for
identifying hazardous environments through the analysis of
emotional speech and ambient noises.

Our model, integrating phonetic and prosody features,
addresses disparities between input and expected data. As
part of our future research, we aim to explore areas such
as background noise analysis, the separation of speech and
ambient sounds, and the potential extension of our work to
real-time danger processing and analysis.
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