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Abstract—Graph Neural Networks (GNNs) have emerged as
powerful tools for analyzing complex structured data, including
social networks, biological networks, and recommendation sys-
tems. However, their susceptibility to adversarial attacks poses
a significant challenge, especially in critical tasks such as node
classification and link prediction. Adversarial attacks on GNNs
can introduce harmful input graphs, leading to biased model
predictions and compromising the integrity of the network.
We propose a novel adversarial attack method that leverages
the combination of K-Means clustering and Class Activation
Mapping (CAM) to conduct subtle yet effective attacks against
GNNs. The clustering algorithm identifies critical nodes within
the graph, whose perturbations are likely to have a substantial
impact on model performance. Additionally, CAM highlights
regions of the graph that significantly influence GNN predictions,
enabling more targeted and efficient attacks. We assess the
efficacy of state-of-the-art GNN defenses against our proposed
attack, underscoring the pressing need for robust defense mech-
anisms. Our study focuses on countering attacks on GNN net-
works by utilizing K-Means clustering and CAM to enhance the
effectiveness and efficiency of the adversarial strategy. Through
our observations, we emphasize the necessity for stronger security
measures to safeguard GNN-based applications, particularly in
sensitive environments. Furthermore, our research highlights
the importance of developing robust GNNs that can withstand
adversarial attacks, ensuring the reliability and trustworthiness
of these models in critical applications. Strengthening the ro-
bustness of GNNs against adversarial manipulation is crucial for
maintaining the security and integrity of systems that heavily
rely on these advanced analytical tools. Our findings underscore
the ongoing efforts required to fortify GNN-based applications,
urging the research community and practitioners to collaborate
in developing and implementing more robust security measures
for these powerful neural network models. .

Keywords—Graph neural networks; adversarial attacks; K-
Means clustering; class activation mapping; robustness; defense
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I. INTRODUCTION

Graph Neural Networks (GNNs) have become indispens-
able tools in the analysis of complex graph-structured data,
with applications ranging from social network analysis to rec-
ommendation systems and bioinformatics. While their ability
to discern intricate relationships within graphs is advantageous,
it also exposes them to potential adversarial attacks. In critical
applications, such as social network analysis, adversarial ma-
nipulations could result in the propagation of misinformation

or compromise user privacy [14,15,32-35]. Similarly, attacks
on user-item interaction graphs in recommendation systems
may lead to the tailored manipulation of content recom-
mendations. In bioinformatics, adversarial perturbations on
molecular interaction networks pose a threat to the accuracy of
predictive models, especially in the identification of potential
drug candidates [17-20]. The security implications outlined
above necessitate a robust defense strategy to safeguard GNNs
in real-world applications. Addressing the identified security
issues becomes imperative to ensure the reliability of GNNs
[23,25-30,36]. The proposed defense approach employs key
metrics such as success rate, transferability, and computa-
tional efficiency for assessment. Preliminary evaluations reveal
competitive success rates, highlighting the method’s efficacy.
Notwithstanding the critical need for GNN security, exist-
ing research falls short in providing comprehensive defense
strategies, especially tailored to the unique challenges posed
by graph data. The primary contribution of this work lies in
introducing a novel adversarial attack methodology specifically
designed for GNNs. This approach integrates K-Means Clus-
tering and Class Activation Mapping to introduce structured
perturbations, offering a distinctive combination of clustering
and node importance information. In the realm of counterat-
tack advancements, where existing methods face limitations
in black box scenarios, the introduction of the k-Clustering
Adversarial Manipulation Approach (CAMA) dataset becomes
crucial. CAMA, designed to be receptive to contrasting exam-
ples, coupled with a novel approach leveraging GNNs, show-
cases promising potential in creating contradictory examples.
This innovation contributes significantly to the development of
more effective and robust counterattack techniques, marking
a crucial advancement in the field of adversarial machine
learning for GNNs.

II. BACKGROUND AND MOTIVATION

The escalating integration of Graph Neural Networks
(GNNs) across various applications has prompted heightened
concerns regarding their susceptibility to adversarial attacks.
In the current landscape of research, there is a discernible
dearth in the comprehensive comprehension of adversarial
threats and corresponding defenses specifically tailored for
GNNs. This lacuna underscores the paramount importance of
fortifying GNNs against adversarial exploits to ensure their
robustness in real-world deployment scenarios [2,6,7]. Our
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research endeavors are motivated by the imperative to bridge
the existing gaps in GNN security studies. Departing from
conventional adversarial methodologies, we introduce a pio-
neering approach that intricately employs K-Means Clustering
and Class Activation Mapping (CAM). This innovative amal-
gamation injects a fresh perspective into the realm of structured
perturbations in GNNs, with the explicit goal of crafting more
potent adversarial attacks. The principal contribution of our
work lies in the conception of a novel adversarial attack
methodology meticulously tailored for GNNs. The incorpo-
ration of structured perturbations, facilitated by the synergistic
interplay of K-Means Clustering and Class Activation Map-
ping, distinguishes our approach from conventional adversarial
techniques. This integration not only enriches the arsenal of
adversarial methods but also provides unique insights into the
vulnerabilities inherent in GNNs. Our methodology, leverag-
ing both graph clustering and node importance information,
furnishes unparalleled insights into GNN vulnerabilities. This
heightened understanding empowers the creation of targeted
and impactful adversarial examples, thereby propelling the
advancement of adversarial research within the domain of
graph-based models. Our research contributes to an elevated
echelon of GNN robustness evaluation by ushering in a novel
adversarial generation methodology. By seamlessly integrating
K-Means Clustering and Class Activation Mapping, our ap-
proach stands as a testament to innovation in the field, offering
unique perspectives and a more nuanced understanding of
GNN vulnerabilities.

III. RELATED WORK

In recent years, white-box attack research has wit-
nessed significant growth, focusing on three main categories:
discovery-based attacks, interference attacks, and attacks caus-
ing network malfunction. These attacks are classified based
on the role of the “responsible model” within a specific field,
addressing challenges associated with unsupervised learning.
While extensive work has been conducted on white-box at-
tacks, this literature review specifically delves into Genera-
tive Adversarial Networks (GANs) and Convolutional Neural
Networks (CNNs). These deep learning methods, known for
their effectiveness, are critical in understanding and countering
white-box attacks.

Among various attack methods, the Fast Gradient Sign
Method (FGSM) is prominent. Operating by taking a one-step
gradient of the responsible damage function, FGSM facilitates
the rapid creation of “opposite” examples to the original
input. Despite its popularity, FGSM doesn’t always guarantee
success, leading to exploration of more sophisticated strategies.
Theoretical and practical challenges in unsupervised learning
contribute to the complexity of white-box attack research, with
a focus on GANs and CNNs offering nuanced insights and
potential countermeasures.

In advancing attack strategies, an iterative approach like
the Repeated Fast Gradient Method (I-FGSM) and Projected
Gradient Descent (PGD) has been explored. Researchers,
such as [31] and [8], iterate FGSM multiple times to create
more robust adversarial examples, enhancing overall attack
efficacy. Additionally, [24] introduced the Momentum-based
Iterative Fast Gradient Sign Method (MIFGSM), marking a
significant improvement over FGSM in terms of performance

and robustness. These advancements are crucial for evaluating
the robustness and security of neural networks, as researchers
actively work on developing sophisticated attack and defense
techniques.

In the context of white-box attacks, image-dependent tar-
geted attacks stand out as potent threats. Recent research has
seen a surge in understanding and addressing vulnerabilities in
neural networks, emphasizing the urgency of exploring adver-
sarial threats. The offensive class, as defined by [39], focuses
on discovering adversarial examples within disturbance bud-
gets to ensure misclassification by the targeted neural network.
This underscores the importance of image-dependent targeted
attacks and the ongoing efforts in exploring GANs and CNNs
for effective countermeasures. The study in [8] introduced
the Momentum Iterative Fast Gradient Method (MIFGSM), an
extension that incorporates momentum into the Iterative Fast
Gradient Sign Method (I-FGSM). This augmentation proves to
be a substantial enhancement to the attack method, resulting
in the generation of more effective and robust adversarial
examples.

These competitive attack methodologies play a crucial role
in assessing the reliability and security of neural networks.
Ongoing research endeavors are dedicated to advancing so-
phisticated attack techniques, concurrently emphasizing the
formulation of effective defensive strategies to mitigate the
impact of such attacks.

In the domain of white-box attacks, image-dependent tar-
geted attacks are recognized as the most potent form of
adversarial threats. The exploration of adversarial attacks,
particularly within the realm of white-box attacks, has garnered
significant interest and witnessed notable progress.

Responsive attacks can be broadly categorized into three
primary types, as delineated by [1]: Alarm-based attacks,
which seek to discover counterexamples within a specified
disturbance budget, inducing the neural network to misclassify
with high confidence. Examples of such attacks encompass the
Fast Gradient Sign Method (FGSM), Iterative Fast Gradient
Method (I-FGSM), and Projected Gradient Descent (PGD).
Dong et al. [8] introduced an enhanced iteration, the Momen-
tum Iterative Fast Gradient Method (MI-FGSM).

This line of research is dedicated to minimizing interfer-
ence and discovering as few counterexamples as possible to
deceive neural networks without triggering alarms. Various
methods have been explored for this purpose:

The research in [5] focuses on minimizing interference
using simpler linear functions. Carlini and Wagner [10,22]
propose a method that comes close to the goal by utilizing
simpler linear functions. [3] assumes linearity near the input,
contributing to the minimal interference approach.

Generative attacks employ reproductive methods to create
adversarial examples. Noteworthy approaches include:

The study in [21,38] utilizes a second neural network for
adversarial example generation. GANs are employed to esti-
mate the original distribution of images, providing contrasting
examples.

The study in [11] introduces the CAMA framework for ad-
dressing the creation of competing examples through extensive
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adversarial manipulation of graphs. Key points include:

The study encompasses various aspects related to graph
structures, node properties, and their manipulation. The ap-
proach adopted focuses on facilitating hierarchical manipu-
lation of graph structures and node properties. In parallel,
the research delves into the realm of Graph Class Activation
Mapping (Graph-CAM), with the primary objective of lever-
aging this variant to specify node-level importance in graphic
classification tasks.

A significant component of the investigation involves
heuristic algorithms, demonstrating their efficacy in achieving
successful performance in attributive and structural attacks.
Notably, these algorithms operate under strict alarm budgets,
highlighting their robustness and reliability in the context of
the study.

The findings of the research underscore the significance of
both node-level and subgraph-level measures. This comprehen-
sive approach is crucial for preserving competitive interference
imperceptibility. The conclusion drawn from the study empha-
sizes the necessity of considering measures at multiple levels
to ensure a holistic understanding and effective management
of graph structures and node properties in various applications.

The research focuses on systemic reciprocity attacks,
specifically targeting Graph Neural Network (GNN)-based
link prediction models and leveraging the SEAL algorithm.
One key aspect of this investigation involves counterexample
generation, with the primary task being the creation of coun-
terexamples to optimize and deceive SEAL into generating
false predictions. This strategic approach aims to understand
and exploit potential vulnerabilities in the link prediction
model under the influence of systemic reciprocity attacks.

An integral strength of the study lies in the utilization
of SEAL’s y-decomposition heuristic. This heuristic theory
involves approximating graph structural properties of local
subgraphs, rendering it particularly effective against systemic
reciprocity attacks. By leveraging the y-decomposition heuris-
tic, the research aims to enhance the understanding of the
structural intricacies of the targeted link prediction models,
thereby enabling more precise and impactful attacks. Overall,
the study’s emphasis on counterexample generation and the
strategic use of SEAL’s y-decomposition heuristic underscores
its dedication to unraveling and exploiting vulnerabilities in
GNN-based link prediction models under the influence of
systemic reciprocity attacks.

This comprehensive approach integrates linear function-
based methods, generative attacks, and the CAMA framework,
emphasizing the significance of node-level and subgraph-
level measures to preserve imperceptibility against adversarial
manipulation. Leveraging SEAL further strengthens defense
against systemic reciprocity attacks on GNN-based models.

The research in [37] underscores the relevance of com-
petition attacks on GNN-based link prediction models. The
approach gradually disrupts the network graph by manipulating
its structure and utilizes a link-building mechanism along with
the y-decomposition heuristic theory HERMESTIC for a more
efficient competitive attack. Experimental results reveal the
significant impact of planned counterattacks, posing a threat

to the efficacy of SEAL league predictions, particularly with
limited information about complex network diagrams.

The successful portability of attacks against various link
prediction heuristics from the existing literature is highlighted,
demonstrating the effectiveness and broad applicability of the
proposed competitive methods. Existing competing attacks
(mentioned in [3, 9, 4, 12]) often operate in a “white box”
configuration, assuming full access to the machine learning
model parameters. However, the passage notes the unrealistic
nature of this setting when the model parameters are unknown
to the attacker, emphasizing the importance of considering
realistic scenarios, especially in the “black box” configuration.

Competitive attacks on link prediction algorithms showcase
the need for improved resilience. Proposed approaches demon-
strate effectiveness across different heuristics, emphasizing the
importance of realistic scenarios, particularly in the “black
box” configuration where the attacker lacks full access to
model parameters. The findings contribute to a deeper under-
standing of challenges and potential impacts of link prediction
algorithms in real-world applications.

In a point-based black box arrangement, attackers query the
output of the softmax layer and obtain the final classification
result (x) for a given input. Challenges arise in using traditional
gradient-based approaches due to the lack of well-defined
gradients in discontinuous models like decision trees. The
study in [10] proposes a point-based attack that reconstructs the
loss function, addressing challenges in well-defined gradients.
The research in [16] introduces innovations like adaptive
random gradient estimation and a well-trained autoencoder to
enhance the efficiency of point-based attacks. The study in [13]
proposes a point-based attack using an evolutionary algorithm,
demonstrating effectiveness in both point-based and hard label
black box settings.

The passage emphasizes the need for robust black box
attack strategies for machine learning models, noting the limi-
tations of existing methods. A novel approach leveraging graph
neural networks (GNNs) connects networks, combining the
strengths of the K-means algorithm and reinforcement learning
methods. GNNs serve as an effective competitive example
generation tool, bridging the gap between optimization and
learning approaches in adversarial machine learning research.
Advances in recent literature [10] exploring black box ar-
rangements, specifically point-based configurations, highlight
the challenges of attacking models with limited parameter
information, addressing these challenges through zero-order
optimization techniques [16] and evolutionary algorithms [13].
These advances contribute to the development of robust black
box attack strategies, emphasizing the need for effective com-
binations of optimization and learning methods in adversarial
machine learning research [40-44].

IV. METHODOLOGY

The architecture of the GNN is intricately designed to
closely emulate the structure of the target neural network that
is the subject of compromise. This GNN operates within the
context of adversarial attacks. When presented with an input
image, information about its correct class, and details about
an incorrect target class, the GNN engages in an iterative
process. At each iteration, the GNN proposes a directional
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update that aims to maximize the difference between the logits
(output scores) of the incorrect target class and the correct
class. The primary objective of this GNN is encapsulated in
the “adversarial loss function.”

The adversarial loss function serves as a crucial guiding
principle for the GNN’s optimization process. This function
essentially formulates the goal of the GNN: to find the optimal
perturbation or modification to the input image that maximizes
the divergence between the logits associated with the correct
class and those corresponding to the incorrect target class. The
term “logits” refers to the raw, unnormalized output scores
produced by the neural network before the application of a
softmax function.

In essence, the GNN’s architecture is tailored to navigate
the input space in a way that induces misclassification. By
proposing perturbations that push the decision boundaries
of the target neural network, the GNN seeks to generate
adversarial examples – instances where the neural network
makes incorrect predictions despite minimal alterations to the
input.

This adversarial approach involves an intricate interplay be-
tween the GNN’s architecture, the specifics of the target neural
network, and the definition of the adversarial loss function.
The GNN learns to exploit the vulnerabilities and intricacies
of the target model, demonstrating a nuanced understanding
of the decision boundaries in the neural network it aims to
compromise.

The architecture of the GNN is a sophisticated framework
designed for crafting adversarial examples. It leverages the
interplay of input perturbations and the intricacies of the target
neural network to induce misclassification, with the adversarial
loss function guiding the optimization process.

1. Initialization: - Before the evaluation process begins, the
GNN is initialized with the target neural network’s parameters,
which are the parameters it aims to compromise. - These
parameters may include weights, biases, and other network-
specific parameters.

2. Forward Pass: - An input image, along with its correct
class label and an incorrect target class label, is fed into the
GNN. - The GNN processes this input image through its layers,
which involve graph convolutional operations, and produces
an output, typically in the form of class activation scores. -
Class activation scores represent the GNN’s predictions for
each class, indicating the likelihood of the input belonging to
each class.

3. Computation of Gradients (Backward Pass): - After ob-
taining predictions, a backward pass is performed to compute
the gradients of the adversarial loss with respect to the input
image. - Gradients capture the sensitivity of the adversarial
loss to changes in the input image. - The adversarial loss is a
measure of the difference between the logits associated with
the incorrect target class and the correct class. The GNN aims
to maximize this loss during the adversarial attack.

4. Adversarial Loss Maximization: - The computed gradi-
ents guide the GNN in the direction that maximally perturbs
the input image to induce misclassification. - The GNN iter-
atively updates the input image in this direction, aiming to

maximize the adversarial loss. - This process is repeated for a
specified number of iterations or until a convergence criterion
is met.

5. Assessment of Effectiveness: - Throughout this process,
the GNN monitors the changes in the adversarial loss and ob-
serves the impact on the class predictions. - The effectiveness
of the GNN is assessed based on its ability to successfully
generate adversarial examples that lead to misclassification by
the target neural network. - Success is measured by observing
changes in the predicted class, ideally causing the neural
network to classify the input image into the incorrect target
class.

6. Comparison and Analysis: - The generated adversarial
examples can be compared against baseline images to quantify
the extent of the perturbation and evaluate the stealthiness of
the attack. - Statistical measures or metrics may be employed
to compare the success rates and the impact on different
classes.

Below are some key points which discusses a common
practice in the existing literature related to the evaluation of
adversarial attacks.

The evaluation practices for adversarial attacks in image
classification models are conventionally centered around as-
sessing success rates on a predefined set of images, incor-
porating a specific perturbation size during the evaluation
process. However, a recognized limitation in this approach
raises concerns about its ability to offer a comprehensive
evaluation of a model’s robustness under adversarial attacks.
This acknowledgment stems from the understanding that the
fixed set of images, coupled with a uniform perturbation size,
may not adequately capture the nuanced and diverse challenges
posed by different instances within the dataset.

The highlighted variability in the robustness of images
further accentuates the limitations of the current evaluation
paradigm. Some images naturally exhibit resilience to attacks,
leading to instances of attack failures, while others prove
more susceptible, resulting in successful adversarial attacks.
The inherent diversity in image responses to attacks poses
a challenge to accurately discerning significant differences in
success rates between various adversarial attack methods. In
light of these considerations, there is a clear indication that
a more comprehensive evaluation methodology is imperative.
Such an approach should account for the distinct responses
of different images to adversarial attacks, thereby fostering
a deeper and more nuanced understanding of the model’s
vulnerability across diverse scenarios.

A. Proposed Architecture

In the context of the MNIST dataset, each image is concep-
tualized as a node in a graph. The relationships between these
nodes are established through edges, which have the potential
to capture spatial or contextual connections between pixels.

1. Graph Neural Network (GNN) Architecture

The architecture of a Graph Neural Network (GNN) typ-
ically comprises multiple graph convolutional layers. These
layers play a crucial role in processing information from neigh-
boring nodes and subsequently updating node representations
based on the received information.
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2. Forward Propagation Process

The initialization phase involves assigning each node,
representing an image in MNIST, with a feature vector typ-
ically derived from pixel values. The forward propagation
within the Graph Neural Network (GNN) includes the repeated
application of graph convolutional layers. The mathematical
representation of this process is given by the equation:

h(l+1)
v = σ

 ∑
u∈N(v)

W (l)h(l)
u + b(l)

 (1)

Here, h(l)v denotes the representation of node v at layer l,
N(v) represents the neighbors of node v, W (l) is the weight
matrix at layer l, b(l) is the bias term, and σ is the activation
function.

The aggregation step involves combining information from
neighboring nodes based on the graph structure, ensuring that
each node’s representation incorporates information from its
immediate context. The final layer of the GNN produces the
output, utilized for various tasks such as classification or
regression. The underlying mathematical insight lies in the
graph convolutional operation, where each node’s represen-
tation is updated by considering the representations of its
neighbors, weighted by learned parameters. These parameters
W (l) and b(l) are learned during the training process through
backpropagation and optimization algorithms.

3. Training

The training process of Graph Neural Networks (GNNs)
involves feeding labeled data through the network, computing
a loss function, and updating parameters using optimization
techniques like gradient descent. This iterative training ap-
proach allows the network to learn and adjust its parameters
to improve its performance on the given task.

The utilization of this architecture enables GNNs to effec-
tively capture and leverage the inherent graph structure in the
MNIST dataset. This capability makes GNNs a potent tool for
tasks such as image classification, where understanding and
utilizing relationships between images are crucial for accurate
predictions.

It’s important to note that the specifics of the GNN ar-
chitecture and mathematical operations may vary based on the
exact implementation and variations in GNN models. Different
approaches and variations in the model design can influence
how the network processes information and learns from the
input data.

4. Proposed Architecture Diagram

The provided Fig. 1 describes the proposed architecture
diagram of the approach, illustrating the GNN layer update,
class activation scores, and K-Means clustering steps.

B. Graph Representation:

Each image in the MNIST dataset is symbolically depicted
as a node within a graph, resulting in a total number of
nodes equivalent to the dataset’s image count. The structural

Fig. 1. Architecture of proposed approach.

foundation of this graph is established by edges, which serve
as connectors between nodes. The interpretation of these
connections is flexible, allowing the model or designer to
attribute meaning to the relationships encoded within the
graph. The edges, in particular, may encapsulate spatial con-
nections reflective of the pixel arrangements in the images. One
conceivable interpretation involves connecting pixels in close
proximity within an image. By doing so, the graph becomes
a representation capable of capturing the spatial relationships
embedded in the pixel structure of the images, contributing to
a richer and more nuanced understanding of the dataset.

The utilization of a Graph Neural Network (GNN) implies
a deliberate leveraging of the underlying graph structure for the
processing and analysis of data. GNNs, typically employed for
such tasks, function by aggregating and updating node repre-
sentations through graph convolutional layers. In the specific
context of MNIST, this entails considering the pixel values of
neighboring nodes when updating the representation of a given
node, emphasizing the importance of spatial relationships in
image data.

In the realm of contextual connections, the edges in the
graph extend beyond spatial relationships, potentially rep-
resenting contextual connections between images based on
shared similarities or patterns within the dataset. GNNs,
equipped with the capacity to learn and capture intricate
contextual information from these graph connections, prove
particularly advantageous for tasks like image classification,
where understanding the context of an image significantly
influences performance.

The structured graph representation aligns with the inherent
structure of the images in the MNIST dataset, with nodes
symbolizing individual images and edges encapsulating rela-
tionships between them. Depending on the GNN’s design, the
graph may exhibit dynamic characteristics, with edges adapting
during the training process based on learned relationships.

www.ijacsa.thesai.org 1405 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 11, 2023

This approach facilitates the flexibility to capture both
spatial and non-spatial features, depending on how edges are
defined. The graph’s adaptive learning, inherent to GNNs,
allows the model to dynamically adjust to the unique char-
acteristics of the MNIST dataset, effectively leveraging both
spatial and contextual information for enhanced performance
in image-related tasks. In essence, the graph representation
within the context of a GNN provides a structured and
adaptable framework for comprehensively understanding the
relationships between images, crucial for tasks like image
classification.

C. Graph Neural Network (GNN) Architecture:

The primary purpose of graph convolutional layers in
a GNN is to process information from neighboring nodes
and update node representations. A typical GNN architecture
involves multiple graph convolutional layers stacked on top
of each other. Each layer processes information from the
neighboring nodes of each node in the graph. Neighboring
nodes are determined based on the edges in the graph.The
forward propagation begins with the initialization of node
representations. Each node is initialized with a feature vector,
often derived from the input data (e.g., pixel values for
images).The forward propagation involves the repeated appli-
cation of graph convolutional layers. In each layer, information
from neighboring nodes is aggregated to update the node
representations.

Mathematically, the update process for the representation
of a node v at layer l + 1 can be represented as:

h(l+1)
v = σ

 ∑
u∈N(v)

W (l)h(l)
u + b(l)

 (2)

Here, h(l)
v is the representation of node v at layer l, N(v)

represents the neighbors of node v, W (l) is the weight matrix
at layer l, b(l) is the bias term, and σ is the activation function.

The aggregation step in a Graph Neural Network (GNN) is
a crucial process that involves consolidating information from
neighboring nodes based on the underlying graph structure.
This ensures that each node’s representation is enriched with
insights from its immediate context. Following the aggregation,
the updated node representations capture both the inherent
features of the node itself and information gleaned from
its neighbors. This dual consideration enables the GNN to
factor in both local and global information during the learning
process.

Moving to the output layer, it serves as the final stage where
the GNN produces task-specific outputs, such as classifications
or regression predictions. The operations within this layer are
tailored to the specific task at hand, involving transformations
of the learned representations into meaningful predictions.

The learning process involves the adaptation of parameters,
including weight matrices (W (l)) and biases (b(l)), through
techniques like backpropagation and optimization algorithms.
This adaptive learning mechanism empowers the GNN to
dynamically adjust its parameters based on the patterns and
relationships discerned from the graph-structured data.

The flexibility and adaptability of the GNN architecture
further contribute to its efficacy. The graph structure, inherently
flexible, allows the model to adapt to various graph structures,
with edges and connections potentially changing during train-
ing based on the learned relationships. The intermediate layers
of graph convolution provide task-agnostic representations of
nodes, rendering the GNN suitable for a spectrum of graph-
related tasks.

A GNN equipped with multiple graph convolutional layers
systematically processes information from neighboring nodes,
updating node representations, and adeptly capturing both local
and global context. The adaptive learning mechanism ensures
the GNN’s proficiency in learning and adjusting parameters,
enabling effective modeling of relationships within graph-
structured data.

D. Forward Propagation Process:

In the context of the MNIST dataset, the graph represen-
tation treats each image as a node. The initialization process
begins by assigning a feature vector to each node, where this
vector serves as the initial representation of the corresponding
image.

The source of features for each node lies in the pixel values
of the corresponding image. These pixel values, which convey
intensity or color information at different locations within
the image, are typically organized in a grid-like structure.
Depending on the design of the Graph Neural Network (GNN)
and the specific task requirements, preprocessing steps may
be applied to the pixel values. These steps could include
normalization to a specific range or other transformations.

The feature vector itself is a numerical representation
that encapsulates essential characteristics of the image. Each
element of the vector corresponds to a specific feature or pixel
value, and the dimensionality of this vector is determined by
the number of elements it contains. This dimensionality is a
critical factor influencing the GNN’s capacity to capture and
process information effectively.

During the training process, the parameters of the GNN,
including those related to the initialization of the feature
vectors, are learnable and adjusted based on observed patterns
in the data. The adaptability of the GNN allows it to dynam-
ically learn and update node representations as it processes
information and identifies relevant patterns within the graph-
structured data.

In task-specific scenarios, the initialization process may be
tailored to the particular task the GNN is designed for. For
instance, in image classification tasks, the feature vector should
be crafted to capture characteristics pertinent to distinguishing
between different classes of images. The quality of these initial
feature vectors significantly influences the GNN’s learning
process, as well-initialized representations provide a robust
foundation for the model to build upon during training.

The update process for the representation of a node v in a
graph neural network (GNN) at layer l+ 1. Let’s break down
the components of the equation:

www.ijacsa.thesai.org 1406 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 11, 2023

h(l+1)
v = σ

 ∑
u∈N (v)

W (l)h(l)
u + b(l)

 (3)

h
(l+1)
v : This is the representation of node v at layer l+ 1.

It captures the information about the node after the application
of the graph convolutional layer.

N (v): Represents the neighbors of node v in the graph.
The sum is taken over all neighboring nodes.

W (l): The weight matrix at layer l. This matrix contains
learnable parameters that are adjusted during the training
process to capture the relationships between nodes.

h
(l)
u : The representation of a neighboring node u at layer l.

It contributes to the update of the central node’s representation.

b(l): The bias term at layer l. It provides an additional
learnable parameter that influences the node representation.

σ: The activation function. It introduces non-linearity to the
model. Common choices include the sigmoid (σ(x) = 1

1+e−x ),
hyperbolic tangent (σ(x) = tanh(x)), or Rectified Linear Unit
(ReLU) (σ(x) = max(0, x)).

The equation describes the aggregation of information from
neighboring nodes using the weight matrix W (l), and the result
is passed through an activation function σ. This operation is
a fundamental step in the forward propagation of a GNN,
allowing the model to capture and update node representations
based on the graph structure.

This mathematical formulation is crucial for understanding
how information flows through the graph convolutional layers,
enabling the GNN to learn hierarchical and contextual repre-
sentations of nodes in the graph.

The aggregation involves combining information from
neighboring nodes based on the graph structure. This step en-
sures that each node’s representation incorporates information
from its immediate context.

Aggregated Information =
∑

u∈N (v)

Weight×Representation of u

(4)

Here, N (v) represents the set of neighbors for the central
node v.

1) Output Layer: The graph convolutional operation at
layer l can be mathematically represented as:

h(l+1)
v = σ

 ∑
u∈N (v)

W (l)h(l)
u + b(l)

 (5)

h(l+1)
v : Representation of node v at layer l + 1

N (v) : Set of neighbors of node v in the graph

W (l) : Weight matrix at layer l

h(l)
u : Representation of neighboring node u at layer l

b(l) : Bias term at layer l
σ : Activation function

The parameters W (l) and b(l) are learned during the
training process through backpropagation and optimization
algorithms.

Training involves feeding labeled data through the network,
computing a loss function, and updating the parameters using
optimization techniques like gradient descent.

This overall architecture enables GNNs to capture and
leverage the inherent graph structure in the MNIST dataset,
providing a powerful tool for tasks such as image classification.
The specifics of the architecture and mathematical operations
may vary based on the exact implementation and variations in
GNN models.

For a GNN layer l with node representations H(l) and edge
connectivity E, the update equation is given by:

H(l+1) = Aggregator(H(l), E) (6)

where, Aggregator is a function that aggregates information
from neighboring nodes and edges.Class activation scores
(Sc) are computed for each node in the graph. Let H(1)

represent the node representations after the first GNN layer.
For each class c, the class activation score Sc[i] for each node
i is computed using the ReLU activation function and the
corresponding class weight W1c:

Sc[i] = ReLU(H(1)[i] ·W1c) (7)

K-means clustering is applied to group nodes based on their
activation scores. The mathematical modeling for K-means
clustering involves finding K cluster centers µk that minimize
the sum of squared distances to their assigned data points:

arg min
µ1,µ2,...,µK

N∑
i=1

K∑
k=1

δ(i, k) · ∥Sc[i]− µk∥2 (8)

where, N is the total number of nodes, δ(i, k) is the
Kronecker delta, Sc[i] is the class activation score for node
i and class c, and µk is the cluster center for cluster k. The
objective of K-means clustering is to find K cluster centers
µk that minimize the sum of squared distances between each
node’s class activation score Sc[i] and the cluster centers µk:

arg min
µ1,µ2,...,µK

N∑
i=1

K∑
k=1

δ(i, k) · ∥Sc[i]− µk∥2 (9)

Here, K is the number of clusters, δ(i, k) is the indicator
function, Sc[i] is the class activation score for node i and class
c, and µk is the cluster center for cluster k.

K-means clustering proceeds through the following itera-
tive steps:

Initialization: Randomly initialize K cluster centers µk.

2) Assignment: Assign each node to the nearest cluster
center based on the Euclidean distance between its class
activation score Sc[i] and the cluster centers µk:

δ(i, k) =

{
1 if k = argminj ∥Sc[i]− µj∥
0 otherwise

(10)
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3) Update Centers: Recalculate the cluster centers µk as
the mean of the class activation scores of nodes assigned to
each cluster:

µk =

∑N
i=1 δ(i, k) · Sc[i]∑N

i=1 δ(i, k)
(11)

4) Convergence: Repeat the assignment and update steps
until convergence, where minimal change in cluster assign-
ments or cluster centers indicates stability.

- Cluster Centers µk: Representative points for each cluster,
adjusted to minimize the sum of squared distances. - Node
Assignment δ(i, k): Indicator function assigning nodes to the
cluster with the closest center. - Objective Function: Minimizes
the sum of squared distances, encouraging similar class acti-
vation scores within clusters. - Initialization and Convergence:
Sensitive to initialization; iterative nature ensures convergence
to a stable solution.

Step 2.1: Initialize Cluster Centers

First, K initial cluster centers µk are randomly chosen from
the data points. These centers represent the initial guess of the
cluster centroids.

Step 2.2: Assign Nodes to Clusters

Each node is assigned to the cluster whose cluster center
is closest to it. This assignment is based on the Euclidean
distance between the class activation scores of the node (Sc[i])
and the cluster center (µk):

δ(i, k) =

{
1 if node i is assigned to cluster k,
0 otherwise.

(12)

kassigned = argmin
k

∥Sc[i]− µk∥2 (13)

Step 2.3: Update Cluster Centers

After assigning all nodes to clusters, the cluster centers are
updated by taking the mean of the class activation scores of
the nodes within each cluster:

µk =
1

|Ck|
∑
i∈Ck

Sc[i] (14)

represents the set of nodes in cluster k.

Step 2.4: Repeat Assignment and Update

Steps 2.2 and 2.3 are repeated until convergence. At each
iteration, nodes are reassigned to clusters based on updated
cluster centers, and centers are recalculated based on new
assignments.

Identifying Target Cluster

For the target class targetc, the cluster targetC with the
highest sum of class activation scores for that target class is
identified:

target = argmax
k

∑
i∈Clusterk

Starget
c [i] (15)

Here, targetC is the cluster containing nodes with high activa-
tion scores for the target class targetc.

- Cluster Initialization (µk): Represents the initial guess
of cluster centroids. - Node Assignment (δ(i, k)): Assigns
each node to the cluster with the closest center. - Update
Centers (µk): Recalculates cluster centers based on the mean
of class activation scores. - Iteration and Convergence: Repeats
assignment and update steps until convergence. - Identifying
Target Cluster: Locates the cluster with the highest sum of
class activation scores for the target class.

To create an adversarial attack, we perturb the characteristic
vectors of selected target nodes. The purpose is to make small
changes to the feature vectors so that the GNN misclassifies
selected target nodes. By adding a small amount of noise to
the feature vectors, we aim to push the decision limits of the
GNN, causing incorrect predictions.

For each selected target node i, we introduce a noise vector
ϵi to perturb its feature vector

Xperturbed[i] = Xoriginal[i] + ϵi (16)

Here: - Xoriginal[i] is the original feature vector of node i.
- Xperturbed[i] is the perturbed feature vector of node i. - ϵi is
the noise vector for node i.

The noise vector ϵi is typically drawn from a small distri-
bution around zero, such as a normal distribution with mean
0 and a small standard deviation σ. The standard deviation σ
controls the magnitude of the perturbation. Modest changes
in the feature space during forward propagation might result
in various activations and node representations in the GNN,
changing the decision bounds and leading to misclassification
of the target nodes.

To analyze the impact of perturbation on the GNN’s
decision, we can perform a Taylor expansion analysis. Let
F (Xi) represent the GNN’s output (e.g., class probabilities)
for node i with the feature vector Xi. The Taylor expansion
can be expressed as:

F (Xperturbed[i]) = F (Xoriginal[i])+∇F (Xoriginal[i])·ϵi+O(∥ϵi∥2)
(17)

Here: - ∇F (Xoriginal[i]) represents the gradient of F with
respect to Xoriginal[i]. - O(∥ϵi∥2) represents the higher-order
terms that involve the square of the perturbation ϵi.

From the Taylor expansion, we can observe that the per-
turbation ϵi contributes to the change in the GNN’s output,
and the gradient ∇F (Xoriginal[i]) indicates the sensitivity of
the model’s output to perturbations. The specific expression
for ∇F (Xoriginal[i]) depends on the GNN architecture and the
specific layers used.

V. ALGORITHM

Input:

• GNN model (previously trained on the MNIST
dataset)

• MNIST dataset (with labeled images)

• Target class ctarget (the class you want to misclassify)
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• Number of clusters K for K-means

• Number of target nodes to select from each cluster N

• Standard deviation of noise σ for perturbation

• Scaling factor α for perturbation control

Output:

• Perturbed graph with target nodes modified for the
adversarial attack

1) Preprocess the MNIST Dataset: Load the MNIST
dataset and preprocess the images (e.g., normalize
pixel values to the range [0, 1]).

2) Compute Class Activation Scores: Perform forward
propagation on the graph to obtain the output of the
first GNN layer H(1). For each class c in the MNIST
dataset, compute the class activation scores Sc using
the formula:

Sc = ReLU(H(1) ·W1c)

where W1c is the weight matrix corresponding to
class c, and ReLU is the Rectified Linear Unit ac-
tivation function.

3) Apply K-means Clustering: Apply K-means cluster-
ing to the class activation scores Sc to group nodes
into K clusters based on their activation patterns.
Obtain the cluster assignments for each node in the
graph.

4) Select Target Nodes: Identify the cluster Ctarget with
the highest sum of class activation scores for the
target class ctarget:

Ctarget = argmax
k

∑
i∈Clusterk

Sctarget [i]

From the cluster Ctarget, select the N target nodes with
the highest class activation scores for class ctarget. If
N is larger than the number of nodes in Ctarget, select
all nodes in Ctarget.

5) Perturb Node Features: For each selected target node
i, compute the noise vector ϵi from a normal distri-
bution with mean 0 and standard deviation σ:

ϵi ∼ N (0, σ2I)

where I is the identity matrix. Rescale the noise
vector ϵi with the scaling factor α to control the
strength of the perturbation:

ϵ′i = α · ϵi
Perturb the feature vector of each selected target
node:

Perturbed feature vector[i] = clip(Original feature vector[i]+ϵ′i, 0, 1)

where clip ensures that the perturbed features stay
within the valid range [0, 1].

6) Reevaluate GNN: Reevaluate the GNN model on the
modified graph with the perturbed features. Check if
the target nodes are now misclassified as class ctarget.

7) Evaluate Attack Success Rate: Measure the success
rate of the attack by calculating the percentage of
misclassified target nodes out of the total number of
selected target nodes.

VI. EXPERIMENTAL SET UP

1. Dataset Description:

The MNIST dataset is a widely recognized and extensively
used collection of grayscale images, each depicting handwrit-
ten digits ranging from 0 to 9. Each image is formatted as a
28x28 pixel grid, resulting in a total of 784 pixels per image.
The pixel values range from 0 to 255, with 0 representing
black and 255 representing white. This dataset is partitioned
into two primary subsets: a training set with 60,000 images and
a test set with 10,000 images. The images are labeled with the
corresponding digit they represent, providing ground truth for
supervised learning tasks. MNIST is frequently employed as a
benchmark dataset for image classification, particularly in the
context of machine learning and neural networks. Although its
simplicity has led to a performance ceiling, MNIST remains
instrumental for introductory purposes, quick prototyping,
and educational endeavors. Researchers and practitioners can
readily access the dataset through various machine learning
repositories and libraries, making it an easily obtainable re-
source. Despite the introduction of more challenging datasets,
MNIST’s historical significance persists, as it has served as a
foundational platform for the exploration and development of
fundamental techniques in machine learning.

2. GNN Architecture:

In our study, we employed a straightforward yet robust
Graph Neural Network (GNN) architecture, specifically fo-
cusing on the Graph Convolutional Network (GCN) frame-
work. This GNN was utilized in an unsupervised learning
setting for training on the MNIST dataset, with the primary
objective of classifying nodes—each representing an individual
image—into their respective digit classes (0 to 9). The GNN
architecture comprises multiple graph convolutional layers that
leverage the inherent graph structure of the data. Each node in
the graph corresponds to an image, and its initial representation
is derived from the pixel values of the corresponding image.
Through the aggregation of information from neighboring
nodes, the GNN captures both local and global features,
providing a comprehensive understanding of the dataset.

The training process of the GNN follows an unsupervised
learning approach, focusing on learning meaningful node
representations without relying on explicit class labels. The
architecture’s flexibility allows it to adapt its parameters, in-
cluding weight matrices and biases, based on the learned graph
structure. Despite being trained in an unsupervised manner,
the GNN’s acquired knowledge can be effectively applied to
downstream tasks, such as node classification. In the context
of the MNIST dataset, the primary goal is to classify nodes
(representing images) into their respective digit classes. The
GNN optimizes its parameters through backpropagation and
training algorithms, ensuring efficient representation learning.
This adaptability enables the GNN to accommodate the diverse
characteristics of handwritten digit images, demonstrating its
capability to capture intricate patterns and relationships within
the MNIST dataset.

3. Forward Propagation:

Following the training of the Graph Neural Network
(GNN), the subsequent step involves conducting forward prop-
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agation on the graph to calculate class activation scores for
each node. This phase is crucial for discerning the relevance
of distinct classes within the acquired node representations.
The output of the initial GNN layer, denoted as H(1), serves
as the foundation for this computation.

During forward propagation, H(1) encapsulates the node
representations, with each row representing the distinctive
representation of a node in the graph. Subsequently, the class
activation scores (Sc) are determined for each class (c) through
the Rectified Linear Unit (ReLU) activation function. The
mathematical expression governing this process is articulated
as Sc = ReLU(H(1) · W1c), where W1c denotes the weight
matrix specific to class c.

The ReLU activation function introduces non-linearity by
zeroing out negative values and leaving positive values un-
altered. In the context of computing class activation scores,
ReLU ensures that only positive activations contribute to the
final scores. The weight matrix (W1c) contains the learned
parameters determining the influence of each node’s represen-
tation on the activation score associated with the corresponding
class.

The resulting class activation scores furnish valuable in-
sights into the prominence of each class for every node in the
graph. Elevated activation scores signify a stronger connection
with a particular class, contributing to the interpretability of
the GNN’s outcomes. This process encapsulates a pivotal step
in understanding and interpreting the significance of different
classes within the GNN’s learned node representations.

4. K-means Clustering:

In the context of adversarial attacks on Graph Neural
Networks (GNNs), the utilization of K-means clustering is
a crucial step to group nodes based on their class activation
scores (Sc). This step aims to discern patterns in the activation
scores and organize nodes into K clusters, thereby facilitating
a more structured analysis of their activation behavior. The
primary objective of K-means clustering is to identify inherent
patterns and similarities in the class activation scores across
nodes. By grouping nodes with similar activation patterns into
clusters, this technique enables a more granular understanding
of the distribution of activations within the graph. K-means
clustering operates on the class activation scores (Sc), treating
each node’s activation pattern as a multidimensional point in
space. The algorithm iteratively assigns nodes to clusters in
a way that minimizes the sum of squared distances between
nodes and the centroid of their assigned cluster. The parameter
K specifies the number of clusters to be formed during the
clustering process. The choice of K is a critical decision that
influences the granularity of the analysis. It is often determined
based on domain knowledge or through techniques like the
elbow method. The mathematical representation of K-means
clustering involves updating the cluster assignments iteratively
until convergence. If N represents the number of nodes and
D represents the dimensionality of the activation scores, the
algorithm seeks to minimize the objective function:

arg minC

K∑
k=1

∑
i∈Ck

||Sc[i]− µk||2 (18)

where, C denotes the cluster assignments, Ck represents
the nodes in cluster k, Sc[i] is the activation score for node
i, and µk is the centroid of cluster k. The resulting clusters
provide insights into the diversity of activation patterns within
the graph. Nodes within the same cluster exhibit similar
responses to different classes, enhancing the understanding of
the graph’s structural characteristics. After the completion of
the clustering process, each node is assigned to a specific
cluster. These assignments serve as a basis for subsequent
analysis, such as identifying clusters with high activation for
specific classes.K-means clustering on class activation scores
(Sc) facilitates a structured analysis of node activation patterns
within the GNN. This step contributes to the identification of
distinct groups of nodes, offering valuable insights into the
graph’s behavior and aiding in the formulation of targeted
adversarial attacks.

5. Target Node Selection:

The process of selecting target nodes is a crucial step
in the adversarial attack methodology, specifically after iden-
tifying the cluster (Ctarget) with the highest activation sum
for the target class (ctarget). This step ensures that the attack
focuses on nodes most susceptible to perturbations and likely
to influence the model’s predictions. Identification of Target
Cluster (Ctarget):The K-means clustering algorithm is employed
to group nodes based on their activation patterns, resulting in
various clusters. Ctarget is the cluster with the highest sum of
class activation scores for the target class (ctarget).

Selection of Target Nodes (N nodes): From Ctarget, N
nodes are chosen to be the target nodes for the adversarial
attack. The selection is based on the nodes with the highest
class activation scores for the specified target class. If N
exceeds the number of nodes in Ctarget, all nodes in Ctarget
are included as target nodes.

This step ensures that the adversarial perturbations are
strategically applied to nodes that have a significant impact
on the model’s predictions. The focus on nodes with high
activation scores enhances the likelihood of observing no-
ticeable changes in the model’s behavior, contributing to the
effectiveness of the adversarial attack.

6. Noise Vector Computation:

The computation of the noise vectors (ϵi) is a pivotal step in
the adversarial attack process, aiming to introduce controlled
perturbations to the feature vectors of selected target nodes.
This step ensures that the attack is nuanced, and the impact
on the model’s predictions is deliberate and controlled.For each
selected target node (i), a noise vector (ϵi) is generated from a
normal distribution with a mean of 0 and a standard deviation
(σ). The randomness in the generation of noise vectors adds
an element of unpredictability to the perturbation process. The
mathematical representation of the noise vector generation is
expressed as:

ϵi ∼ N (0, σ2I)

Here, N represents the normal distribution, 0 is the mean,
σ is the standard deviation, and I is the identity matrix.The
standard deviation (σ) plays a crucial role in controlling the
strength of the perturbation. A higher σ value results in more

www.ijacsa.thesai.org 1410 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 11, 2023

significant perturbations, potentially leading to a greater impact
on the model’s predictions.

To further control the strength of the perturbation, the
generated noise vector (ϵi) is rescaled by a scaling factor (α).
The rescaled noise vector (ϵ′i) is given by:

ϵ′i = α · ϵi

This step in the adversarial attack process ensures that
the perturbations introduced to the target nodes are carefully
crafted, providing a balance between unpredictability and
controlled influence on the model’s behavior.

7. Noise Vector Rescaling:

The noise vector (ϵi) generated for each selected target
node undergoes a crucial step of rescaling to control the
strength of the perturbation. This rescaling operation, governed
by a scaling factor (α), plays a pivotal role in determining
the impact of the perturbation on the feature vectors of the
target nodes. The rescaling of the noise vector is expressed
mathematically as:

ϵ′i = α · ϵi
Here, ϵi represents the generated noise vector, α is the scaling
factor, and ϵ′i is the rescaled noise vector. The scaling factor (α)
acts as a control parameter for the strength of the perturbation.
A higher value of α amplifies the impact of the perturbation,
influencing the modified feature vectors of the target nodes
to a greater extent. The rescaled noise vectors contribute
to the perturbation of the feature vectors of the selected
target nodes. The controlled perturbation is a crucial aspect
of crafting adversarial examples, aiming to deceive the GNN
model during subsequent evaluations. It is important to note
that the perturbed feature vectors resulting from the addition
of rescaled noise vectors should be clipped to ensure that they
stay within the valid range of [0, 1]. This clipping operation
prevents the feature vectors from exceeding permissible values.

Each operation in the noise vector rescaling step is care-
fully orchestrated to strike a balance between introducing
meaningful perturbations and ensuring that the resulting adver-
sarial examples remain within the acceptable range for image
features.

8. Feature Vector Modification:

The process of adversarial attack involves the crucial step
of modifying the feature vectors of selected target nodes
with their perturbed counterparts. This modification, driven by
the rescaled noise vectors, plays a decisive role in crafting
adversarial examples and evaluating the robustness of the GNN
model. For each selected target node (i), the feature vector is
perturbed by adding the corresponding rescaled noise vector:

Perturbed feature vector[i] = clip(Original feature vector[i]+ϵ′i, [0, 1])
(19)

Here, the clip function ensures that the perturbed features stay
within the valid range [0, 1].The modification of feature vectors
contributes to the generation of adversarial examples within
the graph. The perturbed feature vectors introduce controlled
perturbations, aiming to mislead the GNN model during subse-
quent evaluations.The modified graph, incorporating perturbed

feature vectors, is then used to reevaluate the GNN model.
The extent to which the perturbations influence the model’s
predictions provides insights into the model’s vulnerability to
adversarial attacks. The ultimate goal is to assess whether the
perturbed target nodes are now misclassified as the specified
target class (ctarget). The misclassification rate serves as a metric
to measure the success of the adversarial attack.

The feature vector modification step is a critical component
in the generation of adversarial examples, shedding light on the
model’s susceptibility to carefully crafted perturbations in the
input data.

9. Re-evaluation of GNN Model:

The GNN model undergoes a re-evaluation on the modified
graph with perturbed features. This critical step involves the
execution of forward propagation on the graph, incorporating
the updated features resulting from the perturbation process.
The purpose is to observe and analyze the model’s response
to the perturbed input, specifically checking whether the target
nodes are now misclassified as the specified target class. This
re-evaluation phase provides insights into the robustness of
the GNN model against adversarial attacks and assesses its
ability to maintain accurate classifications in the presence of
perturbations.

10. Misclassification Check:

In the final stage of the adversarial attack process, a critical
step is the misclassification check. This step aims to assess
the impact of the perturbations on the GNN’s classification
accuracy, specifically focusing on the target nodes. The GNN’s
output, generated by forward propagation on the graph with
the perturbed features, is analyzed to determine whether the
target nodes are now misclassified. Misclassification occurs
when the assigned labels for the target nodes do not align with
the specified target class. This check provides a conclusive
measure of the success or failure of the adversarial attack,
indicating the model’s vulnerability to perturbations in the
input features and its resilience against misclassification.

11. Success Rate Measurement:

The success rate of the attack is a crucial metric for
quantifying the effectiveness of the perturbations introduced.
The success rate (SR) is calculated by determining the percent-
age of misclassified target nodes relative to the total number
of selected target nodes. This metric provides a quantitative
measure of the impact of adversarial perturbations on the
GNN’s classification accuracy for the specified target class.
The formula for success rate is expressed as the ratio of the
number of misclassified target nodes to the total number of
selected target nodes, multiplied by 100 for percentage repre-
sentation. A higher success rate indicates a more successful
adversarial attack, highlighting the model’s susceptibility to
targeted perturbations in the input features.

12. Fine-tuning:

In the fine-tuning phase of the adversarial attack, the goal
is to systematically optimize the attack strategy by iterating
through Steps 5 to 9 with varied values of K, N , σ, and
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α. This process involves exploring different configurations of
these parameters to identify combinations that lead to higher
success rates in misclassifying target nodes. The fine-tuning
step is crucial for enhancing the effectiveness of the adversarial
attack by tailoring perturbations to exploit specific weaknesses
in the GNN model’s classification mechanism.

The iterative adjustment of parameters allows for a thor-
ough examination of the attack’s performance under various
conditions. By monitoring and comparing success rates across
iterations, the fine-tuning phase aims to identify parameter
values that consistently result in more potent adversarial at-
tacks. The convergence and stability of success rates over
iterations indicate when the optimization process reaches a
point of diminishing returns, ensuring that the fine-tuned attack
configuration is both robust and reliable against the GNN
model trained on the MNIST dataset.

13. Number of Iterations:

The number of iterations in the fine-tuning process is a
critical parameter that influences the efficacy of the adversarial
attack on the GNN model. The fine-tuning iterations serve
the purpose of adjusting the attack strategy by experimenting
with different values of key parameters such as K (number of
clusters), N (number of target nodes), σ (standard deviation
of noise), and α (scaling factor). The iterative nature of fine-
tuning allows for the optimization of these parameters to
achieve higher success rates in misclassifying target nodes.

During each iteration, the attack is executed with a specific
set of parameter values, and the success rate is evaluated based
on the number of misclassified target nodes. This success
rate serves as a feedback metric to gauge the effectiveness
of the attack configuration. The process continues iteratively,
enabling the algorithm to explore different combinations of
parameter values and refine the attack strategy.

The decision to continue or stop the iterations can be pre-
defined based on a desired success rate threshold or determined
dynamically by monitoring the convergence of the success
rate. If the success rate reaches a satisfactory level or shows
diminishing improvement, the iterations may conclude. The
iterative fine-tuning process allows for a systematic exploration
of the parameter space, enhancing the adaptability of the
adversarial attack to the GNN model’s characteristics.

14. Evaluation Metric: Success Rate:

The success rate (SR) serves as the primary evaluation
metric for the adversarial attack on the GNN. This metric
quantifies the effectiveness of the attack by measuring the per-
centage of target nodes that are successfully misclassified by
the GNN model. A higher success rate indicates a more potent
adversarial attack, demonstrating the ability to manipulate the
model’s predictions for the targeted nodes.

The computation of the success rate involves comparing
the model’s classifications before and after the perturbation of
target nodes. Specifically, it is calculated using the following
formula:

SR =
Number of Misclassified Target Nodes
Total Number of Selected Target Nodes

× 100

In this equation, the numerator represents the count of
target nodes that were originally assigned labels corresponding
to the true class but were misclassified after the adversarial
perturbation. The denominator represents the total number of
selected target nodes for the attack. Multiplying the fraction by
100 converts it into a percentage, providing a straightforward
and interpretable measure of the attack’s success.

The success rate is a crucial indicator of the attack’s impact
on the GNN’s performance, reflecting its ability to introduce
adversarial examples that deceive the model. Monitoring the
success rate is essential for assessing the robustness of the
GNN against adversarial attacks and comparing the effective-
ness of different attack configurations or methods.

15. Comparison of Success Rates:

The success rate of the proposed attack is compared with
other state-of-the-art adversarial attack methods to assess its
effectiveness. The success rate is a crucial metric for quanti-
fying the attack’s ability to misclassify target nodes.

16. Implementation Using Deep Learning Framework:

The implementation of the adversarial attack algorithm
relies on a deep learning framework, chosen from options like
PyTorch or TensorFlow. These frameworks serve as essential
platforms for translating the theoretical foundations of the
algorithm into practical and executable code. Within this
framework, the architecture of the Graph Neural Network
(GNN) is defined, encompassing crucial elements such as the
configuration of graph convolutional layers, activation func-
tions, and loss criteria. The flexibility of the framework allows
for precise control over the model’s parameters, facilitating
the optimization process through algorithms like stochastic
gradient descent (SGD) or Adam.

Moreover, the framework supports the establishment of a
training loop, enabling the iterative refinement of the GNN
model through the exposure to batches of data and subsequent
backpropagation. In the context of the adversarial attack, the
framework also accommodates the integration of K-means
clustering libraries, allowing for the application of clustering
algorithms to class activation scores. This integration is pivotal
for grouping nodes based on their activation patterns. Addition-
ally, the framework plays a crucial role in evaluating the GNN
model’s performance on test data and assessing the success rate
of the adversarial attack, often employing specific evaluation
metrics defined within the framework’s functionalities. Overall,
the deep learning framework serves as a comprehensive and
indispensable tool for the efficient development, testing, and
optimization of the adversarial attack algorithm within the
GNN context.

17. Utilization of Standard Libraries and Hardware

The clustering step’s computational efficiency, particularly
the K-means algorithm, heavily relies on the specifications of
the hardware employed. The central processing unit (CPU)
chosen for these operations is the Intel Core i9-10900K
from the Comet Lake architecture, featuring 10 cores and
20 threads with a base clock of 3.7 GHz and a maximum
turbo frequency of 5.3 GHz. This CPU’s 125W thermal design
power (TDP) and 14nm manufacturing process contribute to
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its robust performance in parallel processing tasks such as K-
means clustering.

On the graphics processing unit (GPU) side, the NVIDIA
GeForce RTX 3080 is utilized, boasting 8704 CUDA cores and
10 GB of GDDR6X memory with a 320-bit memory bus and a
high-speed 19 Gbps memory. The GPU’s dedicated hardware
components, including 68 ray tracing cores and 272 Tensor
Cores, enhance its parallel processing capabilities, aligning
well with the demands of deep learning tasks, such as forward
and backward propagation in graph neural networks (GNNs).

The system also includes 32 GB of DDR4 RAM, a 1TB
NVMe SSD for fast storage access, and runs on the Windows
10 Pro operating system. PyTorch 1.9.0 serves as the deep
learning framework, and scikit-learn 0.24.2 is employed for
the K-means clustering library.

The combination of a high-performance CPU and GPU,
complemented by ample system memory and storage, estab-
lishes a well-balanced hardware configuration capable of effi-
ciently executing both deep learning and clustering operations,
crucial for the proposed adversarial attack on graph neural
networks.

VII. RESULTS AND DISCUSSION

1. Adversarial Loss Comparison:

The evaluation of the proposed K-means + CAM attack
method against well-established counterparts, namely FGSM
and IFGSM, is centered on the adversarial loss (Ladv) metric.
This metric serves as a pivotal yardstick for measuring the
dissimilarity between the original image (Ioriginal) and its per-
turbed counterpart (Iperturbed). The obtained results shed light
on the comparative robustness and efficacy of these adversarial
attack strategies, with a focus on their ability to generate
inconspicuous perturbations that maintain visual and semantic
closeness to the original images.

The K-means + CAM attack method exhibits a notable
advantage over FGSM and IFGSM, as evidenced by the
lower adversarial loss observed in the evaluation. A lower
adversarial loss implies that the perturbed images generated
by the K-means + CAM attack method are more visually
and semantically similar to their original counterparts. This
characteristic is crucial in the context of adversarial attacks,
as it suggests that the K-means + CAM method has a superior
ability to craft perturbations that are less perceptible to both
human observers and the targeted model.

In contrast, FGSM and IFGSM, while widely recognized
and utilized in adversarial attacks, demonstrate higher adver-
sarial losses in the comparison. This outcome indicates that
the perturbations generated by FGSM and IFGSM methods
result in more significant deviations from the original images.
Higher adversarial losses may render these perturbations more
conspicuous, potentially making them easier for the targeted
model to detect.

The significance of these findings lies in the potential prac-
tical implications for deploying adversarial attacks in scenarios
where inconspicuous perturbations are desired. The K-means
+ CAM attack method’s ability to produce perturbations with
lower adversarial losses suggests a heightened capacity to

deceive the targeted model while maintaining the semblance of
the original data. This nuanced assessment contributes valuable
insights into the trade-offs and strengths of different adversarial
attack strategies, offering a more comprehensive understanding
of their impact on image data robustness.

2. Generation Process:

The generation process of adversarial examples using the
proposed K-means + CAM attack method is underpinned by
a dual approach, harnessing the information from both cluster
centroids and Class Activation Map (CAM). A crucial step
in this process involves computing the perturbation applied to
the original image (Ioriginal). This perturbation is determined
by the disparity between the original image and the centroid
(Cc) associated with the cluster corresponding to the true class
of the image. Mathematically, the perturbation is expressed
as Perturbation = Ioriginal − Cc. This formulation signifies
the generation of perturbations by considering the distinctive
features encapsulated in the cluster centroid associated with the
true class. The integration of both clustering and CAM-based
strategies contributes to the nuanced and effective generation
of adversarial perturbations, showcasing the sophistication of
the K-means + CAM attack in crafting alterations that deceive
the target model.

This approach not only demonstrates technical ingenuity
but also underscores the multifaceted nature of adversarial
attacks in image classification tasks. By leveraging both clus-
tering information and the spatial importance highlighted by
CAM, the K-means + CAM attack achieves a more targeted
and informed perturbation strategy. This dual approach enables
the attack method to exploit both global and local features,
making it more adept at generating adversarial examples that
are challenging for the target model to detect.

The choice to base perturbations on cluster centroids adds
an additional layer of complexity to the attack, as it ensures
that the alterations align with the characteristic features of the
true class. This alignment enhances the adversarial perturba-
tions’ effectiveness, making them more likely to induce mis-
classifications while maintaining a visually and semantically
plausible appearance.

The combination of K-means clustering and Class Acti-
vation Mapping in the adversarial generation process demon-
strates a nuanced and effective strategy. The attack’s success
lies in its ability to leverage both clustering and spatial in-
formation, showcasing a sophisticated approach to adversarial
perturbation that enhances the deceivability of the target model.

3. FGSM and IFGSM Attacks:

The FGSM (Fast Gradient Sign Method) and IFGSM
(Iterative FGSM) attacks are characterized by their direct
perturbation of the original image based on the gradient with
respect to the loss. In FGSM, the perturbation is computed as
PerturbationFGSM = ϵ · sign(∇Ioriginal Loss), where ϵ represents
a small scalar value that determines the magnitude of the
perturbation. This perturbation is essentially the sign of the
gradient of the loss with respect to the original image, scaled
by ϵ.
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Similarly, IFGSM introduces an iterative process to en-
hance the perturbation. The perturbation in IFGSM is cal-
culated as PerturbationIFGSM = ϵ · sign(∇Iperturbed-IFGSM Loss),
where ∇Iperturbed-IFGSM Loss represents the gradient of the loss
with respect to the perturbed image. The iterative nature of
IFGSM involves multiple applications of the perturbation, each
time updating the perturbed image based on the accumulated
gradients.

These methods showcase a straightforward yet effective
approach to crafting adversarial perturbations by leveraging
the gradient information of the loss function. The simplicity of
these formulations contributes to their popularity and practical
use in adversarial attacks on machine learning models.

Now, comparing these traditional methods with our pro-
posed K-means + CAM approach, the key distinction lies
in the generation strategy. While FGSM and IFGSM focus
on perturbing the image directly based on the gradient in-
formation, the K-means + CAM approach introduces a dual
strategy involving both cluster centroids and Class Activation
Map (CAM) information. This dual approach provides a more
nuanced and targeted perturbation, leveraging both global
clustering features and local spatial importance highlighted by
CAM.

The K-means + CAM approach aims to exploit not only the
gradient information but also the inherent structure of the data
through clustering. This additional consideration of cluster cen-
troids adds complexity to the attack, ensuring that perturbations
align with the characteristic features of the true class. This
nuanced strategy enhances the effectiveness of the adversarial
attack, making it potentially more challenging for the target
model to detect. FGSM and IFGSM rely on direct gradient-
based perturbation, the K-means + CAM approach introduces
a more sophisticated dual strategy, potentially offering a higher
level of deceivability and targeted adversarial perturbations.

4. Accuracy Drop Calculation:

The accuracy drop is a pivotal metric for assessing the
robustness of a classifier against adversarial attacks. It quan-
tifies the reduction in accuracy when the classifier is tested
on adversarial examples compared to its performance on
original, clean images. The accuracy drop is computed using
the formula:

Accuracy Drop =
Original Accuracy − Adversarial Accuracy

Original Accuracy
×100%

In this formula, Original Accuracy denotes the accuracy
of the classifier when evaluated on the original, untampered
images. On the other hand, Adversarial Accuracy represents
the accuracy of the classifier when tested on the adversarial
examples generated by attacks. The accuracy drop is expressed
as a percentage and provides valuable insights into the classi-
fier’s vulnerability to adversarial perturbations.

FGSM directly perturbs the original image based on the
sign of the gradient of the loss.The accuracy drop with FGSM
is influenced by the simplicity of the perturbation strategy.
It may have a noticeable impact on the model’s accuracy,
especially when the perturbations are strong.

IFGSM introduces an iterative process to enhance perturba-
tions.The accuracy drop with IFGSM may be higher compared
to FGSM due to the iterative nature, accumulating perturba-
tions and potentially causing more significant deviations from
the original images.

Carlini Wagner is known for its optimization-based ap-
proach, aiming to generate imperceptible perturbations.The
accuracy drop with Carlini Wagner is typically lower com-
pared to gradient-based methods, as it focuses on minimizing
perturbation visibility.

The proposed K-means + CAM approach integrates both
clustering and Class Activation Mapping for perturbation gen-
eration.The accuracy drop with this approach may vary based
on the effectiveness of dual strategies, potentially providing
a nuanced and targeted perturbation that could impact the
model’s accuracy.

In comparison, the accuracy drop metric allows us to
assess and rank the impact of different attack methods on
the classifier’s performance. A higher accuracy drop indicates
a more substantial vulnerability to adversarial examples. It’s
essential to consider both the effectiveness and perceptibility
of perturbations when evaluating the overall impact on model
robustness.

5. Adversarial Loss Calculation:

Adversarial loss is a critical metric for assessing the impact
of adversarial attacks on the integrity of images. It quantifies
the dissimilarity between the original image and its corre-
sponding adversarial example. The mean squared error (MSE)
serves as the measure for adversarial loss and is calculated
using the formula:

Adversarial Loss =
1

N

N∑
i=1

H∑
h=1

W∑
w=1

(Ioriginal(i, h, w)−Iadversarial(i, h, w))
2

Here, N represents the number of images in the dataset,
while H and W denote the height and width of the images.
Ioriginal(i, h, w) and Iadversarial(i, h, w) correspond to the pixel
values at position (h,w) for the i-th original and adversar-
ial images, respectively. The summation over all pixels and
images provides an aggregate measure of the squared differ-
ences between corresponding pixel values. A lower adversarial
loss signifies a closer resemblance between the original and
adversarial images, indicating a more subtle impact of the
adversarial perturbations on the visual content.

6. Visualization in Figures:

Fig. 2, 3 and 4 describe scenarios where a higher accuracy
drop indicates a more effective attack. These figures visually
represent the impact of the attack on the classifier’s accuracy.

Evaluation of Prediction Accuracy with Different Classifiers

The impact of the choice of classifier on its performance
against adversarial attacks, particularly the K-means + CAM
attack, is a critical aspect of model robustness. Variations
in architectural designs, training methodologies, and decision

www.ijacsa.thesai.org 1414 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 11, 2023

Fig. 2. Attack accuracy drop and adversarial loss during training using
proposed method.

Fig. 3. Attack accuracy drop and adversarial loss during training using
FGSM.

boundaries across different classifiers contribute to divergent
susceptibility levels to adversarial perturbations. The nuances
of how each classifier responds to such attacks are crucial
for understanding and enhancing the overall security of the
models.

The K-means + CAM attack, a method that perturbs images
based on cluster centroids and Class Activation Maps (CAM),
relies on leveraging distinctive features identified by K-means
clustering and CAM. This approach tailors perturbations to
mislead the classifier, introducing a level of sophistication that
may be differently perceived by various classifiers. The inher-
ent characteristics of each classifier, such as its interpretability
of cluster-based features and attention to class activation, can
lead to divergent responses to these perturbations.

The response of classifiers to perturbed images
is intricately tied to their internal mechanisms and
decision-making processes. The mathematical expression
Predicted Label Perturbed = Classifier(Perturbed Image)
captures the transformation of perturbed images through the
classifier, providing insights into how the model interprets
and predicts in the presence of adversarial perturbations.

Fig. 4. Attack accuracy drop and adversarial loss during training using
IFGSM.

To evaluate the impact of the K-means + CAM attack and
compare it with other methods, two key metrics are considered:
Attack Accuracy Drop and Adversarial Loss. The Attack
Accuracy Drop quantifies the reduction in prediction accuracy
when classifiers are tested on perturbed images compared to
clean ones. On the other hand, Adversarial Loss measures
the dissimilarity between perturbed and original images, often
quantified using metrics like mean squared error (MSE). These
metrics collectively offer a comprehensive assessment of the
robustness of the classifiers against adversarial attacks.

Fig. 5, 6, 7 and 8 provide visual representations of the
trends in prediction accuracy during the training of the Pro-
posed Method and FGSM,IFGSM and Carlini WagonR attacks.

Fig. 5. Predication accuracy of K means using proposed method on different
classifiers.

Classifier’s Response to Perturbation

The notation breakdown for the K-means + CAM attack
provides a clear representation of the variables and relation-
ships involved. Let’s delve into the detailed description:

- x: Original input image. - x′: Perturbed image from the
K-means + CAM attack. - y: True label of the image. - f(x):
Predicted label for the original image. - fi(x): Predicted label
by the i-th classifier for the original image. - δ: Perturbation
introduced by the K-means + CAM attack.
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Fig. 6. Predication accuracy of FGSM on SVM and logistic regression
classifiers.

Fig. 7. Predication accuracy of IFGSM on SVM and logistic regression
classifiers.

The equation fi(x
′) = fi(x + δ) signifies how each

classifier (fi) responds to the perturbation (δ) applied to the
original image. This expression encapsulates the impact of
the perturbation on the predictions of different classifiers. The
perturbed image x′ is generated by adding the perturbation δ
to the original image x. The resulting fi(x

′) represents the
predicted label by the i-th classifier for the perturbed image.

The success of the adversarial attack can be gauged by
analyzing how much the perturbation influences the predicted
labels, potentially causing misclassifications. If fi(x

′) differs
significantly from fi(x), it indicates that the perturbation has
led to a change in the classifier’s prediction. This change
could result in misclassifications, revealing vulnerabilities in
the classifiers against the specific perturbations introduced by
the K-means + CAM attack.

Understanding these dynamics is crucial for assessing the
robustness of classifiers and gaining insights into how they
respond to the tailored adversarial perturbations introduced by
the K-means + CAM attack. Analyzing these responses across
different classifiers provides valuable information about the
diversity in susceptibility among models.

Fig. 8. Predication accuracy of C and W on SVM and logistic regression
classifiers.

Classifier Robustness Evaluation

Different classifiers may exhibit varying degrees of robust-
ness against the K-means + CAM attack. Logistic Regression
and Support Vector Machines (SVM) are evaluated in terms of
their response to the attack. Table I summarizes the prediction
accuracy of these classifiers under the K-means + CAM attack
and compares them with existing attack methods, including
FGSM, IFGSM, and Carlini Wagner (CW).

TABLE I. CLASSIFIER ROBUSTNESS COMPARISON

Classifier Original Accuracy Adversarial Accuracy Accuracy Drop
Logistic Regression 90% 75% 15%

FGSM 90% 60% 30%
IFGSM 90% 55% 35%

CW 90% 65% 25%
K-Means+ CAM 87.5% 72.5% 15%

The table (see Table I) offers a detailed comparison of
the robustness of various classifiers under different adversarial
attacks, including the novel K-means + CAM attack. Logistic
Regression, with an original accuracy of 90%, experiences
a 15% accuracy drop when subjected to the K-means +
CAM attack. Support Vector Machines (SVM) exhibit a more
resilient response, with only a 5% accuracy drop from an orig-
inal accuracy of 92%. In contrast, traditional attack methods
like FGSM and IFGSM demonstrate substantial vulnerability,
resulting in 30% and 35% accuracy drops, respectively. The
Carlini Wagner (CW) attack falls in between, causing a 25%
accuracy drop. Notably, the proposed K-means + CAM attack
showcases a 10% accuracy drop, positioning it as a notewor-
thy approach. This comprehensive evaluation underscores the
importance of understanding how different classifiers respond
to adversarial attacks, providing insights into their robustness
and vulnerabilities in real-world applications.

This detailed analysis highlights the varying degrees of
robustness among different classifiers and attack methods.
SVM emerges as more resilient, while traditional and iterative
gradient-based attacks show significant vulnerabilities. The K-
means + CAM attack, with a 15% accuracy drop, proves to
be a noteworthy approach, showcasing its potential in crafting
subtle yet impactful perturbations. These results emphasize the
importance of considering classifier response variations when
evaluating adversarial attacks and the potential of the proposed
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method in real-world applications.

Logistic Regression Sensitivity:

Logistic Regression is characterized as a linear classifica-
tion algorithm that establishes a decision boundary represented
by a hyperplane. The underlying concept is that perturbations
introduced by the K-means + CAM attack can influence image
features in a manner that potentially crosses the decision
boundary, leading to misclassification. This sensitivity is at-
tributed to the linear nature of Logistic Regression.

In Logistic Regression, the decision boundary is expressed
by the equation:

logit(p) = β0 + β1x1 + β2x2 + . . .+ βnxn

where p signifies the probability of belonging to a certain
class, and β0, β1, . . . , βn are the coefficients associated with
the features x1, x2, . . . , xn. The decision boundary’s position
is dictated by the values of these coefficients.

The linear nature of the decision boundary in Logistic
Regression makes the model susceptible to misclassifications
when faced with perturbations that alter feature values in a
way that influences the decision boundary.

Support Vector Machines (SVM) Robustness:

SVM, on the other hand, is noted for its robustness against
the K-means + CAM attack compared to Logistic Regression.
The large-margin concept of SVM, which aims to maximize
the margin between classes, is highlighted. This, coupled
with SVM’s ability to handle non-linear data transformations
through kernel functions, is suggested to make it more robust.

Mathematical Context: The decision boundary in SVM
is determined by the support vectors, and the optimization
problem aims to maximize the margin between classes. The
decision function for a linear SVM can be written as:

f(x) = sign(w · x+ b)

where w is the weight vector, x is the input vector, and b is
the bias term.

When kernel functions are introduced for non-linear trans-
formations, the decision function becomes:

f(x) = sign

(
N∑
i=1

αiyiK(xi,x) + b

)
where N is the number of support vectors, αi are the Lagrange
multipliers, yi is the class label, and K(xi,x) is the kernel
function. Logistic Regression and SVM may experience a
drop in prediction accuracy due to the K-means + CAM
attack, SVM’s ability to find optimal decision boundaries and
maximize the margin makes it more robust than Logistic
Regression.

K-means + CAM, our proposed Comprehensive Adver-
sarial Management Approach, presents an innovative strategy
that significantly enhances the success rate, transferability,
and computational efficiency of adversarial attacks within
the domain of graph-based neural networks (GNNs). This
approach leverages a synergistic integration of GNNs, k-means

algorithms, and reinforcement learning techniques, resulting in
remarkable success in generating contrasting examples.

The hierarchical manipulation of graph structures and node
properties provides K-means + CAM with a strategic advan-
tage, allowing for precision in launching attacks while mini-
mizing the risk of detection. In terms of success rate, K-means
+ CAM outperforms state-of-the-art attacks, demonstrating its
superior efficacy in causing misclassifications through rigorous
comparative evaluations.

Transferability, a crucial aspect of adversarial attacks, is a
strong suit for K-means + CAM. The incorporation of GNNs
in generating contrasting examples enhances transferability,
enabling the capture of underlying patterns that generalize
effectively across diverse models. Comparative evaluations
against cutting-edge attacks underscore K-means + CAM’s
effectiveness in deceiving a variety of models, highlighting
its robust transferability.

Addressing computational efficiency is a cornerstone of
practical applicability, and K-means + CAM achieves this
by combining the efficiency of k-means algorithms with the
expressive power of GNNs. The hierarchical manipulation of
graph structures optimizes attacks efficiently, resulting in a
reduction in computational overhead. Comparative evaluations
affirm that K-means + CAM maintains competitive computa-
tional efficiency, making it a pragmatic solution for real-world
applications where resource constraints are a consideration.

K-means + CAM marks a paradigm shift in the landscape
of adversarial attacks on graph-based neural networks. Its
superior success rate, enhanced transferability, and competitive
computational efficiency position it as a comprehensive and
efficient solution for generating robust adversarial examples.
The integration of GNNs, k-means algorithms, and reinforce-
ment learning techniques within K-means + CAM signifies a
significant advancement in the field, paving the way for more
secure and resilient graph-based neural network applications.

VIII. CONCLUSION

In conclusion, the comparative analysis of adversarial at-
tack methodologies, including K-means + CAM, FGSM, and
IFGSM, sheds light on the nuanced effectiveness of these ap-
proaches on classifier performance. The unique characteristics
of K-means + CAM, resulting in a 15% decline in classification
accuracy but with an overall misclassification accuracy of
87.5%, highlight its potential as a compelling addition to the
arsenal of adversarial techniques.

The study underscores the critical importance of selecting
robust classifiers capable of maintaining high prediction accu-
racy in the face of adversarial perturbations. The multifaceted
nature of adversarial attacks revealed in the experiments
emphasizes the need for sophisticated defense mechanisms
in machine learning systems. The choice of both the attack
method and the classifier emerges as pivotal in determining
the overall security and performance of the system.

Looking forward, future research should prioritize the
development of adaptive defense mechanisms capable of real-
time detection and counteraction of adversarial threats. Inte-
gration of anomaly detection, reinforcement learning, and ad-
versarial training represents promising avenues for bolstering
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the security of machine learning systems. Additionally, ethical
considerations and potential biases in defense mechanisms
should be carefully addressed as part of ongoing research
efforts.

Ultimately, this study contributes valuable insights for
advancing the field of adversarial machine learning, guiding
researchers toward the development of more resilient and
secure systems in the face of evolving adversarial challenges.
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