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Abstract—Remote sensing-based object detection faces chal-
lenges in arbitrary orientations, complex backgrounds, dense
distributions, and large aspect ratios. Considering these issues,
this paper introduces a novel method called D2-Net, which
incorporates a transformer structure into a convolutional neural
network. First, a new feature extraction module called dilated
contextual transformer block is designed to minimize the loss of
object information due to complex backgrounds and dense tar-
gets. In addition, an efficient approach using depth-wise separable
deconvolution as an up-sampling method is developed to recover
lost feature information effectively. Finally, the circular smooth
label is incorporated to compute the angular loss to complete
the rotated detection of remote sensing images. Experimental
evaluations are conducted on the DOTA and HRSC2016 datasets.
On the DOTA dataset, the proposed method achieves 79.2%
and 78.00% accuracy in horizontal and rotated object detection,
respectively; it achieves 94.00% accuracy in the rotated detection
of the HRSC2016 dataset. The proposed model shows a significant
performance improvement over other comparative models on the
dataset, which verifies the effectiveness of our proposed approach.

Keywords—YOLOv7; dilated contextual transformer; depth-wise
separable deconvolution; circular smooth label; remote sensing

I. INTRODUCTION

Due to advances in computer processing power, object
detection has developed rapidly over the past decade. This
task typically accomplishes by utilizing single-stage detectors,
typified by the YOLOs models [1], [2], [3], [4], [5], and dual-
stage models exemplified by the RCNN series [6], [7], [8],
[9].

Despite significant advances in generic target detection,
the mission in remote sensing images (RSIs) faces numerous
challenges due to characteristics such as substantial variations
in scale, crowded and small targets, arbitrary orientations, and
large aspect ratios[10]. Therefore, detection using oriented
bounding boxes (OBBs), which can handle object rotation,
has become critical in remote sensing applications. Existing
rotated object detection models are often constructed with pure
convolutional neural networks (CNNs) or CNN-transformer
hybrid structures. And the former has a lot of representative
work. Pixels-IoU Loss improves performance for complex
backgrounds and large aspect ratios[11] but increases training
time. Rotational region convolutional neural network (R2CNN)
introduces joint prediction of axis-aligned bounding boxes and
inclined minimum area boxes to complete text recognition in

any direction[12]. A joint image cascade (ICN) and feature
pyramid network (FPN) can capture semantic features at mul-
tiple scales [13]. Adaptive period embedding (APE) proposed
by Zhu et al. represented oriented targets in a novel way and
length-independent IoU (LIIoU) suitable for long targets [14].
Kim B et al. developed TricubeNet, which locates oriented
targets according to visual cues such as heat maps rather than
oriented box offset regression [15].

Although CNNs have achieved impressive performance,
they are limited by the difficulty of obtaining long-range
dependencies, resulting in deficient performance in remote
sensing detection. In contrast, the unique structure of the
transformer allows it to compensate well for the shortcom-
ings of CNN. Many hybrid CNN-transformer networks have
achieved satisfactory results [16], [17], [18], [19], [20]. The
RoI transformer technique utilizes spatial transformations on
Regions of Interest (RoIs) and learns the spatial transforma-
tion parameters by using OBB annotations as supervision.
This approach results in fewer mismatches during detection
[16]. To address the boundary loss and spatial receptive field
issues in RSIs, Dai et al. developed a rotating object de-
tection transformer-based model (RODFormer) [17]. Another
improved detector, CLT-Det, leverages correlation learning and
a transformer to tackle the problem of large-scale variation and
dense targets [18]. TransConvNet uses a self-attention block
and CNN to aggregate broad and specific details, offsetting
the CNN’s lack of rotational invariance [19]. Li et al. propose
an adaptive points learning method that effectively obtains
geometric information for instances of arbitrary orientations
[20].

The above information suggests that incorporating a trans-
former module into CNN can help overcome the model’s
difficulty in global feature modeling. And recent researches
show that simple hybrid networks can acquire the same effect
as many excellent complex models [21]. Therefore, this pa-
per presents the dilated contextual transformer block (DCoT)
combined with efficient layer aggregation networks (ELAN)
in YOLOv7[5] to improve the model’s feature extraction
capability. DCoT extraction provides more feature information
with a larger receptive field, allowing shallow location infor-
mation to combine effectively with deep semantic information,
which improves detection ability in complex backgrounds and
dense objects. Second, a depth-wise separable deconvolution
(DS-DeConv) module is proposed to enable the model to
generate more diverse feature information during upsampling,
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thereby improving its ability to detect small and dense objects.
Finally, the Circular Smooth Label (CSL)[22] is integrated into
the baseline YOLOv7[5] to complete the rotation detection
process without being affected by boundary discontinuities.
Extensive experiments were conducted on DOTA v1.0[10]
and HRSC2016[23] datasets to validate the efficacy of the
proposed method. The experimental results demonstrate that
the proposed model enhances the detection capacity of RSIs.
Moreover, it achieves real-time detection with a slight reduc-
tion in the number of parameters, striking a balance between
accuracy and speed.

The main contributions of this paper can be summarized
as follows. First, we use DCoT to improve the model’s ability
to obtain contextual information, which enhances the model’s
ability to detect complex backgrounds and dense targets in
RSIs. Second, we use DS-DeConv for upsampling, which
effectively preserves detailed feature information, enhancing
the model’s detecting ability of small objects. Finally, CSL
is integrated into YOLOv7 to complete the rotated detection
of multi-directional objects in RSIs. The proposed model
outperforms other comparative models in detection.

The upcoming sections are structured as follows. Section
2 the related work, including pure CNN and CNN-transformer
hybrid detection models. Section 3 provides a detailed de-
scription of the proposed methods integrated into the D2-
Net. Section 4 is the experimental details and analyses of the
experimental results. Finally, the conclusion is presented in
Section 5.

II. RELATED WORK

A. Pure CNN Detection Models

Depending on whether models generate region proposals,
detection models consist of two types: single-stage detection
methods and two-stage detection algorithms.

The single-stage detection methods directly predict object
class and location without region proposal, resulting in faster
inference and lower computational complexity than two-stage
models. Redmon J et al. proposed the first generation of YOLO
[1], which starts with real-time object detection time. This
model views target recognition as a regression task and detects
the presence of an object by determining whether the object’s
center point falls within a particular grid cell, which is obtained
by dividing the image into multiple grid cells. Inevitably,
it cannot solve problems of dense, small, and large aspect
ratio targets and other issues that inspire other researchers
to make further progress. To improve the accuracy of small
target detection, SSD [24] feeds multiple features extracted
from different layers of the feature extraction model to the
object prediction module. It also simplifies the training process
for targets with different shapes by assigning different scales
and aspect ratios to the prior bounding boxes associated with
each grid cell. The method used convolutional layers instead of
fully connected layers and produced the same results as con-
temporaneous two-stage detection models. More recently, an
enhanced SSD [25] introduces interactive multiscale attention
to acquiring more effective feature representation capability.
Retinanet [26] incorporates focal loss and effectively addresses
the class imbalance problem, resulting in high speed and
accuracy performance.

Two-stage detectors also gained significant attention due to
their remarkable accuracy and robustness. RCNN[6] treats the
detection task as a classification problem. In the first stage,
it extracts region proposals from each image, then predicts
targets’ categories after computing features in CNN. FPN [27]
regards layers with consistent feature map sizes as a stage
and achieves the top-down integration of multi-scale feature
maps through successive stages. It distributes features based
on object scale, merging deep-level semantic information with
shallow-level fine-grained information to perform more accu-
rately. Mask R-CNN [9] innovates RoI alignment to mitigate
date missed owing to feature quantization during the RoI
pooling process.

B. Transformer Detection Models

Since transformers were introduced to computer vision,
many distinctive models emerged. Vision transformers divide
the image into multiple patches, provide them with positional
embedding, and then feed the feature information into the head
for detection.[28] This allows the model to be independent
of image size. DINO improves DETR-like models in terms
of performance and efficiency by using a comparative de-
noising training method, a hybrid query selection method for
anchor initialization, and a look-forward double scheme for
box prediction.[29] Biformer proposes a novel dynamic sparse
attention via bi-level routing for more flexible computational
allocation and content awareness, enabling dynamic query-
aware sparsity.[30]

C. CNN-Transformer Hybrid Detection Models

The emergence of the Transformer structure compensates
for the shortcomings of the pure CNN structure in obtaining
long-range dependencies and contextual information, leading
to numerous Transformer-related models. However, the pure
transformer models have high memory consumption and com-
plexity. So more models fuse the transformer module with
CNN by insertion or replacement to achieve a balance. RoI
transformer [16] conducts spatial transformations on RoIs,
learning transformation parameters supervised by OBB an-
notations, which solves dense RSI targets and RoI-target
mismatches. RODFormer [17] addresses boundary loss and
spatial receptive field lack in RSI detection via a structured
transformer model. CLT-Det [18] presents a correlation learn-
ing detector for solving the problem of large-scale variation
and dense targets. TransConvNet [19] merges a self-attention
block and CNN, aggregating the detailed and specific infor-
mation to compensate for the CNN’s deficiency in rotational
invariance. Li et al. proposed a robust adaptive points learning
methodology to extract the geometric information of instances
of arbitrary orientations [20].

To summarize, the combination of transformer and CNN
can effectively overcome the limitation of CNN structures in
capturing features at varying scales and improve the accuracy
and robustness of object detection.

III. METHODS

In the following parts of this section, we begin with a short
introduction to the overall architecture of the proposed D2-Net,
taking YOLOv7 [5] as the baseline model. Next, we present
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Fig. 1. The overall structure of our network. The SPPCPSC,MP, RepConv are modules of the original YOLOv7. And the detailed composition of each block in
Fig. 1 is illustrated in Fig. 2 and Fig. 3.

Fig. 2. Detailed block consistency of the neck network. The ELAN-D module is depicted in Fig. 4.

a detailed description of the DCoT block and the depth-wise
separable deconvolution. Finally, we briefly discuss the CSL
[22], which is integrated into our model to accomplish the
task of rotation detection. Fig. 1 and Fig. 2 show the overall
structure and detailed block consistency, respectively.

A. The D2-Net Structure

As depicted in Fig. 1, the backbone network extracts
feature maps ci, which are then sent to the neck network,
where i = 3, 4, 5 represents the level of features, and Ci has
a stride of 2i and is 1/2i pixel density of the input image size
W×H . The neck network consists of two modules. The initial
component is the FPN [25] architecture, which propagates
semantic features from higher to lower resolutions. The second
module utilizes the PAFPN [31] module. To compensate for the
loss of fine-grained information caused by resolution reduction,
an ascending feature merging is employed to transfer location
details to feature maps at deeper layers. Furthermore, depth-
wise separable deconvolution makes the most suitable up-
sample method by itself, and the improved ELAN module
is adopted to improve the reception capability of contextual

information of the network. Different scales feature maps
containing detailed semantic and rich localization information
are output to the RepConv block. Finally, the head network
with CSL predicts object categories and position information
regarding the angular problem as classification.

In our method, after being processed by the improved
neck network, the output feature representations with various
resolutions achieve a balance between semantic information in
deep and shallow spatial details, leading to improve detection
performance.

B. Contextual Transformer Block with Dilated Convolution

Drawing inspiration from the self-attention mechanism
in Transformer models, numerous scholars have investigated
the effectiveness of hybrid networks mixed by CNNs and
transformers in computer vision task scenarios [16], [17], [18],
[19]. And as existing researches prove, through the simple
fusion of CNNs and transformers, object detection models pay
more attention to more useful features so that the performances
of those models are improved. Therefore, the hybrid network,
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including the transformer module, has a good prospect in the
RSIs detection task.

The traditional self-attention modules utilize input feature
information obtained from various spatial positions to process
input data. Nevertheless, these modules acquire knowledge
of all possible query-key connections by training on indi-
vidual query-key pairs. This process occurs independently,
without considering the contextual information between their
interactions. The CoT [32] architecture can integrate abun-
dant contextual information and Contribute significantly to
the visual representation of 2D images. Nevertheless, the
standard convolution operation will lose much localization
information in feature processing. Therefore, we replace it with
dilated convolution to form DCoT, which effectively makes
the network increase the receptive field while obtaining more
information. Then we displace the last three CBS modules
of ELAN with DCoT to form ELAN-D (see Fig. 4), which
reduces the calculation amount and FLOPs. By combining the
strengths of the Transformer and CNN, the DCoT module
can capture both global and detailed local information from
input features. This approach improves the network model’s
ability to represent input information features, leveraging the
advantages of each component. It showed the architecture of
the DCoT block in Fig. 3.

Fig. 3. The detailed structure of the DCoT block and its module. H , W , and
C denote the height, width, and number of channels of the input data X , ⊛

denotes local matrix multiplication.

For input feature X , it is processed through three pathways,
namely Q(queries), K(keys), and V (values), to generate more
feature information. The keys undergo dilated convolution
to capture local information and increase the receptive field.
Then, K is concatenated with X to supplement local infor-
mation and passed through a CBR module and a standard
convolution to generate Q. Finally, Q is multiplied with V
and fused with K to obtain the final output Y . The Q, K, and
V can be written as:

Q = [K,X]WCBRWC (1)

K = XWDBR (2)

(a) (b)

Fig. 4. The architectures of the ELAN block and ELAN-D block. (a) shows
the detailed ELAN structure, and (b) shows the detailed ELAN-D block.

V = XWCB (3)

where X is the input feature, W□ are different convolu-
tional blocks.

C. Depth-wise Separable Deconvolution for Up-sampling

During object detection with deep learning, the resolution
of the feature map tends to decrease as the network deepens,
leading to a loss of information. Thus, up-sampling is essential
for an algorithm. In the YOLO algorithms, nearest neighbor
interpolation is employed for up-sampling. However, focusing
solely on the nearest pixels has also resulted in image quality
and details loss, especially for tiny targets. Deconvolution is
also a commonly used up-sampling method. Compared with
neighbor interpolation, it performs better than in preserving
feature information. However, it produces more parameters as
well. Deep separable convolution [33] disassembles traditional
convolution into depth convolution and point convolution,
which can make the model more efficient and parameter
reduction.

In this paper, we propose the DS-DeConv block for up-
sampling. With this method, more diverse pixel values can be
produced when recovering the feature map’s resolution, which
makes the Acquired feature map preserve more details and
features of the original feature map.

We also introduce group convolution and change the fil-
ter size of deconvolution to decrease the parameter quantity
caused by deconvolution. Our DS-DeConv method improves
network model accuracy in up-sampling with a slight increase
in parameters. Fig. 5 illustrates the principal diagram of DS-
DeConv, while the number of deconvolution groups is adjusted
based on the channel quantities in the network.

D. Rotationally Detection

Currently, bounding boxes in object detection consist of
HBBs, rotated bounding boxes, and custom bounding boxes.
The characteristics of remote sensing detection include the
random and diverse directions of the objects to be detected.
And to achieve more accurate detection of these rotating
objects, the rotating bounding box is used for it.
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Fig. 5. The structure of depth-wise separable deconvolution.

The rotated detection method based on parametric regres-
sion mainly consists of the five parameters and the eight-
parameter method. However, in rotation detection, the target
parameters for learning are periodic, which causes the learned
parameters to be located at the boundary periodicity, resulting
in discontinuity issues and an abrupt rise of loss. Therefore,
we use CSL [22] to solve the boundary discontinuity problem,
as depicted in Fig. 6.

Fig. 6. The schematic diagram of the CSL.

The CSL is expressed as follows:

CSL(x) =

{
g(x), θ − r < x < θ + r
0, otherwise (4)

where g(x), r, and θ represents the window function,
radius, and the current bounding box angle, respectively.
By converting angle prediction from a regression task to a
classification task, the boundary discontinuity issue can be
effectively resolved with minimal loss of accuracy.

IV. EXPERIMENTS AND RESULTS ANALYSIS

A. Datasets

1) DOTA Dataset: The DOTA dataset [10] contains 2806
high-resolution aerial images collected from various sensors
and platforms and encompasses 15 categories. It is split into

three subsets for training, validation, and testing, including
1411 images, 458 images, and 937 images, respectively, con-
taining 188282 instances in total. The image size varies from
800× 800 to 4000× 4000 pixels.

2) HRSC2016 Dataset: The HRSC2016 dataset[23] in-
cludes 1061 remote sensing images from six distinct ports.
The dataset is divided into three parts, 436 images for training
(a total of 1207 labeled examples), 444 images for testing (a
total of 1228 labeled examples), and 181 images for validation
(a total of 541 labeled examples). The images have varying
resolution, ranging from 300 × 300 to 1500 × 900 pixels.

B. Implementation Details and Evaluation Index

Considering the adverse influence of high and inconsistent
resolution images, we reprocess the original data of these two
datasets. For the DOTA dataset, we cropped the images to
1024×1024 resolution with 200 pixels overlapping area. Then
15749 images were extracted for training and 5297 images for
evaluation, and the final test results are obtained through the
official evaluation server. The network is trained with the SGD
optimizer in the training process. The lr (learning rate) is 0.001,
and momentum and weight decay are 0.937 and 0.0005. We
train 300 epochs with batch size 16 on two GeForce RTX 3090
GPUs. For the HRSC2016 dataset, we resized all the images to
(768, 768). The network is trained with the SGD optimizer for
training. The learning rate is 0.01, and momentum and weight
decay are 0.937 and 0.0005. We train 200 epochs with batch
size 8 on GeForce RTX 3060 GPU.

We adopt the Average Precision (AP) and the mean AP
(mAP @0.5) metric in the comparative experiments to evaluate
the multi-class detection accuracy. They can be calculated as
follows:

P =
TP

TP + FP
(5)

AP =

∫ 1

0

Pdr (6)

mAP =

∑C
i=1APi

C
(7)

TP is the correctly classified target number, while FP is
the background number recognized as target. The accuracy rate
P can be defined as the proportion of correctly detected targets
among all detection results. The mAP is the average of AP
values of all classes. In the ablation experiments, FLOPs and
speed are also used to estimate the differences in algorithm
capability. Speed is also used to estimate the differences in
algorithm capability.

C. Ablation Experiments

In this section, we choose YOLOv7 as the baseline model
to conduct ablation experiments on the DOTA dataset to verify
the effectiveness of the introduced DCoT block, DS-DeConv,
and CSL. It should be noted that this paper aims to address
the problem of rotated RSI detection, so unnecessary ablation
experiments on horizontal detection are not shown. The batch
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TABLE I. THE RESULT OF THE ABLATION EXPERIMENT

\ YOLOv7 CSL DS-DeConv DCoT FLOPs(G) Speed(ms) mAP/HBB(%) mAP/OBB(%)
1⃝ ✓ 103.4 90.9 73.70 \
2⃝ ✓ ✓ 106.5 43.7 75.60(+1.90) 74.71
3⃝ ✓ ✓ ✓ 106.5 45.2 77.10(+1.50) 75.12(+0.41)
4⃝ ✓ ✓ ✓ 106.4 39.4 76.4(-0.7) 75.76(+0.64)
5⃝ ✓ ✓ ✓ ✓ 106.4 39.4 79.20(+2.10) 77.96(+2.84)

TABLE II. THE DETAILED RESULT OF THE ABLATION EXPERIMENT. PL: PLANE, BD: BASEBALL DIAMOND, BR: BRIDGE, GFT: GROUND FIELD TRACK,
SV: SMALL VEHICLE, LV: LARGE VEHICLE, SH: SHIP, TC: TENNIS COURT, BC: BASKETBALL COURT, ST: STORAGE TANK, SBF: SOCCER-BALL FIELD, RA:

ROUNDABOUT, HA: HARBOR, SP: SWIMMING POOL, HC: HELICOPTER.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP
1⃝ 93.80 73.40 48.00 72.90 71.50 88.80 89.50 94.90 72.10 76.80 67.50 57.60 85.80 62.40 50.50 73.70
2⃝ 98.40 81.70 50.90 59.00 87.50 92.10 97.50 96.80 85.70 70.30 48.10 57.80 87.60 64.00 57.10 75.60
3⃝ 98.40 81.60 48.90 58.60 87.00 91.10 97.20 97.20 82.70 78.70 50.20 59.10 86.50 63.80 75.90 77.10
4⃝ 97.30 78.40 47.90 65.00 84.60 91.20 97.00 96.60 85.40 75.70 57.80 59.50 84.70 58.60 66.90 76.40
5⃝ 98.30 84.50 47.90 61.70 87.70 92.90 97.50 98.10 88.00 76.40 57.60 58.40 86.30 66.40 86.40 79.20

(a)

(b)

Fig. 7. Some contrastive detection results. (a) is the result of the baseline;
(b) is the result of the D2-Net. And the differences are highlighted in red.

size for training was 16, and the performance metrics were
evaluated every 10 epochs during the training process. A total
of 300 iterations were completed to train both the baseline
and improved models. FLOPs, speed, and mAP are used as
evaluation indicators in the experiments. Table I shows the
results of our improvements and Table II shows detailed AP
values of each category conducted on the DOTA dataset. And
the bold font is the best result.

As seen from Table I speed and mAP of the OBB task
are commonly lower than those in the HBB task, which is
attributed to the angle issue when serving the rotated detection
task. Attentively, to ensure the effectiveness of the baseline, its
experiments were all performed at 640 ∗ 640 resolution, while
other experiments were conducted at 1024 ∗ 1024 resolution.
And the baseline speed is 40.98 at 1024 ∗ 1024 resolution.
Despite the speed and mAP having decreased, the effect has
been improved in the actual detection(see Fig. 7). In the hor-
izontal task, compared with the original YOLOv7, 2⃝ 3⃝ 4⃝ 5⃝
showed improvement of 1.9%, 3.4%, 2.7% and 5.5%. Relative

to the YOLOv7 with CSL added, 3⃝ 4⃝ 5⃝ achieved 0.41%,
1.05% and 3.25% improvement. According to Table II, it can
be found that the proposed method has greatly improved in
the categories of small vehicles, harbors, and ships, obtaining
16.2%, 35.9%, and 8% improvement, respectively, compared
with the baseline model.

In Fig. 7, three images are chosen for comparing the
detection results from the dataset. The results of the two rows
are the baseline model, and the D2-Net model proposed in
this paper, respectively. There are plenty of small and dense
objects in the leftmost images of Fig. 7(a) and Fig. 7(b). It
can be seen from the red highlights that the baseline model
loses some targets, while the proposed model detects them
very effectively. The background of the middle image is similar
to the object, and the baseline’s results are affected, while
the proposed model works well. The right image contains
many targets with large aspect ratios, and the D2-Net is more
accurate than the baseline when boxing targets and no targets
are lost.

In Fig. 8(a) and Fig. 8(b), to prove the feature extraction
capability of the DcoT modules, we made the first 32 feature
maps visualization in the same stage of both baseline and the
D2-Net. It can be observed that the proposed model can ef-
fectively eliminate irrelevant information from the background
and has good extraction capability for detecting targets. It is
the DCoT modules that enable the network to fully utilize
feature information and concentrate on detecting targets with
distinguishable features. Fig. 9(a) and Fig. 9(b) show the
first upsampling heatmaps of the baseline and D2-Net. The
latter preserves more useful feature information around objects
and eliminates unnecessary noise. It proves the DS-DeConv’s
effectiveness when detecting small targets.

D. Comparison with other OBB Methods

In this section, we choose the YOLOv7 as the baseline.
We compare our model performance with other state-of-the-art
methods for the DOTA-v1.0 and HRSC2016 datasets. In com-
pared models, RoI Trans [16], RODFormer [17], and CLT-Det
[18] adopted a hybrid network using CNNs and transformer
blocks, and the others applied pure CNNs structure.
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(a) (b)

Fig. 8. The DCoT visualizations of the first 32 features: (a) represents the baseline result, and (b) is the result of the D2-Net.

(a) (b)

Fig. 9. The first upsampling visualizations of the first 32 features: (a) represents the baseline result, and (b) is the result of the D2-Net.

Fig. 10. Visualization of the detection results of our method on the DOTA data set.
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TABLE III. OBB TASK PERFORMANCE COMPARISONS ON THE DOTA-V1.0 TEST SET (AP (%) FOR EACH CATEGORY AND OVERALL MAP @0.5 (%). IN
THE COLUMN, THE BOLD DENOTES THE BEST DETECTION RESULTS

Methods PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP
OBB

R2CNN[12] 80.94 65.67 35.34 67.44 59.52 50.91 55.81 90.67 66.92 72.39 55.06 52.23 55.14 53.35 48.22 60.67
RADet[34] 79.45 76.99 48.05 65.83 65.46 74.40 68.86 89.70 78.14 74.97 49.92 64.63 66.14 71.58 62.16 69.09
Axis Learning[35] 79.53 77.15 38.59 61.15 67.53 70.49 76.30 89.66 79.07 83.53 47.27 61.01 56.28 66.06 36.05 65.98
RoI Trans[16] 88.64 78.52 43.44 75.92 75.92 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56
DRN[36] 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23
RODFormer[17] 89.76 79.64 56.61 71.57 78.60 85.29 89.93 90.53 87.73 83.05 60.19 60.34 66.03 69.75 64.95 75.60
CLT-Det[18] 89.31 85.69 53.97 77.11 79.66 79.01 88.55 90.89 85.36 86.56 63.92 68.47 75.65 70.65 66.91 77.45
CSL[22] 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17
Ours 90.54 82.99 43.20 55.39 81.71 87.40 89.82 90.80 83.58 89.71 76.62 72.27 75.00 67.57 82.87 77.96

HBB
GraphFPN[37] 89.32 68.88 50.41 60.42 70.91 79.45 86.18 90.80 83.11 80.35 53.01 60.98 75.95 64.36 58.71 71.52
SCRDet[38] 90.18 81.88 55.30 73.29 72.09 77.65 78.06 90.91 82.44 86.39 64.53 63.45 75.77 78.21 60.11 75.35
Mask OBB[39] 89.69 87.07 58.51 72.04 78.21 71.47 85.20 89.55 84.71 86.76 54.38 70.21 78.98 77.46 70.40 76.98
YOLOv7[5] 93.80 73.40 48.00 72.90 71.50 88.80 89.50 94.90 72.10 76.80 67.50 57.60 85.80 62.40 50.50 73.70
CGL[40] 89.53 82.85 56.53 76.52 79.29 83.39 88.19 90.90 86.67 85.07 63.40 68.23 77.82 78.77 50.23 77.16
Ours 98.30 84.50 47.90 61.70 87.70 92.90 97.50 98.10 88.00 76.40 57.60 58.40 86.30 66.40 86.40 79.20

Fig. 11. The visualization of the detection results of our method on the HRSC2016 dataset.

1) Results on DOTA-v1.0: As reported in Table III, The
comparative experiments on the DOTA dataset consist of the
OBB and HBB tasks. In the OBB task, we achieved the
mAP of 77.96%, which gains 1.79% higher than the CSL
with CNNs structure, and 0.51% higher than CLT-Det with
a hybrid framework. Moreover, the prediction performance
on densely distributed small objects, like storage tanks and
small vehicles, has improved enormously, reaching 89.71% and
81.71%, which are 3.02% and 2.05% higher than the second
best, respectively. Besides, soccer ball fields, large vehicles,
and helicopters also perform well, reaching 76.62%, 87.4%,
and 82.87%, respectively. In the HBB task, the proposed model
is 5.5% (from 73.70 to 79.20%) higher than the baseline.
The top-3 mAP is plane, tennis court, and ship, achieving
98.3%, 98.1%, and 97.5%, respectively. In general, the above
statement demonstrates the effectiveness of our model, and
Fig. 10 visualizes some detection results of our method on the
DOTA dataset.

2) Results on HRSC2016: The HRSC2016 dataset consists
of plenty of oriented ships. As shown in Table IV, many
classical detection algorithms have attained excellent perfor-
mance in this dataset, such as R2CNN [12], RoI Trans [16],
CLT-Det [18], CSL [22], Axis Learning [35], and Oriented
R-CNN [41]. Our model uses the A block for enhancing
feature extraction and depth-wise separable deconvolution for

TABLE IV. PERFORMANCE COMPARISONS ON THE HRSC2016 OBB
TASK. THE BEST RESULT IS HIGHLIGHTED IN BOLD

Methods mAP Resolution
R2CNN[12] 73.07 800×800

Axis Learning[35] 78.15 800×800
RoI Trans[16] 86.20 512×800

SLA[42] 89.51 768×768
CLT-Det[18] 89.72 512×800

CSL[35] 89.62 800×800
Oriented R-CNN[41] 90.50 1333×800
Attention-Points[43] 90.59 1333×800

Ours 94.00 768×768

upsampling. It achieves an mAP value of 94.00% with the
768 × 768 resolution, outdoing several of the mentioned
methods. And the visualization of some detection results is
depicted in Fig. 11.

V. CONCLUSIONS

In this paper, we proposed an effective one-stage model
called D2-Net for rotated remote sensing image detection
based on the YOLOv7 model. we innovate the DCoT block
combining dilated convolution with contextual transformer
block for feature extraction and enhancing the ability to detect
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Objects with tiny sizes and dense distribution of RSIs, which
can fully utilize the global and local information of objects and
enlarge the receptive field. Then, We designed the DS-DeConv
for up-sampling, which mitigates the effects of complex back-
grounds and low resolution. It improves the resolution and
quality of the up-sampled feature maps, enabling the detector
to capture the details and shapes of the targets more effectively.
Additionally, the CSL is employed for determining the angle
loss and accomplishing the prediction of rotated objects in
RSIs. In the end, we conducted experiments on the DOTA
and HRSC2016 datasets to prove the effectiveness of D2-
Net. Although detection capability surpasses other commonly
employed algorithms, the speed and FLOPs has decreased.
Thus, we will further enhance the feature representation and
improve the model’s detection speed with a more lightweight
model.
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