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Abstract—The automated generation of speech audio that
closely resembles human emotional speech has garnered signif-
icant attention from the society and the engineering academia.
This attention is due to its diverse applications, including au-
diobooks, podcasts, and the development of empathetic home
assistants. In the scope of this study, it is introduced a novel
approach to emotional speech transfer utilizing generative models
and a selected emotional target desired for the output speech. The
natural speech has been extended with contextual information
data related with emotional speech cues. The generative models
used for pursuing this task are a variational autoencoder model
and a conditional generative adversarial network model. In
this case study, an input voice audio, a desired utterance, and
user-selected emotional cues, are used to produce emotionally
expressive speech audio, transferring an ordinary speech audio
with added contextual cues, into a happy emotional speech
audio by a variational autoencoder model. The model try to
reproduce in the ordinary speech, the emotion present in the
emotional contextual cues used for training. The results show
that, the proposed unsupervised VAE model with custom dataset
for generating emotional data reach an MSE lower than 0.010
and an SSIM almost reaching the 0.70, while most of the values
are greater than 0.60, respect to the input data and the generated
data. CGAN and VAE models when generating new emotional
data on demand, show a certain degree of success in the evaluation
of an emotion classifier that determines the similarity with real
emotional audios.
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I. INTRODUCTION

The creation of empathetic systems, capable of understand-
ing and responding to human emotions, marks a significant
advancement in artificial intelligence. Empathetic systems hold
the promise of transforming human-machine interactions, of-
fering not just responses but genuine understanding. However,
this task presents a profound challenge. During speech pro-
cessing, the subtle nuances of human emotions often dissipate,
making it a complex endeavor to imbue artificial intelligence
with empathy. Preserving these emotional characteristics dur-
ing speech processing remains an open issue in the field of
AI.

It is expected in the near future to have home assistants
capable of not only recognizing when people surrounded are

feeling sad, happy, or anxious but also responding with appro-
priate empathy [1]–[3]. Such a system could offer invaluable
support especially to the vulnerable population, providing
comfort to the lonely, reassurance to the anxious, joy to the
despondent and safety to children and seniors. The potential
applications are vast, extending beyond homes to healthcare,
customer service, and mental health support. Achieving this
level of artificial empathy stands at the frontier of AI research,
requiring innovative solutions to bridge the gap between raw
data and the rich emotional tapestry of human speech.

There are several models proposed to achieve this target,
including generative and non generative models.

Generative models have emerged as valuable tools for the
synthesis of speech audios. These models offer the unique
ability to create audio data that captures the nuanced patterns
and complexities of human speech. Variational Auto-Encoders
(VAEs) [4], [5] for instance, provide a structured approach
to encoding and decoding data, allowing for the generation
of diverse, high-quality audio samples. Conditional Generative
Adversarial Networks (cGANs), on the other hand, introduce
conditional factors, enabling the generation of speech data
with specific attributes, such as different emotional states or
gender-specific characteristics. These generative models excel
in creating natural-sounding speech and have the potential to
revolutionize applications like voice assistants, speech synthe-
sis, and emotional speech generation.

Despite their promising capabilities, generative models also
come with inherent challenges. One notable drawback is the
risk of generating audio samples that, while coherent, may
lack the nuanced emotional expressiveness present in natural
human speech. The delicate interplay of pitch, rhythm, and
intensity that defines emotional speech can be challenging
to replicate accurately. Furthermore, generative models may
struggle with gender-specific patterns, such as pitch variations
and resonance differences between male and female voices.
Additionally, ensuring the generated audio remains consistent
with the intended emotional state or gender identity presents
a significant challenge. These difficulties underscore the need
for continued research and development in the field of gener-
ative speech modeling, particularly in the context of emotion,
gender, and natural speech synthesis [6], [7].

There are several non-generative models used for speech
synthesis, including Hidden Markov Models (HMMs) [8],
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Long Short-Term Memory (LSTM) networks [9], and deep
neural networks (DNNs) [10], [11]. While these models have
proven effective in certain aspects of speech processing, they
exhibit limitations that generative models, like VAEs and
cGANs, can address.

One limitation of traditional non-generative models, such
as HMMs and LSTMs, is their reliance on a fixed set of
acoustic features or linguistic representations. These models
often struggle to capture the rich nuances of natural speech,
including emotional variations and gender-specific character-
istics. The adaptability of non-generative models to generate
highly expressive and contextually rich speech remains limited.
Furthermore, these models may require extensive data pre-
processing and manual feature engineering, making them less
flexible and more labor-intensive in comparison to generative
models.

Generative models, on the other hand, have the potential to
overcome these limitations [12]–[14]. They can operate in an
end-to-end fashion, learning complex patterns without the need
for extensive feature engineering. By leveraging latent spaces,
conditional information, and adversarial training, generative
models can synthesize speech that better resembles natural
human communication, including emotional variations and
gender-specific traits. This adaptability and capacity to capture
nuanced characteristics make generative models an attractive
choice for applications where high-fidelity and emotionally
expressive speech synthesis is crucial, such as the creation
of diverse empathetic systems. Nonetheless, it is essential to
recognize that both generative and non-generative models have
their own strengths and limitations, and the choice between
them depends on specific task requirements and constraints
[15]–[21].

In this work, two generative models such as variational
auto-encoder and conditional adversarial network were uti-
lized, to train speech audio data, contextual audio data and an
emotional selected target on demand, to generate an emotional
speech audio with the target emotion. In this proposed case
study, we also show how a neutral speech audio with a
specific gender and a specific contextual data input (laughing
by giggling, angry by shouting, crying sound, etc.) is converted
into a happy speech audio automatically by the variational
auto-encoder model. For the creation of the testing data, a
TTS system is used by selecting a gender specific voice and
an utterance close in pronunciation to the trained data.

To the best of our knowledge previous research works did
not propose an emotional speech transfer on demand that train
extended generative models such as VAE and CGAN with
speech data and contextual related cues in gender and emotion.
Furthermore, a TTS system is utilized to generate testing data
for the proposed case study with a trained variational auto-
encoder model and additional contextual cues.

The paper is structured as follows. Subsequent sections of
the introduction section, sequentially detail the proposed ap-
proach and associated experiments, incorporating comprehen-
sive information on data preprocessing, experimental method-
ologies, and results. Following this, the case study section is
introduced to illustrate a practical application, featuring the
integration of real Text-to-Speech (TTS) samples with the uti-
lization of the proposed model and custom data. The following

discussion section serves to expound on the evaluations and
results pertaining to both models, delineating inherent limi-
tations and identifying potential avenues for further research
or enhancements. Lastly, the conclusion section encapsulates
final remarks on the presented works and outlines prospective
future endeavors.

II. PROPOSED APPROACH

In this proposed work, the functionality of a variational
autoencoder model and a conditional adversarial network
model were extended, for learning emotional patterns that have
associated emotional contextual audio data, such as crying,
shouting and laughing by giggling sounds. The sad emotion
is associated with the crying sound, the angry emotion with
the shouting sound, the happy emotion with the laughing by
giggling sound and a normal emotion has a simple whisper
sound of 1 second pattern.

The dataset used is an extended Ravdess dataset. The
Ravdess database contains 24 professional actors (12 female,
12 male), vocalizing two lexically-matched statements in a
neutral North American accent, “Kids are talking by the door”
and “Dogs are sitting by the door” for speech and sing. Speech
includes neutral, calm, happy, sad, angry, fearful, surprise,
and disgust expressions. The selected data from Ravdess
dataset is audio-only with 1 second recoding for 24 actors,
equally gender balanced, with additional 24 equally balanced
contextual audios that match by gender and by emotion.

The selection of contextual data associated is random,
forming a total of a 2 second recording for input data. How-
ever, the model cannot distinguish this associated data, since is
using it directly as a complete input data. The contextual audio
data is firstly divided by gender, into female and male data.
Even though the speech audio used correspond to a female or
male specific voice, we did not associate the same exact voice
by gender with the same pattern male/female voice. This is due
to the generalisation of the voice we do have while laughing,
crying or shouting and singing, where the voice is difficult to
be perfectly recognised.

The generative models used benefit in different ways. The
variational autoencoder model will keep training in an unsu-
pervised manner, because after training, once we input a data
with a specific associated contextual audio, and an additional
gender specific voice speech input, the variational autoencoder
will try to reconstruct the emotion present in similar audios.
Therefore, trying to reconstruct the weak emotional speech part
into a stronger emotional speech. For example, when people
speech is happy, people use to laugh by giggling, and these two
correlated actions we expect that our models will capture the
essence and associate both action into one emotional concept.
Certainly, other external noises from the context could be learnt
by the models, however there will be not correlation with the
emotional speech we emphasised.

The generative adversarial network in counterpart, will use
the same input data but to feed the discriminator that during
training passes information to the generator loss, and therefore
to the generator itself. In this case, we do not expect the
generator of CGAN model to be as good as the VAE encoder
and decoder. This assumption is based on the CGAN model
specifications, where after training, we ask the generator to
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generate a happy audio but we cannot ensure which samples
it will create in relation to gender and utterance given. This
issue is improved when we train data by gender (male or
female, but not both of them), or by specific utterance which
is very restricted in terms of the usage of TTS normal emotion
generated input audios. Therefore, for the case study we will
show an example based on a variational auto-encoder model
instead, when giving a TTS neutral audio voice as an input,
setting the gender and the utterance that is expected to be
reconstructed.

The VAE and CGAN models will try to transfer the
emotion in a new audio file. It is important to mention the
limitations we feat with this approach. The first limitation
is the reconstruction of the input and the generation of the
target data. The input data origin was initially separated, which
causes that the output received by each model should also be
treated separately at the end. This will cause the data to be
more noisy and more difficult to reconstruct as an audio file.

Another important point is that these models produce
noisy results with complex data, and speech data enter in
that category. Times series data cannot be manipulated such
as the image data because rotating, flipping, augmenting or
shifting the data for images will not affect the final position
or structure of the objects in an image, but it will completely
corrupt our times series data. Therefore, we made a great effort
while passing through these models to leave the data without
manipulating it, whenever was possible during the emotional
transfer process.

The details of the architecture of the proposed models are
shown in Fig. 1, 2 and 3, respectively.

The input data of VAE and CGAN architectures, is a
combined audio data between a 1 second speech audio from
Ravdess dataset audios, with a connected 1 second associated
emotional contextual information in a form of audio. There-
fore, the two audios are concatenated into one audio with
2 seconds of total duration and the same sample frequency,
44100Hz. As previously mentioned, the relation between the
speech data and the contextual information is the weakly emo-
tional pattern present in Ravdess dataset, and specifically, the
gender present in each speech audio data. As it was mentioned,
it significantly differs from using any other unrelated noise
that would not be useful in terms of our target, which is the
emotional transfer. For our case study we extracted the log
Mel spectrogram data and converted them into images.

Our proposed model architecture for VAE for training and
testing can be observed in Fig. 1 and 2, respectively. The basic
architecture of the VAE model has two associated networks,
called encoder and decoder, which are connected by the latent
space representing the probabilistic part of the model.

The proposed CGAN model’s architecture can be observed
in Fig. 3. In this figure we can identify two main parts, that
serve as networks, the generator and the discriminator. The
discriminator will output the fake or real classification affecting
the discriminator loss or the generator loss being mutually
exclusive results. The generator cannot see directly the input
images which make it more difficult to learn the emotional
patterns in the input audios, but while receiving the generator
loss information it will learn to generate them as closer as
possible to the original input data. In this case we assumed

Fig. 1. Proposed architecture of the VAE model for training.

Fig. 2. Proposed architecture of the VAE model for testing.
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some restrictions in the gender training to be male or female
and not both of them, because CGAN is not good in terms of
managing multiple conditions at the same time. In the testing
of the CGAN model, the generator of the model is directly
asked to produce the emotional data by emotion selected label.

Fig. 3. Proposed architecture of the CGAN model for training.

In each model, the loss function is affected by the phonetic
regularization with the extraction of the formants F1 to F5,
presents in the Mel spectrogram data.

III. EXPERIMENTS

A. Data Preprocessing

The input audio data before transforming into log Mel
spectrograms can be observed in Fig. 4. This data were used
for training, for the VAE and CGAN model to recognizse the
happy speech and the contextual data that are usually present
in a normal conversation. We limited our research to a one
side speaker to be analysed.

The first audio A represents the speech of a male speaker
from the Ravdess dataset that has an original duration of 3
seconds. The utterance in this happy speech is saying “Dogs
are sitting by the door”. The identification number in the
original Ravdess dataset is “03-01-03-01-02-01-09” and is
open to the public. This happy audio does not sound happy to
our ears, since it is part of a weak emotional dataset, which is
one of the reasons why the emotional transfer is complex to
achieve in time series data. As can be observed in the image,
the audio A contains zero data in the beginning, and at the end
of the speech. With the aim to eliminate the non-useful data,
the audio was reduced into a 1 second audio, while remaining
the speech content.

The second audio B remains in 1 second, since originally
each contextual data has 1 second of duration. This represents
naturally what happens with human beings, since usually
our laughing takes about the same time in being produced.
The combination results in a total duration of 2 seconds for
the concatenated audio C. These preprocessing tasks provide

the desired adjustment, while maintaining a consistent audio
quality.

The contextual information related to emotion is added
as follows. We selected 6 audios per gender and per weakly
emotion to add to any weakly emotional audio that matches
by gender and emotion class, and chosen randomly. This is
possible, given that, while singing or making emotional noises,
we can not perfectly distinguishing these pattern belonging
gender and voice. The duration of each audio is 1 second, its
sampling rate is 44100Hz and its format extension is WAV. For
happy emotion, we selected 6 female giggling patterns and 6
male giggling patterns, in total 12 audios for constructing the
emotional extended audios. In the case of sad emotion, we
selected 6 female crying pattern audios and 6 male crying
pattern audios. When selecting the angry audios, we picked 6
female and 6 male shouting audios. However for neutral pattern
audios we selected 6 female and 6 male whisper and natural
English speaking pauses, such as, “Emmmm. . . .”, “AHA. . . .”,
“Ahhhh. . . .”, “cause. . . . . . .”, and so on, where the utterance is
almost not listened.

All the training and testing audios were denoised, trimmed
and adjusted by volume, especially the audio B, since many
artefacts were present. This is because it is custom data,
downloaded freely from the Freesound site. Generally, custom
data has many artefacts content present in the audios.

Fig. 4. Original audios A and B representing a happy speech, preprocessed
and combined into one audio output file C.

The following step after gathering the clean concatenated
audio is to transform the audio into frequency domain. The log
Mel spectrogram image data generated for testing, as a case
study can be observed in Fig. 5. The sampling rate is 44100Hz,
the number of FFTs is 2048, with a hop length of 512. For
the VAE model the target size is a 128 by 128 image. For
the CGAN we selected the target 28 by 28, because CGAN
generates better results with smaller sizes of images.

Before training, the pixel values were normalized to a (-
1, 1) interval instead of using RGB values ranging from 0 to
255. Firstly, larger input values may slow down or disrupt the
learning process of neural networks and setting them to smaller
values is good practice [21]. Secondly, this normalization was
required since the generator outputs tanh activations within the
same interval.
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Fig. 5. Input log Mel spectrogram data example for the VAE and CGAN
model. Happy emotion male speaker with original Ravdess dataset extended

with male giggling sound.

B. Experimental Details

Two distinct methodologies were introduced, involving the
VAE and CGAN models. The initial approach utilizes the VAE
model in an entirely unsupervised manner, whereas the second
approach employs the CGAN model in a supervised capacity.

Through the experiments, it was demonstrated that en-
hancing the input dataset with contextual attributes yields
superior outcomes compared to explicit labeling or enforced
supervision. Despite CGAN being a supervised model, it also
benefits the core task of emotional transfer. This advantage
is attributed to the data complexity being reduced when well-
patterned contextual data is linked with the original input. Such
simplification is only achievable with contextual information
related to emotions and speaker gender.

In CGAN’s labeled input-guided framework, we must as-
sign appropriate labels to guide the generation of new samples.
The model needs to be trained with labels that are familiar
to it during the training phase. In contrast, the VAE utilizes
extended input data without the explicit management of labels;
instead, it separates classes by observing the data’s intrinsic
patterns during training.

To generate data from a specific class using the afore-
mentioned CGAN model, several structured steps need to be
followed. Firstly, a one-hot encoded label vector representing
the desired class is created. This label must align with the
format of labels in our training dataset. Secondly, random
latent vectors are generated as input for the generator, sampled
from a normal distribution. Thirdly, the one-hot encoded label
vector is concatenated with the random latent vectors to form
the conditional input for the generator. In the final step, the
generator is employed to create data samples based on the
prepared conditional input.

C. Experimental Results

The training dataset comprises 263 samples, while the test
dataset consists of 66 samples. The distribution of training
data is as follows: 37 samples for neutral audios, 72 for happy
audios, 75 for sad audios, and 79 for angry audios. In the
testing set, there are 11 neutral audios, 20 happy audios, 18 sad
audios, and 17 angry audios. The limited number of ”neutral”
samples is due to the smaller quantity available in the Ravdess
dataset for each actor, requiring additional steps to balance
the dataset, such as cloning voices and creating neutral audios
with different utterances and intensities. This task, although
valuable, falls beyond the scope of our current research and
could be explored in future studies.

The computational environment used for testing included
a RAM occupancy of 5.38GB out of 51GB and a disk space
usage of 26.83GB out of 166.77GB. The experiments utilized
a NVIDIA T4 GPU provided by Google Compute Engine.
The execution time for the CGAN model training over 10,000
iterations was 20 minutes. For the VAE models, the training
process involved 10,000 epochs and took approximately 20
minutes. The programming language employed for these tasks
was Python version 3.

To assess the VAE model, an unsupervised approach lack-
ing predefined target classes, two metrics were utilized, mean
square error (MSE) and structural similarity index (SSIM)
between the original and generated data. In MSE, lower values
indicate higher similarity between images, with 0 representing
a perfect match, although realistically, a small value signifies
good similarity. SSIM values range from -1 to 1, where 1
signifies a perfect match. Values closer to 1 indicate strong
similarity, and a value above 0.9 is generally considered a
robust match. It is essential to consider that ideal values can
vary based on the specific domain and image quality.

VAE model results of training data after 10000 epochs, for
original Ravdess dataset can be observed in Fig. 6, 7, and 8.
The training and validation loss of the variational autoencoder
trained with the original Ravdess dataset for 10000 epochs can
be observed in Fig. 6. The training loss starts in a high value
105 from epoch 1 and the validation loss starts in 10 in the
epoch 1. The values are steadily decreasing over the epochs as
expected. The data generated by VAE model in 10000 epochs

Fig. 6. Training and validation loss of the variational autoencoder after
10000 epochs of training with Ravdess dataset.

of training can be observed in Fig. 7. The generated results

Fig. 7. VAE model random generation of different classes of data after
10000 epochs of training with Ravdess dataset. “O” stands for original, “G”

for generated, and the emotion class is the 3rd number from left to right
reading (01:Neutral, 03:Happy, 04:Sad, 05:Angry).

comparison with Ravdess dataset can be seen in Fig. 8.
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Fig. 8. VAE results comparison with Ravdess dataset. MSE and SSIM
measured data results.

CGAN model results of training data after 10000 epochs,
for original Ravdess dataset can be observed in Fig. 9, 10,
11, 12 and 13. CGAN loss for training data over 10000
epochs can be observed in Fig. 9. The angry, sad, happy and

Fig. 9. CGAN loss over 10000 epochs of training.

neutral emotional data generated by CGAN model after 10000
epochs of training can be observed in Fig. 10, 11, 12 and 13,
respectively.

Fig. 10. CGAN model generation of data class 1 (neutral emotion) after
10000 epochs of training.

Fig. 11. CGAN model generation of data class 3 (happy emotion) after
10000 epochs of training.

VAE proposed model results after 10000 epochs of training,
with Ravdess dataset extended with contextual information
data, can be observed in Fig. 14, 15 and 16. The training

Fig. 12. CGAN model generation of data class 4 (sad emotion) after 10000
epochs of training.

Fig. 13. CGAN model generation of data class 5 (angry emotion) after
10000 epochs of training.

and validation loss of the variational autoencoder trained with
Ravdess dataset extended with contextual information data
for 10000 epochs can be observed in Fig. 14. The training
loss starts in a lower value above 101 from epoch 1 and
the validation loss starts also in a lower value of 100 in the
epoch 1, in comparison with the training and validation loss
of original Ravdess dataset in Fig. 6. The values are steadily
decreasing over the epochs as expected. The data generated

Fig. 14. Training and validation loss of the variational autoencoder after
10000 epochs of training with the Ravdess dataset extended with contextual

information data.

by VAE model in 10000 epochs of training can be observed
in Fig. 15. The generated data improved the previous original
Ravdess training with VAE, since the quality of each image
increased significantly while remaining the same training and
testing conditions. The generated results comparison after

Fig. 15. VAE model random generation of different classes of data after
10000 epochs of training with contextual information extended data. “O”
stands for original, “G” for generated, and the emotion class is the 3rd

number from left to right reading (01:Neutral, 03:Happy, 04:Sad, 05:Angry).
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10000 epochs of training with Ravdess dataset extended with
contextual information data, can be seen in Fig. 16. CGAN

Fig. 16. VAE results comparison with the proposed custom dataset. MSE
and SSIM measured data results.

proposed model results after 10000 epochs of training, for
Ravdess dataset extended with contextual information data can
be observed in Fig. 17, 18, 19, 20 and 21. CGAN loss for
training data over 10000 epochs can be observed in Fig. 17.
It shows that the loss starts with a higher value and decreased
accordingly, as it is expected for loss functions in both sides,
with no strange jumpings or increasing values from both sides.
It also shows a convergence and a estabilization point. The

Fig. 17. CGAN loss over 10000 epochs of training.

angry, sad, happy and neutral emotional data generated by
CGAN model after 10000 epochs of training can be observed
in Fig. 18, 19, 20 and 21, respectively. The generated data
improved the previous original Ravdess training with CGAN,
since the quality of each image increased significantly.

Fig. 18. CGAN model generation of data class 1 (neutral emotion) after
10000 epochs of training.

To validate the accuracy of the generated data, we de-
veloped an emotional classifier program, trained on the same
input data utilized in both the VAE and CGAN models. The
classifier’s accuracy indicates the models’ ability to generate
emotional data that can be correctly classified into specific

Fig. 19. CGAN model generation of data class 3 (happy emotion) after
10000 epochs of training.

Fig. 20. CGAN model generation of data class 4 (sad emotion) after 10000
epochs of training.

emotion classes. It is important to remark that this measure can
not obtain a 100 percent of accuracy due to the lack of train
and validation over this fresh generated data. Therefore, the
generated data is non-trained and unseen data for the classifier,
however it will give us a notion of how much we should
adjust the classifier and the models to improve the results.
Most importantly, it will result in all classes zero classified, if
it is not able to detect any emotional generated data.

When testing both models with the original Ravdess input
data, it is anticipated that the generated results to be weakly
classified by the classifier. This expectation arises because the
Ravdess data, as previously discussed, is inherently weakly
emotional. Moreover, it is important to acknowledge the in-
herent noise in the outcomes produced by generative models,
particularly concerning audio data features such as log Mel
spectrogram values.

The VAE generated data was sent to the classifier for
testing generation accuracy. The results can be observed in
Fig. 22. The results of the classifier after training with original
Ravdess data shows a 20.51 percent of correct classification of
emotions in a total of 39 tested generated data. Even though
the result is low in comparison with a perfect accuracy, as
explained above, it is expected that the classifier cannot easily
extends its classification with these non-trained unseen data.
This is the evidence that our CGAN model in Fig. 23, is trying
to reconstruct the data getting a better emotional generated
data’s result, in comparison with VAE model. Additionally,
the classifier needs to be adjusted for future works to measure
more precisely our data.

The CGAN generated data was sent to the classifier for
testing generation accuracy. The results can be observed in

Fig. 21. CGAN model generation of data class 5 (angry emotion) after
10000 epochs of training.
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Fig. 22. Validation confusion matrix for VAE model generated data after
classified by an emotional classifier.

Fig. 23. The results of the classifier after training CGAN with
extended data shows a 25.641 percent of correct classification
of emotions in a total of 39 tested generated data. Even though
the result is low in comparison with a perfect accuracy, as
discussed above, it is expected that the classifier cannot easily
extends its classification with these non-trained unseen data.
This is the evidence that our model is trying to gradually
reconstruct the data and the classifier needs to be adjusted for
future works to measure more precisely our generated data.

Fig. 23. Validation confusion matrix for CGAN model generated data after
classified by an emotional classifier.

During this evaluation, we anticipate the input data to be
classified in closer proximity to the generated data. However,
we cannot definitively confirm how the generative models
interpret the essential features in the presence of additional
contextual information. Nevertheless, the generated data is
expected to align more closely with its input data due to
the utilization of paired information. For instance, the weak
speech emotion in the Ravdess dataset, when associated with
the extended contextual information like a female voice’s
giggling pattern linked to a happy emotion, should be more
accurately classified as happy. In comparison with the vanilla
VAE model and standard CGAN model trained with original
Ravdess dataset, the results are clearly improved. The results
shows also that more efforts are required for future works in
order to better represent the reconstructed emotional audios.

D. Case Study

As an extension of the emotional data generation capa-
bilities with the proposed VAE and CGAN models, in this

case study we showcase the specific emotion transfer with
additional conditions such as specific gender, specific voice,
and specific utterance, with an additional change in emotions,
from neutral to happy, sad, angry respectively. Since the
variational auto-encoder model is more flexible in terms of
receiving new input data to regenerate, we reutilized the pre-
trained proposed variational auto-encoder model.

Furthermore, the utterances in this study were generated us-
ing a Text-to-Speech (TTS) system, which inherently produces
a “Neutral” emotion speech audio since it lacks emotional
variation. Converting “Neutral” audio to another “Neutral”
audio is not necessary for our evaluation; it would not yield
any change and only indicates the models’ understanding of
elements like whispering or speaking pauses. Although our
training data includes neutral sounds, such as whispers or slight
delays in speech, they are not utilized in our TTS systems for
testing purposes.

For specific test scenarios, assuming the model is trained,
we paired our TTS-generated voice with additional emotional
audio, creating samples as follows:

1) ’Bob is by the door’ with female giggling.
2) ’Bob is by the door’ with male giggling.
3) ’Bob is by the door’ with female shouting.
4) ’Bob is by the door’ with male shouting.
5) ’Bob is by the door’ with female crying.
6) ’Bob is by the door’ with male crying.

To demonstrate the practicality of this approach, a “Neu-
tral” emotional speech is converted into a “Happy” emotional
speech on demand through a TTS system, by using the pro-
posed variational auto-encoder model with custom data for the
reconstruction. A selected raw audio data generated for testing
can be seen in Fig. 24. The TTS system utilizes a neutral MAC
PC male voice “Alex”, uttering “Bob is by the door”. The
duration was condensed to one second for consistency across
speech data. The TTS voice is neutral without any emotional
inflection. For this use case, the utterance was varied from the
trained sets u1 (“Kids are talking by the door”) to u2 (“Dogs
are sitting by the door”). This variation illustrates the model’s
ability to transfer emotion even with slight differences in the
trained words.

Fig. 24. Raw audio A is a Neutral speech audio generated by a TTS MAC
OS male voice system. Original audio B representing a happy emotion by
giggling. Preprocessed audios were combined into one audio output file C.
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The following step after gathering the clean concatenated
audio is to transform the audio into frequency domain. The
log Mel spectrogram image data generated for testing, as a
case study can be observed in Fig. 25. The sampling rate is
44100Hz, the number of FFTs is 2048, with a hop length of
512. For the VAE model the target size is a 128 by 128 image.

Fig. 25. Input log Mel spectrogram example for the VAE. Neutral speech
with additional happy contextual data.

The result of the VAE model emotion transfer can be
observed in Fig. 26, when given the happy bob spectrogram
generated, the proposed VAE model try to reconstruct it with
happy emotion.

Fig. 26. Result of the VAE model emotion transfer from neutral to happy
speech sample.

In this implementation, an unsupervised model was used
to infer the emotion that should be reconstructed by contextual
information. This task was developed with the proposed VAE
model. The TTS speech was created with 1 second plus a
related audio extension of 1 second, depending of the gender
and the emotion desired. These samples show how the emotion
is reconstructed among the trained utterances and among
similar utterances with words composition variability. The
utterance selected for this testing is as follows. u3 : “Bob is
by the door”.

The total data size used are 329 audios, the train data size
is 263 audios, transformed into log Mel spectrogram images.
The test data size is 66. This case study showcase one sample
among 6 samples presented. The size of each image is 128
by 128. The initial VAE training is performed with grayscale
images. Each audio has a sampling rate of 44100Hz, which
makes it more difficult to recover the audio after passing to
Mel spectrogram.

Some pending tasks are required such as volume regular-
ization and denoising tasks, however it can be seen how the

contextual information such as giggling in a male speaker is
greatly represented and trying to recover the left side of the
speech with the same accent and pauses that the male speaker
represents.

IV. DISCUSSION

To assess the VAE model, an unsupervised approach lack-
ing predefined target classes, two metrics were utilized, mean
square error (MSE) and structural similarity index (SSIM)
between the original and generated data. In 66 reconstructed
audios for the proposed VAE model, when testing the custom
data, the MSE is lower than 0.010 and the SSIM is almost
reaching the 0.70, while most of the values are greater than
0.60. For the Ravdess dataset, the MSE of the reconstruction
is lower than 0.020 and the SSIM is almost reaching the
0.70, while most of the values are higher than 0.50. This
signify that the proposed data along with the proposed model
is getting better similarity in the reconstruction of tested data,
while the mean squared error is lower which emphasizes the
improvement in the reconstruction by using this proposed
unsupervised model.

An external tool was created to measure the level of
reconstruction in terms of emotions. This tool is an emotional
classifier, trained with the same emotion classes and the same
input data size and characteristics as the proposed models.
Certainly the reconstructed data from CGAN by setting a
specified emotion label and the TTS generated data used as
input for the VAE make them different than the trained data
of the created tool. However, this tool can state if the generated
data by both models is not considered emotional at all by the
classifier showing near zero values in the accuracy. This tool
help to test the research results while avoiding the subjective
measures by human resources. The VAE and the CGAN
generated data were sent to the classifier for testing generation
accuracy. The results of the classifier after training with custom
data shows a 20.51 percent of correct classification of emotions
in a total of 39 tested generated data for VAE. The results of
the classifier after training CGAN with custom data shows a
25.641 percent of correct classification of emotions in a total
of 39 tested generated data. Even though the result is low
in comparison with a perfect accuracy, as explained above,
it is expected that the classifier cannot easily extends its
classification with these non-trained unseen data.

The results of the classifier also show that there is a need
of a better vocoder function in future improvements of this
work, and that the output should be better adjusted by a
volume regularizer and an extra denoise function. This is due
to the weak points present in generative models, where a better
vocoder could probably increase the accuracy in the emotional
classifier results, after generating new unseen and non-trained
data. The new generated data is still identified as different for
the emotional classifier, because the data just created posses
different characteristics such as moved characteristics from the
original input data that the classifier usually consumes.

The treatment of the utterances could be improved in
future works, such as injecting the words spoken and its
characteristics right after the generative models resampling.
This is because the generative models tend to loose the accents
of each spoken word during the transition from original data
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to resampled data. However, a strong point of this research to
mention is the extension of the trained utterances to similar
utterances that have some words in common but differ in
others. As it is known, with models such as HMM, RNN and
LSTM, the utterances are totally fixed without any possibility
of extension. This also make the models fail in the presence of
utterances that contain different words, even when the general
pronunciation of the words is similar and the sentence has the
same duration. In comparison with other datasets, we used
the Toronto emotional speech set (TESS) with two female
speakers and a variation in utterances such as “Say the word
book”, “Say the word bought”, or other variations from 200
target words for the emotions happy, sad, angry and neutral.
SSIM and MSE results with our proposed model and extension
with contextual cues show, for female speaker’s emotions,
similarity to the evaluated Ravdess dataset with 0.7 and 0.020,
respectively. Therefore, demonstrating the ability to be robust
and scalable to other utterances and voice characteristics. For
future works, the evaluation with other datasets that include the
male counterpart audios is also required for better determine
the level of scalability by gender.

V. CONCLUSION

In this research, a method for transferring emotional speech
utilizing generative models and specific emotional targets for
the output was presented. The generative models employed in
this task include a variational autoencoder model and a condi-
tional generative adversarial network model. Although further
refinement is needed to enhance the accuracy of generated
emotional speech, both proposed models have demonstrated
the ability to reconstruct emotional speech with a certain
degree of quality.

In the presented case study, it was utilized an input voice
audio, a desired utterance, and user-selected emotional cues
to automatically transform ordinary speech into emotionally
expressive speech audio using a variational autoencoder model.
Remarkably, the proposed VAE model achieved this task with-
out requiring specific labels to control the generated output,
highlighting the efficiency of this approach with unsupervised
learning. The model attempts to replicate the emotion inherent
in the emotional contextual cues used for training directly into
the ordinary speech. The findings reveal that the suggested un-
supervised VAE model for generating emotional data achieves
an MSE below 0.010 and an SSIM nearly reaching 0.70. The
majority of values surpass 0.60 in comparison to both the input
and generated data. When generating new emotional data on
demand, CGAN and VAE models demonstrate a discernible
level of success in the evaluation of an emotion classifier,
determining its similarity to real emotional audios used for
training.

In future works, the primary focus will be on refining
the generative models further and implementing additional
strategies to achieve a better balance between real contextual
information and emotionally rich speech. This ongoing effort
aims to bridge the gap between human understanding and
artificial agents’ comprehension in the essence of a desirable
authentic speech.
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