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Abstract—In the present era, the administration of medical 

images faces various security challenges that necessitate the 

authentication of image source and origin for accurate patient 

identification. With the increasing exchange of medical images 

between hospitals to facilitate informed decision-making, the 

adoption of digital watermarking techniques has emerged as an 

efficient solution to address the imperceptibility and robustness 

requirements in medical imaging watermarking. This research 

work introduces a technically advanced approach that combines 

singular value decomposition (SVD) watermarking with deep 

learning segmentation models to enhance the security of medical 

image sharing and transfer. The primary objective is to 

seamlessly integrate the watermark while minimizing distortion 

to preserve critical medical information within the image. The 

proposed methodology involves utilizing a ResNet-based U-Net 

segmentation model to segment X-Ray radiographs into the 

Region of Interest (ROI) and the Region of Non-Interest (RONI). 

The watermark data is then encoded into the ROI using singular 

value decomposition. Subsequently, the ROI and RONI are 

merged to reconstruct the complete image, preserving its original 

identity. Additionally, XOR encryption is applied to the 

watermarked image to enhance data integrity and copyright 

protection. On the other side of the methodology, the 

reconstructed image is once again separated into ROI and RONI. 

The ROI is decoded to recover the original transferred content. 

To assess the efficacy of the proposed method, a publicly 

available X-Ray radiograph dataset is employed, and evaluation 

metrics demonstrate an impressive segmentation accuracy of 

98.27%. The proposed approach ensures information integrity, 

patient confidentiality during data sharing, and robustness 

against various conventional attacks, demonstrating its 

effectiveness in the field of medical image watermarking. 

Keywords—Singular value decomposition; medical image 

watermarking; digital watermarking; deep learning 

I. INTRODUCTION 

With the introduction of 5G networks as an example, 
communication technologies have advanced quickly, 
dramatically altering many facets of daily life [1]. This shift in 
paradigm has been facilitated by simultaneous significant 
progressions in the fields of data analytics, computing in the 
cloud, and online storage. Emerging within the framework of 
the Internet of Medical Things (IoMT), novel approaches for 
both diagnosis and treatment have surfaced. These encompass 
telemedicine, web medicine, systematic diagnosis, and smart 
medicine. These cutting-edge trends are accompanied by 
highly advanced diagnostic and therapeutic tools, state-of-the-
art sensors for medical, immersive virtual reality technologies, 
and complex artificial surgical methods [2]. Advancements in 
healthcare tech merge for better diagnosis & treatment, 

reshaping the ecosystem, empowering doctors, and enhancing 
overall care. Medical imaging transforms through e-diagnosis 
workflows, forming core modern healthcare structures. 
Hospital systems utilize HIS and advanced imaging platforms 
for seamless management of varied digital images (X-ray, 
Ultrasound, MR, and CT) [3]. PACS in hospitals securely store 
and retrieve these images, while DICOM standardizes their 
acquisition, transmission, storage, and exchange with patient 
data. By synergistically leveraging the functionalities of HIS, 
medical imaging platforms, PACS, and adhering to the 
DICOM standard, healthcare professionals are empowered 
with swift access to an extensive collection of high-fidelity 
digital images [4]. Seamless integration ensures precise 
diagnosis, treatment planning, and overall care. Interchange of 
medical images aids diagnosis, therapy, education, and 
consultations within established PACS workflows. Yet, 
external transmission to third parties poses potential risks of 
unauthorized image alterations, impacting accuracy and 
potentially endangering patients' lives [5]. As a result, 
maintaining the integrity and authenticity of medical images 
has become of utmost importance, calling for the 
implementation of strong controls and strict protections both 
within internal systems and during the transmission and 
exchange processes with external systems. A secure and 
reliable framework for the lifecycle management of medical 
images must be established, which necessitates the adoption of 
cutting-edge methods and technology. 

Several strategies are used to handle the challenges 
associated with copyright protection, the confidentiality of 
healthcare images, and the diagnostic and personal information 
of patients. For these goals, methods like digital picture 
watermarking, cryptography, and steganography are frequently 
used. One of these techniques, digital picture watermarking, 
has attracted a lot of attention from researchers due to its 
unique characteristics that might offer solutions for protecting 
copyright and safeguarding medical data. Digital image 
watermarking makes it possible to incorporate subtle or 
noticeable watermarks into medical photographs, allowing 
copyright enforcement, integrity verification, and 
authentication [6]. Watermarking conceals metadata in images, 
safeguarding patient privacy and ensuring traceability. It 
operates in spatial and frequency domains: spatially by 
adjusting pixel grey levels and frequency-wise via methods 
like Discrete Fourier Transform (DFT) or Discrete Cosine 
Transform (DCT) to embed the watermark into the image [7]. 
The secret information is then incorporated by tampering with 
the frequency coefficients after conversion. The amplitudes 
and phases of the various frequency components that are 
present in the image are represented by these coefficients. By 
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changing these coefficients, the watermark is smoothly 
included into the image's representation in the frequency 
domain. Based on how the embedded watermark is extracted, 
watermarking methods are further divided into different 
categories. For non-blind watermarking, the source image and 
the watermarked image are both necessary in order to obtain 
the watermark. As a result, both the original host image and the 
matching watermark image must be accessible during the 
extraction process [8]. In contrast, semi-blind watermarking 
entails using both the watermarked image and the secret key 
throughout the extraction process. The watermark is included 
in the watermarked image and the secret key acts as a 
cryptographic parameter. Finally, only the secret key is 
required to extract the watermark in blind watermarking 
techniques. Both types of watermarking techniques, robust 
watermarking and fragile watermarking, each serve a particular 
function in the context of data protection and verification [9]. 
Watermarking aims for resilient data embedding, crucial for 
protecting against tampering during transfer, especially for 
copyright protection. Resilience determines resistance to 
outsider attacks or unintentional distortions during 
transmission. Fragile watermarking, on the other hand, detects 
alterations in watermarked content, ensuring integrity and 
authenticity. It verifies material reliability by identifying 
inconsistencies, serving as a vital tool for content 
authentication and integrity checks [10]. When discussing 
watermarking, as we are dealing with images, the terms 
"frequency domain" and "spatial domain" in the context of 
imaging apply to various images' representations [11]. In 
imaging, the term "spatial domain" describes how a picture is 
represented as a grid of pixels, where each pixel holds 
information about color or intensity and correlates to a 
particular place. On the other hand, the image is evaluated in 
terms of its frequency’s components, which show differences 
in brightness or color across different frequencies, in the 
frequency domain [12]. In comparison to spatial domain 
watermarking, frequency domain watermarking provides 
higher robustness to routine image processing operations, 
improved imperceptibility, increased embedding capacity, 
resistance to geometric changes, and improved security against 
attacks. Frequency domain approaches are less prone to 
perceptual degradation and information loss brought on by 
spatial processes since the watermark is embedded in the 
frequency coefficients. Higher imperceptibility is ensured by 
the judicious distribution of watermark energy over several 
frequency bands. By using more coefficients for watermark 
insertion, frequency domain watermarking also offers a higher 
embedding capacity [13]. Additionally, it demonstrates 
enhanced security against statistical assaults and improved 
resistance to geometric transformations. Frequency domain 
watermarking is a favored option for many applications in 
digital data protection and authentication due to these benefits. 

This article introduces a blind watermarking method 
enabling watermark embedding and extraction without the 
original content. This approach ensures robustness and 
authenticity. XOR encryption fortifies security, preventing 
unauthorized access or changes to the watermarked image. 
Encryption safeguards content, necessitating a decryption key 
for access. Leveraging techniques like Singular Value 
Decomposition (SVD), the host media undergoes 

transformations, embedding the watermark imperceptibly [14]. 
During extraction, retrieved components and a secret key 
recover the watermark. This blind technique shows resilience 
against various attacks like compression and noise, ideal for 
copyright protection, authentication, integrity verification, and 
digital forensics. Integrating U-Net with ResNet50 enhances 
the method. Their combo ensures precise segmentation, 
preserving details in the region of interest and aiding targeted 
watermarking. This model balances accuracy and efficiency, 
suitable for real-time or large datasets. Leveraging this 
advanced segmentation boosts the proposed method's 
performance and effectiveness in watermarking [15]. Through 
this approach, we enhance the quality of segmentation, 
facilitate effective watermarking, an advanced level of security 
and integrity for digital media, and enable efficient image 
analysis and protection. 

Here are our primary contributions. 

 Introducing a novel blind watermarking approach that 
seamlessly integrates U-Net segmentation with pre-
trained ResNet50, enabling watermark extraction 
without original content access. 

 Achieving precise ROI and RONI segmentation 
through U-Net, ensuring efficient and targeted 
watermark embedding while minimizing interference. 

 Incorporating XOR encryption for watermarked image 
protection, preventing unauthorized access and 
modification. 

 Addressing limitations in medical image sharing, 
applicable in copyright protection, content 
authentication, data integrity verification, and digital 
forensics. 

The article is structured as follows: Section I introduces the 
research problem and outlines the proposed methodology, 
including the key contributions. Section II reviews related 
work in watermarking and segmentation models. Section III 
elaborates on the proposed blind watermarking technique, 
integration of U-Net and ResNet50, and XOR encryption. 
Section IV details the experimental setup, dataset, evaluation 
metrics, and discusses results, comparing with existing 
methods. Section V concludes by summarizing contributions 
and implications.  

II. RELATED WORK 

Digital watermarking encompasses four fundamental 
concerns: imperceptibility, robustness, capacity, and security, 
all of which play an important role in the design and evaluation 
of watermarking algorithms. Researchers have invested 
considerable efforts in improving these aspects, especially in 
blind scenarios where access to the original host images is 
limited. However, existing watermarking methods often exhibit 
deficiencies in terms of robustness, transparency, and payload 
capacity under blind conditions. In this context, a hybrid 
domain approach combining three methodologies, first the 
discrete wavelet transforms (DWT), second the discrete cosine 
transforms, and the third singular value decomposition was 
proposed by [16] to implement a non-blind watermarking 
technique. Photography and text were used as watermarks and 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 11, 2023 

1450 | P a g e  

www.ijacsa.thesai.org 

incorporated into medical photographs. To encrypt the text 
watermark, a low encryption technique was used in order to 
streamline encryption-decryption procedures and shorten 
computational time. The watermark image used had 
dimensions of 256 x 256, whereas the cover image used was 
512 x 512. Additionally, a 50-character text watermark was 
successfully inserted into the cover photo. Peak signal-to-noise 
ratio (PSNR) results for the proposed watermarking system 
were 35.84 dB, confirming the effectiveness and high caliber 
of the adopted strategy. 

In order to improve decision-making processes, [17] effort 
proposes a novel wavelet-based digital watermarking 
technology designed for the transfer of medical images 
between institutions. Digital watermarking is essential in the 
medical industry for maintaining the dependability, 
accessibility, and privacy of images used for treatment and 
diagnosis. Although several approaches utilizing the spatial 
and transform domains have been put forth, current systems 
continue to run into issues with data fabrication during picture 
interchange. The work presents a wavelet-based digital 
watermarking method for medical photographs to address this 
problem. To help doctors make informed decisions, the scheme 
includes a three-level discrete wavelet transform and BCH 
coding. In the context of IoMT, researchers in [18], study 
introduces a revolutionary validated watermarking algorithm 
created exclusively for healthcare data. Healthcare volume data 
must now be transmitted and stored in a secure, dependable 
manner due to the growing use of IoMT technology in 
healthcare. In the context of the Internet of IoMT, this research 
introduces a reliable zero-watermarking technique-based on 3D 
hyper chaos and 3D dual-tree complicated wavelet transform. 
To create a reliable binary sequence as the watermark, the 
approach makes use of enhanced perceptual hashing algorithms 
and selective binarization of low-frequency components. Using 
zero embedding and blind extraction techniques, the system 
effectively defends against attacks and geometric distortions 
while maintaining the authenticity of the original clinical 
volume data. In terms of normalized correlation value under 
geometric assaults, it outperforms existing algorithms and 
offers bandwidth efficiency while still meeting the security 
criteria for sending and storing large volumes of clinical 
information. Utilizing the features of the Human Visual System 
(HVS), a blind watermarking technique was used in study [19] 
to insert numerous watermarks in a cover image. The 
watermark values were created by applying a specified 
threshold value to the first column of the orthogonal U matrix 
that was produced by applying singular value decomposition. 
By balancing the Normalized Cross Correlation (NCC) and the 
invisibility of the resulting watermarked image, the ideal 
threshold was found. The experimental results illustrate the 
proposed scheme's robustness and highlight its notable 
resistance to a variety of attack scenarios, demonstrating the 
value of using numerous watermarks. To enhance the security 
of the sharing and transmission of medical images, our 
research diligence proposes a novel and technically complex 
approach that combines singular value decomposition 
watermarking with deep learning segmentation models. The 
segmentation task is prioritized as a crucial component of the 
introduced methodology in addition to watermarking. In order 
to precisely define anatomical features and anomalies in 

medical images, a variety of segmentation methodologies have 
been introduced by specialists in the field of healthcare 
imaging. In this context, for precise segmentation of brain 
tumors disease from MR images, the study in [20] presented a 
hybrid technique that combines the DenseNet and U-Net 
segmentation algorithms. This study's main goal is to use deep 
learning techniques to precisely locate and define brain tumors 
in MR images. The U-Net architecture, a well-known deep 
learning network, is combined with a pre-trained DenseNet121 
architecture in the hybrid model to improve segmentation. 
Smaller tumor sub-regions with intricate structural properties 
are given more consideration throughout the training and 
testing phases. The proposed approach is evaluated using the 
publicly available BRATS 2019 brain tumor dataset, 
encompassing both high-grade and low-grade glioma tumors. 
An advanced deep learning methodology was put forth for the 
segmentation of pneumothorax in chest X-ray pictures in 
another noteworthy study [21]. The strategy makes use of the 
effective EfficientNet and ResNet architectures, as well as the 
strong and powerful U-Net architecture. They unveiled a 
brand-new end-to-end semantic segmentation model for 
medical pictures called Ens4B-UNet. To provide incredibly 
accurate segmentation results, this novel method combines the 
power of four U-Net topologies with backbone networks that 
have already been trained. Ens4B-UNet improves the U-Net 
framework by using nearest-neighbor up-sampling in the 
decoders and using strong convolutional neural networks 
(CNNs) as the foundation for the U-Net encoders. The 
segmentation network's formulation, which achieves excellent 
performance, is a weighted average ensemble of the four 
encoder-decoder models. They claim an outstanding mean 
Dice similarity coefficient (DSC) of 0.8608 on the test data, the 
Ens4B-UNet model placed among the top 1% of systems in the 
prestigious Kaggle competition. 

The existing methodologies in digital watermarking 
encounter several unresolved challenges that necessitate the 
development of advanced approaches. One major limitation is 
the reliance on access to the original unmarked content during 
the extraction time, hindering the extraction of watermarks 
when the original content is unavailable. This restricts the 
applicability of existing methods in scenarios where 
independent extraction is required. Moreover, many current 
approaches lack robustness against common interruptions 
resulting in the degradation of watermark quality and integrity. 
Furthermore, there is a pressing need for accurate and efficient 
segmentation techniques to precisely delineate the region of 
interest, facilitating targeted watermark embedding. To address 
these unresolved issues, our proposed methodology combines 
blind watermarking, utilizing the U-Net model with ResNet50 
as a bottleneck, and encryption of the watermarked image. This 
integrated approach offers enhanced security, integrity, and 
resilience, effectively mitigating the limitations of existing 
methodologies. 

III. PROPOSED METHODOLOGY 

The hybrid strategy for digital watermarking in this 
proposed methodology combines the U-Net model with pre-
trained ResNet50 for image segmentation and the singular 
value decomposition method for watermarking. The foundation 
for precise and thorough segmentation of the input images into 
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separate areas of interest is the U-Net model, which is 
renowned for its efficiency in semantic segmentation tasks. 
The highly effective feature extraction capabilities of the pre-
trained ResNet50 are used to increase segmentation accuracy. 
The appropriate watermark information is then embedded 
within the segmented ROIs using the SVD-based 
watermarking technique, assuring imperceptibility and 
resilience. To accomplish reliable and secure watermark 
embedding, the process entails several crucial steps. 

A. Watermark Generation 

In this proposed approach, the watermark utilized 
encompasses multiple components, each serving a specific 
purpose within the extraction process, shown in Fig. 1. The 
first component is dedicated to patient identification and 
includes details such as the patient's name, gender, contact 
number, and address. These attributes aid in uniquely 
identifying the individual associated with the medical image. 
The second component focuses on providing information 
related to the acquisition of the medical image. This includes 
data such as the medical center responsible for generating the 
image, the attending doctor's name, and the timestamp 
indicating when the data was gathered. By incorporating this 
information, the source and author of the image can be 
effectively identified. By combining these two components, the 
proposed watermarking technique enhances the overall security 
and traceability of medical images. It allows for accurate 
patient identification and ensures the authenticity and origin of 
the image data, enabling efficient management and reliable 
attribution in medical imaging scenarios. 

 
Fig. 1. Watermark generation. 

B. U-Net Model 

 U-Net model is frequently employed for image 
segmentation tasks [21]. It has an encoder-decoder 
structure with skip links that makes it possible to 
localize object boundaries with accuracy. The encoder 
extracts context and information from source image, 
while the decoder module builds a segmentation map at 
the pixel level. Here is a detailed description of how the 
U-Net model functions and avoids combining SI and 
CGS units, such as current in amperes and magnetic 
field in oersted. This often leads to confusion because 
equations do not balance dimensionally. If you must use 
mixed units, clearly state the units for each quantity that 
you use in an equation. 

1) Encoder: Convolutional layers are succeeded by max-

pooling layers, constituting the encoder. To extract various 

information from source data, each convolutional layer uses a 

separate set of filters. As we dig deeper into the encoder, the 

number of filters often rises, enabling the model to capture 

more intricate information. The max-pooling layers shrink the 

feature maps' spatial dimensions, which aids in expanding the 

receptive field and lightening the computational burden. 

Let’s refer to the encoder as consisting of N encoder 
blocks, each represented by the function Ei, and the input 
picture as X. Ei(X) stands for the ith encoder block's output. 

2) Bottleneck: The output is then sent to the bottleneck 

layer after going through each encoder block. The bottleneck 

layer is frequently made up of several convolutional layers 

that aid in further capturing high-level and abstract 

characteristics from the input. In our proposed methodology, 

the pre-trained ResNet50 is utilized as the bottleneck for U-

Net architecture. The term "bottleneck" refers to a specific 

component within ResNet50 that serves as a feature extractor. 

By integrating ResNet50 as the bottleneck in the U-Net model, 

we leverage its powerful feature representation capabilities to 

enhance the segmentation process. In this context, the 

ResNet50 model is responsible for extracting high-level 

semantic features from the input medical images. It is an 

essential transitional stage between the U-Net architecture's 

encoder and decoder modules. The ResNet50 bottleneck layer 

decreases the number of dimensions of the map features while 

retaining crucial data, facilitating the efficient extraction of 

meaningful features. The integration of ResNet50 as the 

bottleneck within the U-Net architecture enables our proposed 

methodology to benefit from the rich representation 

capabilities of ResNet50 for feature extraction. This 

combination enhances the U-Net model's ability to accurately 

segment medical images, leveraging the precise localization 

capabilities of U-Net along with the comprehensive feature 

representation of ResNet50. 

Let's write B(X) for the bottleneck layer's output. 

3) Decoder: Convolutional layers are applied after a 

sequence of upsampling and concatenation steps make up the 

decoder. The upsampling layers, responsible for augmenting 

the spatial dimensions of the feature maps, enable the decoder 

to produce a segmentation map pixel by pixel, matching the 

dimensions of the input image. For both local and global 

context information, the concatenation procedure merges the 

feature maps from the encoder and decoder. 

Let's write Di for the ith decoder block and Di(B(X)) for 
the ith decoder block's output. 

4) Final segmentation map: Applying a 1x1 convolutional 

layer to the final decoder block's output yields the final 

segmentation map. In order to match the number of classes in 

the segmentation task to the number of channels, a 1x1 

convolutional layer is used. The resulting segmentation map 

will be referred to as S(X), with X standing for the input 

image. The U-Net model's forward pass can be described as 

follows: 

S(X) = 1x1Conv(DN(B(X)))          (1) 

Patient Information
(Name, Gender, Contact, 

Address)

Image Information
(Medical Center, Attending 

Doctor, Date)

Concatenation
And 

Binary Formatting

Fingerprint 
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In this equation, DN represents the Nth decoder block, 
which consists of up sampling and convolutional layers to 
recover spatial resolution. B represents the bottleneck layer, 
which serves as the bridge between the encoder and decoder, 
capturing the high-level semantic information. In order to limit 
the number of streams to the appropriate number of classes, the 
result of the bottleneck layer is then routed to the 1x1 
convolutional layers, abbreviated as 1x1Conv. The 
segmentation map S(X) that is produced has the same spatial 
dimensions as the original image. A class probability vector, 
which indicates how likely it is that each pixel in the map 
belongs to a particular class, is present for each pixel. To 
obtain the ultimate pixel-by-pixel segmentation outcome, every 
pixel is attributed to the class exhibiting the highest probability. 

C. Singular Value Decomposition 

In order to facilitate numerous operations and analysis, the 
matrix factorization method named singular value 
decomposition (SVD) decomposes a matrix into three distinct 
matrices [22]. In the context of image processing and 
watermarking, SVD plays a crucial role in embedding and 
extracting watermarks while preserving the integrity of the 
source image. Mathematically, given an m × n matrix A, the 
SVD of A can be represented as follows: 

           (2) 

where: 

 U is an m × m orthogonal matrix, representing the left 
singular vectors. 

 Σ is an m × n diagonal matrix with non-negative 
elements, known as singular values. 

 V^T is the transpose of an n × n orthogonal matrix V, 
representing the right singular vectors. 

The singular values in Σ are ordered in descending order, 
indicating their significance in capturing the image's energy or 
information. The higher singular values correspond to the most 
essential features of the image. During the watermarking 
process, the SVD technique is applied to the selected regions of 
interest (ROIs) within the image. These ROIs are represented 
as matrices, which are decomposed using SVD. The watermark 
data is then embedded into the singular values of the ROI 
matrix while preserving the orthogonal matrices U and V

T
. The 

watermark embedding process involves modifying the singular 
values in Σ by adding or subtracting a certain value or pattern 
based on the watermark information. The modified Σ, along 
with the original U and V

T
 matrices, is used to reconstruct the 

watermarked ROI. To extract the watermark, the SVD is 
applied to the watermarked ROI, yielding the modified Σ 
matrix. By comparing the modified Σ with the original Σ 
obtained from the original ROI, the watermark information can 
be retrieved. 

D. XOR Encryption 

The bitwise exclusive OR (XOR) function is used to 
encrypt binary data using the straightforward XOR encryption 
method. It involves performing an XOR operation between the 
binary data of the watermarked image and a secret key to 
produce the encrypted version of the image. 

The XOR encryption process can be represented as follows: 

 Let E be the encrypted image, I be the original 
watermarked image, and K be the secret key. 

 Convert the image I and the secret key K into binary 
representations. 

 Perform the XOR operation between each 
corresponding bit of I and K. 

 The result of the XOR operation is the corresponding 
bit of the encrypted image E. 

By applying the XOR operation to each bit of the image 
and the secret key, the encrypted image is obtained. This 
process ensures that the encrypted image cannot be easily 
understood without knowledge of the secret key. Fig. 2 depicts 
the entire methodology and gives an extensive overview of the 
procedure. The segmentation stage, when the data is integrated 
into the image, is shown in Fig. 2 (a) and Fig. 2 (b) then depicts 
the decoding procedure, in which the embedded data is 
retrieved from the watermarked image. 

 

Fig. 2. Proposed architecture. 

In order to properly recover the original content from the 
watermarked image and guarantee accurate retrieval of the 
encoded data, this phase makes use of sophisticated algorithms 
and computations. These two subfigures together shows how 
segmentation and decoding are seamlessly integrated into the 
proposed methodology. It involves two algorithms that are 
pivotal in achieving the desired outcomes. Algorithm 1, titled 
"Segmentation and Watermarking," elucidates the intricate 
processes illustrated in Fig. 2(a). This algorithm 
comprehensively outlines the step-by-step execution of 
segmenting the image and embedding the watermark within the 
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identified regions using techniques such as U-Net and 
ResNet50. Commencing with preprocessing the input image 
along with the pertinent information intended for watermark 
embedding, the resultant image is fed into a segmentation 
model. This input image, denoted as I, is then passed through a 
U-Net segmentation model, yielding a segmented binary mask. 
This mask effectively segregates the region of interest from the 
region of non-interest. Subsequently, the watermark W is 
transformed into an appropriate format and embedded into the 
region of interest within the initial image. Following the 
watermark embedding process, the regions of interest and non-
interest are amalgamated to undergo an encryption procedure. 
The outcome of this encryption is an encrypted image, primed 
for transmission. 

Algorithm 1: Segmentation and Watermarking 

Inputs: 

- Image (I): Input image for segmentation and watermarking 

- Watermark (W): Information to be embedded as a watermark. 

- EncryptionKey (EK): Key used for encryption 

Outputs: 

- Segmented Image (SI): Image with segmented regions 

- Watermarked Image (WI): Image with embedded watermark 

Step 1: Procedure PreprocessImage(I): 

a. Normalize the pixel values of the image I. 

b. Perform any necessary image enhancement or noise 

reduction techniques. 

Step 2: Procedure ApplySegmentationModel(I): 

a. Pass the pre-processed image I through the U-Net 

architecture with a pre-trained ResNet50 as the bottleneck. 

b. Obtain the segmented regions by applying a threshold or 

post-processing techniques to the output of the segmentation 

model. 

c. Generate the segmented image SI by overlaying the 

segmented regions on the original image I. 

Step 3: Procedure SegmentImage(I, SI): 

a. Subtract the non-segmented regions from the original 

image I to obtain the ROI. 

b. Subtract the segmented regions from the original image I 

to obtain the RONI. 

Step 4: Procedure EmbedWatermark(ROI, W): 

a. Convert the watermark W into a suitable format for 

embedding, such as a binary sequence or a transform domain 

representation. 

b. Iterate over the pixels in the ROI: 

For each pixel P in the ROI: 

Modify the pixel value of P to embed the corresponding 

watermark bit. 

Step 5: Procedure CombineImage(ROI, NROI): 

a. Generate the watermarked image WI by combining the 

modified ROI with the RONI from the original image I. 

Step 6: Procedure EncryptionImage(WI, EK): 

a. Output the encrypted watermarked image EWI by applying 

XOR watermarking technique. 

Step 7: Procedure SegmentationAndWatermarking(I, W): 

PreprocessImage(I) 

ApplySegmentationModel(I) 

SegmentImage(I, SI) 

EmbedWatermark(ROI, W) 

EmbedWatermark(ROI, W) 

CombineImage(ROI, NROI) 

EncryptionImage(WI) 

SegmentationAndWatermarking(I, W) 

Return EWI 

End of Algorithm 

On the other hand, Algorithm 2, titled "Content Extraction 
from Watermarked Image," delineates the procedures depicted 
in Fig. 2 (b). 

Algorithm 2: Content Extraction from Watermarked Image 

Input: 

- Encrypted Watermarked Image (EWI): Encrypted image with 

embedded watermark 

- Pre-trained ResNet50 Model (M): Pre-trained ResNet50 model for 

segmentation 

- Decryption Key (DK): Key used for Decryption 

 

Output: 

- Extracted Watermark (EW): Embedded content extracted from the 
watermarked image 

Step 1: Procedure DecryptWatermarkedImage(EWI, DK): 

a. Apply decryption to output the watermarked image WI. 

Step 2: Procedure Segmentation(WI, M): 

   1. Apply the pre-trained ResNet50 model to the Watermarked 

Image to obtain the Segmentation Map. 

   2. Apply a threshold to the Segmentation Map to obtain a 

binary mask using the Segmentation Threshold. 

Step 3: Procedure SegmentImage(WI): 

   a. Subtract the non-segmented regions from the original 

image I to obtain the ROI. 

   b. Subtract the segmented regions from the original image I 

to obtain the RONI. 

Step 4: Procedure ExtractWatermark(ROI): 

   1. Apply singular value decomposition to the watermarked 

ROI using the SVD Parameters. 

   2. Retrieve the modified SVD coefficients from the 

Watermarked Image. 

   3. Initialize an empty array to store the extracted content. 

   4. For each pixel in the Watermarked Image: 

      a. Check if the corresponding pixel in the binary mask is 

non-zero. 

      b. If non-zero, extract the content from the modified SVD 

coefficients corresponding to the pixel. 

      c. Append the extracted content to the array. 

Step 5: Procedure ContentExtraction(WI, M, DK): 

DecryptWatermarkedImage(EWI, DK): 

Segmentation(WI, M): 

SegmentImage(WI): 

ExtractWatermark(ROI): 

ContentExtraction(WI, M, DK) 

Return EW 

End of Algorithm. 

This algorithm intricately illustrates the sequential 
operations involved in extracting the information from the 
embedded watermarked image, enabling the reconstruction of 
the original content. Subsequently, the reverse sequence is 
initiated, commencing with the application of a decryption 
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algorithm on the encrypted input image. This decryption 
process yields a watermarked image, which is subsequently 
provided as input to the segmentation model to retrieve the 
regions of interest and non-interest. Following this, the SVD 
watermarking algorithm is implemented to extract the 
watermark information from the watermarked region of 
interest. 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

For the experiments, we trained our algorithm on a medical 
imaging dataset consisting of chest radiographs. The training 
was performed on a Google Colab GPU to leverage its 
computational power. The dataset was carefully curated and 
pre-processed to ensure high-quality and standardized images. 
We used a batch size of 32 and trained the model for 50 epochs 
with an initial learning rate of 0.0001. We employed the Adam 
optimizer with a learning rate decay schedule to facilitate 
convergence. To maximize both segmentation accuracy and 
border delineation, a loss function that combines binary cross-
entropy loss and dice loss was employed. We partitioned the 
dataset randomly into training and testing sets, with an 80:20 
split, in order to assess the effectiveness of our algorithm. We 
carried out numerous studies and presented the findings using a 
variety of evaluation metrics, including the dice coefficient, 
intersection over union, and precision-recall curves. The 
experimental setup ensured rigorous validation and comparison 
of our proposed system against state-of-the-art methods in 
medical image segmentation and watermarking. 

A. Datasets 

The experimental setup involved training our algorithm the 
ChestX-Det10 dataset [23], a subset of the NIH ChestX-14 
dataset [24], which is a widely used and comprehensive dataset 
for chest radiograph analysis and contains instance-level 
annotations. This dataset comprises a total of 3,543 images, 
with 2,779 images depicting various diseases and 764 images 
representing healthy x-rays. It offers a diverse range of 
diseases, including atelectasis, calcification, consolidation, 
effusion, emphysema, fibrosis, fracture, mass, nodules, and 
pneumothorax, making it suitable for training a fully 
supervised segmentation method. Fig. 3 shows a sample from 
the dataset. 

 
Fig. 3. Samples from dataset. 

B. Performance Comparison 

The quantitative results of our strategy were compared to 
those of existing methodologies in the comparison results, and 
the outcomes are listed in Table I. It is important to note that 
some methodologies exhibited PSNR values exceeding 50 dB, 
which can be attributed to differences in the input data format 
used for evaluation. However, it is crucial to consider that the 
proposed method maintained a consistent and comparable 
average PSNR value within the range of 49.32 to 50 dB, 
indicating its robustness and effectiveness in preserving image 
quality. The PSNR values per image are depicted in Fig. 4, 
showcasing that our model attains a PSNR value of 50.0 for 
image 1, 49.73 for image 2, 47.17 for image 3, 49.79 for image 
4, and 49.91 for image 5. 

 

Fig. 4. PSNR values after watermarking. 

Furthermore, the average SSIM values obtained by the 
proposed method demonstrated a high level of similarity and 
structural preservation with the original image, outperforming 
several existing methodologies. Similarly, the SSIM values per 
image are illustrated in Fig. 5, revealing that our model 
achieves an SSIM value of 1.0 for image 1, 0.99 for image 2, 
0.99 for image 3, 0.98 for image 4, and 0.99 for image 5. 

 

Fig. 5. SSIM values after watermarking. 
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These results underscore the superiority of the proposed 
method in terms of both PSNR and SSIM metrics, highlighting 
its potential for accurate and reliable watermarking in medical 
image applications. 

TABLE I.  COMPARISON OF PSNR AND SSIM RESULTS WITH EXISTING 

STUDIES 

References 
 

Method PSNR/dB SSIM 

Soni, M., et al. [17] DWT 98.58 Not applied 

Ernawan, F., et al. [19] SVD Not applied 0.88 

Balasamy,K.,& 

Ramakrishnan, S. [25] 
DWT and PSO 49.00 0.99 

Balasamy, K., et all. [26] DWT and SVD 49.5 Not applied 

Kahlessenane, F., et all. [27] DWT 49.20 0.99 

Balasamy, K., et all. [28] SVD 49.30 Not applied 

Wang, L., et all. [29] 
DWT, HMD, 

and SVD 
44.90 Not applied 

Sanivarapu, P. V., et all. 
[30] 

DWT, SVD, 
RSA 

39.42 Not applied 

Khaldi, A., et all. [31] DWT, IWT 58.09 0.99 

Apostolidis, K. D., et all. 

[32] 

Krawtchouk 

Moments 

Not 

Applied 
0.99 

Proposed 
U-Net, SVD, 

XOR 
49.32 0.99 

C. Qualitative Evaluation 

We used a variety of evaluation metrics, such as 
Intersection over Union (IoU), Dice coefficient, and F1 score, 
in our qualitative evaluation of the proposed approach. These 
metrics offer useful information about the effectiveness and 
precision of the segmentation findings. The Dice coefficient 
quantifies how similar the two sets are while the intersection 
over union assesses the overlap between the anticipated and 
real-world masks. The F1 score also assesses how well 
precision and memory are balanced. We were able to fully 
comprehend the algorithm's segmentation abilities and its 
capacity to precisely outline the regions of interest in the 
medical images by making use of these several assessment 
matrices. The plot of training and validation loss, shown in Fig. 
6, provides valuable insights into the learning progress of our 
model. During the training phase, the model undergoes 
iterative optimization, where the loss is minimized to improve 
its performance. As the training progresses, the model's 
training loss steadily decreases. In our case, the training loss 
reaches a remarkable value of approximately 0.02, indicating 
that the model has learned to capture and generalize patterns 
effectively from the training data. 

Similarly, the validation loss, which measures the model's 
performance on unseen data, also decreases during training. An 
approximate validation loss of 0.03 signifies effective 
generalization of the model to novel data, demonstrating its 
capability to provide accurate predictions even for previously 
unseen instances. The convergence of both training and 
validation loss, shown in Fig. 6, to such low values 
demonstrates the effectiveness of our model in capturing 
complex patterns and achieving high accuracy in segmentation 

tasks. It highlights the model's ability to generalize well and 
indicates its potential for robust performance in real-world 
scenarios. 

 
Fig. 6. Training and validation loss. 

The findings and details of the matrices are given below: 

1) Intersection over union: A frequently used evaluation 

statistic for gauging the precision of segmentation models is 

intersection over union. It quantifies the degree of overlap 

between the anticipated segmentation mask and the obtained 

segmentation mask. It determined mathematically by dividing 

the intersection area of the predicted mask (P) and the ground 

truth mask (G) by the union area of these masks: 

IoU = |P ∩ G| / |P ∪ G|                  (3) 

where, |P ∩ G| represents the area of intersection between P 
and G, and |P ∪ G| represents the area of union. 

The intersection over the union metric spans a range from 0 
to 1. A score of 0 denotes a complete absence of overlap 
between the predicted and ground truth masks, while a score of 
1 signifies a flawless alignment. In the context of our proposed 
methodology, we utilized IoU as the evaluation metric to 
assess the results produced by our U-Net model with ResNet50 
as the backbone. As shown in Fig. 7, we were capable of 
objectively evaluating the accuracy of the segmentation by 
computing the IoU score for each segmented area and 
quantitatively measuring the degree of concordance between 
the expected and actual masks. 

2) Dice coefficient: In the context of image segmentation, 

the Dice coefficient is a frequently used evaluation metric for 

determining how similar two sets are. The Dice coefficient is 

determined mathematically as the reciprocal of the 

intersection area between the P and the G divided by the sum 

of the P and G intersection areas: 

                                                       (4) 
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Fig. 7. IoU result. 

where, |P ∩ G| represents the area of intersection between P 
and G, |P| represents the area of P, and |G| represents the area 
of G. The range of the Dice coefficient is 0 to 1. Between the 
anticipated and ground truth masks, a value of 0 indicates there 
is no overlap and a value of 1 indicates full congruence. In the 
context of our proposed methodology, we employed the Dice 
coefficient as the assessment metric to gauge the precision and 
excellence of the segmentation outcomes. Through the 
utilization of the Dice coefficient, we conducted a rigorous 
quantitative assessment of the segmentation performance 
within our proposed methodology. By computing the Dice 
coefficient for each segmented region, we were able to 
precisely evaluate the extent of concurrence between the 
predicted and the ground truth, thereby delivering a reliable 
metric for segmentation accuracy. As depicted in Fig. 8, our 
evaluation showcased exceptional performance, with the 
resulting plot graph indicating a Dice coefficient of 
approximately 0.98, which represents the highest achievement 
on the validation dataset. This outcome underscores the 
efficacy and robustness of our approach in achieving superior 
segmentation outcomes. 

 
Fig. 8. Dice coefficient result. 

3) F1 score: In the proposed methodology, the F1 score 

was utilized as an evaluation metric to assess the performance 

of the segmentation model. The performance is evaluated 

using the F1 score, which takes precision and recall into 

account. It provides a balanced assessment by taking into 

account the trade-off between correctly identifying positive 

samples (precision) and capturing all actual positive samples 

(recall). Mathematically, the F1 score is calculated as follows: 

                                                        
             (5) 

Recall corresponds to the ratio of true positive predictions 
to the total number of positive predictions, while precision 
quantifies the ratio of true positive predictions to the overall 
instances identified as positive. An increase in the F1 score, 
which runs from 0 to 1, suggests improved segmentation 
performance. By using the F1 score as an evaluation metric, we 
were able to evaluate the segmentation model's capability to 
precisely detect the regions of interest within the medical 
images, considering both precision and recall simultaneously. 
This metric provided a comprehensive measure of the model's 
performance in capturing the relevant features while 
minimizing false positives and false negatives pixels. The 
evaluation of our proposed model on the validation data 
demonstrated outstanding performance, with an achieved F1 
score of 0.96, shown in plot of Fig. 9. This high F1 score 
indicates the model's exceptional precision and recall values, 
highlighting its efficacy in achieving accurate and reliable 
segmentation results. The superior performance of our 
proposed model underscores its capability to effectively handle 
complex medical imaging data and accurately delineate regions 
of interest. 

 
Fig. 9. F1 score result. 

4) Segmentation pictorial results: The figure illustrates the 

input image and the comparative analysis of the output binary 

mask predicted by the proposed segmentation algorithm, and 

the ground truth binary mask. In this analysis, the input image 

represents the original image that was fed into the 

segmentation algorithm for processing. The segmentation 
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algorithm produces a binary mask, where each pixel is 

assigned a value of either 0 or 1, indicating the presence or 

absence of the region of interest. The ground truth binary 

mask serves as the expected segmentation result, obtained 

through manual annotation or another reliable source. By 

placing these three images side by side in Fig. 10, we can 

visually assess the performance of the segmentation algorithm 

by comparing the agreement between the algorithm's output 

and the ground truth. This comparative analysis provides 

valuable insights into the accuracy and Efficacy of the 

suggested segmentation algorithm in precisely outlining the 

area of interest within the input image. 

 
Fig. 10. Comparative result. 

D. Quantitative Evaluation  

In this study, two quantitative evaluation metrics, namely 
PSNR, and SSIM, were employed to assess the effectiveness of 
the introduced approach. PSNR measures the quality of the 
watermarked image by quantifying the ratio of the maximum 
signal to noise power. It produces a number that indicates how 
faithful and similar the watermarked image is to the original 
image. On the other hand, SSIM assesses the similarity 
between the watermarked image and source image by 
considering the luminance, contrast, and structural information. 
It offers a value between 0 and 1, with practically 1 denoting a 
perfect match. By utilizing both PSNR and SSIM, a 
comprehensive evaluation of the proposed method was 
conducted, allowing for an accurate assessment of its 
effectiveness in context of image quality preservation and 
similarity to the original image. 

1) Peak signal-to-noise ratio: PSNR quantifies the level of 

distortion or noise in an image by comparing it to a reference 

or original image. The PSNR is determined as the mean 

square error of source and distorted images divided by the 

peak signal power. It is often expressed in decibels (dB) and 

provides a numerical value that indicates the similarity 

between the two images. Higher PSNR values indicate better 

image quality with less distortion or noise. Mathematically, 

the PSNR can be computed as: 

PSNR = 10 * log10((MAX2) / MSE)          (6) 

where, term MAX indicates the highest pixel value that can 
be achieved and MSE denotes the mean square error between 
the original and warped image. The maximum possible PSNR 
value depends on the pixel intensity range of the images. For 
images with pixel intensities in the range of 0 to 255 for 
grayscale or RGB images, the highest PSNR value is typically 
around 30-50 dB. The proposed method attained a PSNR value 
of 49.329, indicating its efficacy in maintaining the fidelity and 
quality of the original grayscale image. By effectively 
embedding the watermark, the method minimizes distortion 
and preserves crucial visual information. The high PSNR value 
underscores the robustness and potential of this approach for 
secure and reliable image watermarking applications. 

2) Structural similarity index: The proposed methodology 

incorporates the use of SSIM as an evaluation metric for the 

watermarked image. To mathematically determine SSIM, the 

mean, standard deviation, and covariance of the pixel 

intensities in the reference (original) image and the warped 

(watermarked) image are compared. The SSIM index ranges 

between -1 and 1, where 1 indicates maximum similarity and a 

value close to -1 indicates significant dissimilarity. The 

average SSIM value of 0.99 achieved by the proposed 

watermarking method serves as a strong testament to its 

remarkable efficiency in preserving the structural similarity 

and quality of the original image. This outstanding result 

demonstrates the validity of the proposed system in 

embedding the watermark while ensuring minimal distortion 

and preserving the visual integrity of the image. 

V. CONCLUSION 

In conclusion, this article presented a novel watermarking 
methodology that combines the strengths of the SVD algorithm 
and the U-Net architecture with a pre-trained ResNet50 model 
as the bottleneck. The proposed methodology demonstrated 
remarkable efficiency in preserving the fidelity and quality of 
the original image while effectively embedding the information 
using XOR encryption to ensure data integrity and copyright 
protection. Through rigorous experimentation and evaluation 
on a chest radiograph dataset, the algorithm showcased its 
effectiveness in accurately segmenting regions of interest and 
embedding watermarks while maintaining the coherence of the 
medical images. The integration of the U-Net model with the 
pre-trained ResNet50 model as the bottleneck proved to be a 
powerful combination, enabling the algorithm to leverage the 
deep learning capabilities of ResNet50 for feature extraction 
and the U-Net's architectural design for precise segmentation. 
This hybrid approach contributed to the algorithm's exceptional 
segmentation accuracy and its ability to preserve crucial 
medical information. Furthermore, the application of the SVD 
algorithm for watermarking provided a robust and 
imperceptible means of embedding and extracting information 
within the segmented regions. The algorithm successfully 
achieved secure and reliable watermarking while ensuring 
minimal distortion to the original medical images. The 
experimental results showed that, in terms of segmentation 
accuracy and watermark robustness, the suggested 
methodology outperformed previous strategies. The algorithm's 
high Dice coefficient, F1 score, and intersection over union 

Input Image Predicted Ground Truth
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values substantiated its efficacy and accuracy in segmenting 
medical images and extracting embedded information. 

We also have plans to evaluate the approach in many 
scenarios in the future, including multimedia applications and 
other medical imaging. Furthermore, evaluating how well the 
method works on various systems and maintaining 
compatibility will be crucial components of future research. 
The ultimate objective is to improve the method by utilizing 
cutting-edge strategies that strike a balance between security, 
effectiveness, and usability, opening the door for its smooth 
incorporation into useful domains. 
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