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Abstract—Postpartum depression (PPD) affects 

approximately 12% of new mothers, posing a significant health 

concern for both the mother and child. However, many women 

with PPD do not receive proper care. Preventative interventions 

are more cost-effective for high-risk women, but identifying those 

at risk can be challenging. To address this problem, we present 

an automatic model for PPD using a deep reinforcement learning 

approach and a differential evolution (DE) algorithm for weight 

initialization. DE is known for its ability to search for global 

optima in high-dimensional spaces, making it a promising 

approach for weight initialization. The policy of the model is 

based on an artificial neural network (ANN), treating the 

categorization issue as a policymaking stage-by-stage process. 

The DE algorithm is used to acquire initial weight values, with 

the agent obtaining samples and performing classifications in 

each step. The habitat provides an award for every 

categorization activity, considering a greater award for 

identification of the minor category to encourage precise 

detection. By using a particular compensatory technique and an 

encouraging learning system, the operator eventually decides the 

most excellent method for achieving its goals. The model's 

efficiency is evaluated by analyzing a set of data acquired from 

the population-based BASIC study carried out in Uppsala, 

Sweden, which covers the period from 2009 to 2018 and consists 

of 4313 samples. The experiential results, identified by known 

analysis criteria, indicate that the sample achieved better 

precision and correctness, making it suitable for identifying PPD. 

The proposed model could have significant implications for 

identifying at-risk women and providing timely interventions to 

improve maternal and child health outcomes. 

Keywords—Postpartum depression; deep reinforcement 
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I. INTRODUCTION 

PPD is a common condition in Sweden, affecting 8% to 
15% of new mothers annually [1]. It manifests as mild to 
severe depressive episodes either during pregnancy or within 
the first year after giving birth [2, 3]. The exact cause of PPD 
remains unknown but is thought to result from a combination 
of psychosocial, psychological, and biological factors. 
Biologically, inflammation, the withdrawal of 
allopregnanolone, and genetic factors play roles. 
Psychosocially, factors like ongoing stress, prior depression, 
relationship difficulties, and significant life changes contribute 
to PPD risk. The consequences of PPD can be severe, 

impacting both mother and child. Mothers may struggle with 
forming emotional bonds with their child, doubt their 
caregiving abilities, and even have harmful thoughts towards 
the child [4]. Efforts have been made to predict PPD during 
the prenatal period. Still, currently, there is no reliable method 
to accurately identify women at risk of experiencing 
depressive symptoms after giving birth [5]. 

Conventional statistical methods typically analyze the 
relationship between two variables while factoring in other 
variables [6, 7]. In contrast, machine learning (ML) techniques 
allow for the simultaneous analysis of many interconnected 
variable relationships, leading to the creation of data-driven 
predictive models [8]. These models can then be assessed to 
find the most effective predictor. ML can handle complex 
nonlinear relationships and integrate various data types from 
different sources. Over the past ten years, the application of 
ML has expanded across medical fields including oncology, 
cardiology, hematology, critical care, and psychiatry. In PPD, 
which poses a moderate risk of a serious psychiatric condition 
with reasonably accurate prediction of symptom onset, ML 
can be highly valuable given the societal impact of PPD. 
Despite its potential benefits, it is impractical to monitor every 
individual for early PPD symptoms. A more efficient strategy 
is to target high-risk groups during postpartum checks by 
healthcare professionals like midwives or nurses, rather than 
the broader population. In Sweden, with its 120,000 annual 
births and the myriad of post-childbirth adjustments women 
undergo, and a typical PPD prevalence of around 12%, this 
targeted approach proves especially advantageous for 
personalized, cost-effective maternal and perinatal mental 
care. 

Machine learning can face issues with feature extraction, 
affecting generalization, processing time, and precision [9]. 
The rise of deep learning, particularly Multi-Layer Perceptron 
(MLP), offers improved classification capabilities [10]. MLP, 
designed for nonlinear XOR problems, is versatile for various 
tasks, from image processing to optimization [11]. It functions 
like human neurons, where each node in ANN processes 
inputs and uses an activation function to produce an output. In 
MLP, nodes are interconnected across different layers, without 
intra-layer connections. 

Medical classification poses significant challenges due to 
imbalanced data, where negative instances far outnumber 
positive ones, leading to decreased performance [9, 12, 13]. 
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Measures can be employed at both the algorithm and data 
levels to address this issue. At the level of the data, 
downsampling, upsampling, or a mixture of both techniques 
can be utilized to alleviate the negative impact of imbalanced 
classification [14, 15]. On the other hand, algorithmic 
approaches involve assigning greater weight to the minority 
class [16, 17]. Moreover, deep learning methods offer 
potential solutions for tackling imbalanced classification [12, 
18]. Huang et al. [19] have proposed a process to identify 
distinctive features in imbalanced data while maintaining 
inter-cluster and inter-class margins. Similarly, Yan et al. [16] 
have suggested a technique using the bootstrapping method to 
balance data in convolutional networks across mini-batches. 

Population-based training can be utilized to select the most 
optimal solution from a population of generated models in 
order to optimize neural networks [20-22]. This approach 
mitigates the risk of being trapped in local optima, a common 
challenge in traditional training methods [23]. Surprisingly, a 
straightforward evolutionary algorithm has proven comparable 
to stochastic gradient descent in terms of the effectiveness of 
neural network training [24, 25]. Jaderberg et al. [26] 
successfully applied population-based training to cutting-edge 
models in deep reinforcement learning, machine translation, 
and generative adversarial networks, yielding consistent 
accuracy, training time, and stability enhancements. In related 
studies [27] and [28], effective weight training for neural 
networks was achieved through the adoption of differential 
evolution-based strategies [29] and the employment of the 
ABC (Artificial Bee Colony) method [30, 31], respectively. 

This paper introduces a novel approach for identifying 
PPD by combining deep Q-learning and the DE method to 
initialize the load. The categorization task is formulated as an 
estimating challenge within an RL framework, treating it as a 
Markov decision process. The environment state is 
represented by a sample, and the agent is an ANN. To initiate 
the game, we explore the application of the DE algorithm to 
find an optimal weight initialization for the ANN. The agent 
classifies each sample, and its classification is awarded 
accordingly by giving the right choices positive awards and 
wrong decisions getting negative awards. For tackling dataset 
imbalance, the minority class is given a higher absolute value 
of the reward. The operator aims to amplify the accumulative 
awards by accurately classifying the samples throughout the 
policymaking procedure. Significantly, our research is 
pioneering in utilizing a population-based methodology that 
leverages an extensive and varied dataset, incorporating a 
wide range of clinical, psychometric self-report, and medical 
journal-derived variables. The performance of our proposed 
model on this dataset demonstrates its supremacy over 
alternative methods depending on initializing the arbitrary 
load. The primary contributions of the paper can be outlined in 
the following manner: 

 Formulating the classification task as a guessing game 
within an RL framework, treating it as a Markov 
decision process. 

 Using DE to find an optimal weight initialization for the 
ANN, initiating the guessing game. 

 Rewarding correct and incorrect decisions positively, 
addressing dataset imbalance by giving higher rewards 
to the minority class. 

 Demonstrating the superiority of the proposed model 
over alternative approaches that rely on random weight 
initialization through its performance on the dataset. 

The organization of this paper is outlined below: Section II 
reviews relevant literature, Section III delves into the DE 
algorithm, and Section IV describes the proposed model. 
Results and their analysis are discussed in Section V. The 
paper concludes with a summary in Section VI, along with 
recommendations for future investigations. 

II. RELATED WORK 

In recent years, the field of medical science has witnessed 
an unprecedented surge in the application of machine learning 
techniques to forecast and categorize a plethora of health 
concerns, with PPD standing out as a significant area of 
interest [32]. To understand the evolution and progression of 
these methodologies, a series of pioneering studies have been 
meticulously evaluated to shed light on the practices adopted 
and the degree of precision achieved in their PPD 
classification endeavors [33]. 

Zhang et al. [34] placed their bet on SVM and FFS-RF, 
emphasizing these as the most promising tools for PPD 
prediction. They embarked on a comprehensive longitudinal 
survey, engaging 508 women as respondents. The Edinburgh 
Postnatal Depression Scale (EPDS) served as their choice of 
instrument to gauge PPD risk. Delving further into their work, 
Zhang et al. [35] opted for EHR datasets, focusing on the 
detection of PPD in perinatal women. Their findings were 
intriguing; while logistic regression fortified with L2 
regularization emerged as the top contender for data leading 
up to childbirth, the post-childbirth data saw MLP taking the 
lead. Jasiya et al. [36] proposed a machine learning system to 
identify risk factors and prevalence of postpartum depression 
in Bangladesh. Utilizing modified questions from EPDS and 
PHQ-2 scales and socio-demographic queries, data from 150 
women was analyzed. The most effective model was 
identified as Random Forest. Amit et al. [37] presented a 
Gradient Boosting Machine  (GBM)-based approach to PPD 
depression risk using electronic health records from 266,544 
UK women between 2000 and 2017. The model assessed 
socio-demographic and medical variables and was evaluated 
alongside the standard EPDS questionnaire for improved 
screening accuracy. Park et al. [38]  suggested an evaluation 
of methods to reduce bias in clinical machine learning models. 
Health data from the IBM MarketScan Medicaid Database, 
focusing on females aged 12 to 55 years with a live birth 
record from 2014 to 2018, was analyzed. The study examined 
logistic regression, random forest, and extreme gradient 
boosting models for postpartum depression and mental health 
service utilization, assessing racial disparities. Bias reduction 
methods like reweighing and Prejudice Remover were also 
explored. 

Diversifying the landscape, Shin et al. [39] ventured to 
harness the PRAMS 2012-2013 dataset and the PHQ-2 
questionnaire. Their objective was clear: to tap into various 
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machine learning algorithms and decipher the prevalence of 
PPD. Their rigorous analysis crowned Random Forest as the 
algorithm par excellence for PPD prediction. In a similar vein, 
Andersson et al. [40] crafted multiple machine learning 
prototypes, drawing data from Swedish hospitals. Their study, 
vast in its scope, found the Extremely Randomized Trees 
model to be unmatched in performance. 

Dipping into another significant contribution, Tortajada et 
al. [41] embarked on a study, leveraging data accumulated 
from hospital settings. Their research, hinging on MLP, 
showcased an impressive accuracy rate of 81% in PPD 
prediction. On the other hand, De Choudhury [42] ventured 
into the realm of digital platforms, conducting a longitudinal 
online survey. This study examined an array of regression 
models, paving the way for new insights. In another 
noteworthy study, Nataranjan et al. [43] showcased a 
comparative analysis of algorithms like Functional-gradient 
boosting, Decision-trees, Naive Bayes, and SVM. Their work, 
rooted in a longitudinally curated dataset, championed 
Functional-gradient boosting as the superior method. Lastly, 
Wang et al. [44] married EHR data with machine learning 
techniques, with their research revealing SVM as the most 
fitting algorithm for their dataset. 

However, while these advancements are commendable, it 
is essential to recognize the challenges that come with them. 
The sheer diversity of algorithms means that selecting the 
optimal one requires rigorous testing, often demanding 
substantial resources. Moreover, discrepancies in datasets 
across different studies might lead to varying conclusions, 
underscoring the need for standardized and universally 
accepted data collection methods. Additionally, the robustness 
of these models in real-world scenarios remains a topic of 
debate, necessitating further in-depth research and validation. 

III. DIFFERENTIAL EVOLUTION 

Differential Evolution (DE) [29] is an optimization 
algorithm that stems from populations and finds frequent 
applications in addressing optimization problems. It falls 
under the umbrella of evolutionary algorithms, drawing 
inspiration from the natural progression of evolution. DE is 
widely acknowledged for its straightforwardness and 
effectiveness in handling optimization problems involving 
continuous variables. In addition to its broad range of 
applications, DE has proven valuable in the realm of machine 
learning, particularly within the domain of training artificial 
neural networks. An essential aspect of neural network 
training revolves around weight initialization, a pivotal factor 
influencing convergence, generalization capabilities, and the 
capacity to learn intricate patterns. Traditional weight 
initialization methods, such as random initialization or fixed 
values, often grapple with the challenge of striking an optimal 
balance between avoiding vanishing or exploding gradients 
and achieving efficient learning. DE can be employed to 
initialize neural network weights by treating weight values as 
variables to be optimized. The objective is to identify an 
optimal set of weight values that minimize the objective 
function, representing network performance or error on a 
training dataset. Through the strategic reimagining of weight 
initialization as an optimization quandary, DE can adeptly 

navigate and investigate weight configurations that serve as a 
catalyst for bolstering network performance. DE offers several 
benefits for weight initialization in machine learning [10]: 

 Exploration of Solution Space: The DE algorithm 
facilitates the exploration of the solution space by 
generating diverse candidate solutions. This is 
particularly advantageous for weight initialization as it 
helps to avoid getting stuck in local optima and enables 
the algorithm to search for better-performing weight 
configurations. 

 Efficient Optimization: The DE algorithm optimizes the 
weights by iteratively updating them based on the 
difference between the target and current solutions. This 
efficient optimization process aids in finding suitable 
initial weights that can contribute to faster convergence 
and improved learning algorithm performance. 

 Robustness to Noise: The DE algorithm is known for its 
robustness to noisy fitness evaluations. In weight 
initialization, this robustness helps to handle 
uncertainties and variations in the data, leading to more 
reliable and stable initial weight configurations. 

 Flexibility and Adaptability: The DE algorithm allows 
for flexibility and adaptability in weight initialization. It 
can be customized to handle specific problem domains 
or constraints, such as imposing bounds on weight 
values or incorporating prior knowledge. This 
adaptability enhances the algorithm's ability to initialize 
weights suitable for the given learning task. 

The primary procedures of DE are as follows: 

 Initialization: The method begins with creating a 
beginning populace of chosen resolutions called 
"individuals." Each individual represents a potential 
solution to the optimization problem and is usually 
represented as a vector of real numbers. 

 Mutation: In each iteration of the algorithm, the 
individuals in the population are subjected to mutation. 
Mutation is the process of generating new candidate 
solutions by perturbing existing ones. In DE, the 
mutation is performed by creating a trial vector for each 
individual using the difference between two randomly 
selected individuals from the population. 

 Crossover: After mutation, a crossover operation is 
applied to combine the trial vector with the original 
individual. Crossover is a process that blends the 
information from the trial vector and the original 
individual to create a new candidate solution. The 
crossover operation in DE is typically performed using 
a binomial crossover scheme, where each component of 
the new solution is selected either from the trial vector 
or the original individual with a certain probability. 

 Selection: The new candidate solution produced by 
crossover is compared with the original individual, and 
the better one is selected to proceed to the next iteration. 
The selection process ensures that only the fitter 
individuals survive and propagate their traits to the next 
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generation. This step helps in driving the search 
towards better solutions over time. 

 Termination: The algorithm continues to iterate through 
mutation, crossover, and selection until a termination 
condition is met. The termination condition can be a 
maximum number of iterations, reaching a desired level 
of solution quality, or any other criteria defined by the 
problem. 

IV. MODEL ARCHITECTURE 

To address our research challenge, we turned to the 
capabilities of DE for weight initialization and RL for 
imbalanced classification, particularly because existing 
models fall short in several aspects. Traditional models often 
rely on random weight initialization, which can lead to 
prolonged training times and the possibility of converging to 
suboptimal solutions. Many existing algorithms struggle with 
imbalanced datasets, leading to biased predictions that often 
overlook the minority class. 

By using DE for weight initialization, we can ensure a 
diverse and potentially more optimal starting point for our 
learning algorithm. This can lead to faster convergence and 
potentially superior solutions compared to traditional methods. 

RL is a type of machine learning wherein an agent learns 
to decide by taking actions in an environment to maximize a 
cumulative reward. It has especially apt for imbalanced 
classification tasks because it can be tailored to place greater 
emphasis on the minority class by suitably adjusting the 
reward mechanism. In scenarios where traditional supervised 
learning faces challenges because of insufficient 
representative data for all classes, RL can more effectively 
explore the decision space and devise strategies that prioritize 
the accurate classification of underrepresented classes. This 

addresses another critical limitation of many existing models: 
their inability to adapt to and accurately classify instances 
from underrepresented categories. 

A. Pretraining 

Weight initialization is crucial in neural network training, 
influencing convergence, generalization, and pattern learning. 
In this article, the DE algorithm treats weights as variables and 
minimizes the objective function, representing performance or 
error. DE effectively explores the weight space by iteratively 
evaluating and updating weight configurations through 
evolutionary operators. The goal is to refine weights for better 
convergence, reduced error, and improved generalization. 
Incorporating DE in pretraining enhances weight initialization, 
improving overall network performance. 

In this article, the power of the DE algorithm is leveraged 
to initiate the weights of the MLP. The weights are encoded 
by meticulously arranging them into a vector, representing 
them within the DE algorithm. It should be noted that finding 
the most appropriate layout can be intricate, requiring 
persistent efforts and a multitude of experiments. Undeterred 
by the complexity, an optimal encoding strategy was devised 
through extensive trials and refinements. To provide a visual 
depiction of this process, Fig. 1 is presented, offering a clear 
illustration of how all the weights and bias terms are 
meticulously gathered and assembled into a comprehensive 
vector. This vector, acting as a candidate solution within the 
DE algorithm, encapsulates the essential components 
necessary for weight initialization. By organizing these 
elements thoughtfully and strategically, the stage is set for the 
DE algorithm to unleash its optimization prowess, guiding the 
MLP toward enhanced performance and increased learning 
capability. 

 
Fig. 1. Encoding strategy used in the proposed algorithm.
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The efficacy of a chosen resolution is comprehensively 
assessed by describing and establishing athleticism 
performance as a crucial metric. Within the context of the 
specific problem domain, the quality and performance of the 
solution are quantified through this function, which serves as a 
vital tool. The fitness function is meticulously crafted to 
capture the essential aspects and criteria that govern the 
success and effectiveness of the candidate solution. The 
fitness or suitability of the solution can be objectively 
measured through the careful consideration of relevant factors 
and parameters, allowing informed decisions to be made and 
the optimization process to be guided towards optimal 
outcomes. The fitness function is defined as: 

        
 

∑      ̃  
  

   

  (1) 

Here,   shows the whole count of train demos, where 
   represents the goal value of the  -th sample and  ̃   shows 
the corresponding output predicted by the model. 

B. Prediction 

To further improve our method of calling the problem of 
unbalanced classification caused by unequal data volumes in 
our two classes, we implemented a consecutive policymaking 
procedure using an RL method. This involved training an 
ANN model to act as an agent, making informed 
classifications for each instance, and effectively handling the 
challenges associated with imbalanced datasets. In the 
sequential decision-making process, each instance in the train 
dataset represented a distinct habitat state. The ANN model, 
acting as the operator, made a categorization sequence for 
every instance. Simultaneously, as the operator predicted the 
category name, for instance, it took an act denoted as   . At 
each time-step  , the agent observed an instance representing 
the current state of the environment, labeled as     The 
environment provided a reward,     in response to the agent's 
actions, aiming to guide its behavior. To address the class 
imbalance issue, the reward values were carefully crafted. 
Samples from the majority class received lower absolute 
reward values, while relatively higher absolute reward values 
were assigned to samples from the minority class. This reward 
design aimed to encourage the agent to prioritize the correct 
classification of minority class samples, contributing to 
mitigating the impact of imbalanced data. In this article, the 
reward function is defined as: 

             {

                   

                    

                   

                    

  (2) 

where   , and    represent the minority and majority 
categories in order. Incorrectly/correctly categorizing a demo 
of the major category gains an award of        , where 
         . We aimed to incentivize the agent to give 
greater attention to the minority class and mitigate the bias 
caused by imbalanced data by providing differential rewards 
based on class distribution. Through this reinforcement 
learning approach, the agent learned an optimal classification 
strategy that considered both the inherent difficulty of 

classifying the minority class and the importance of accurate 
predictions overall. During training, the agent continuously 
refined its decision-making capabilities and updated its 
policies and strategies based on the rewards received. By 
leveraging reinforcement learning techniques, we aimed to 
achieve a more balanced and effective classification 
performance, particularly for the underrepresented class. This 
novel sequential decision-making process enabled us to 
overcome the limitations imposed by imbalanced datasets and 
successfully address the challenges of imbalanced 
classification. As a result, we achieved improved accuracy and 
fairness in predictions by combining the power of artificial 
neural networks and reinforcement learning. 

V. EXPERIMENTAL RESULTS 

A.  Data Sources 

The data used for developing the prediction models were 
acquired from the "Biology, Affect, Stress, Imaging and 
Cognition during Pregnancy and the Puerperium" (BASIC) 
study [45]. BASIC is a prospective cohort study conducted at 
the Department of Obstetrics and Gynaecology in Uppsala 
University Hospital, Uppsala, Sweden, and it involves a 
population-based approach. Between September 2009 and 
November 2018, pregnant women who fulfilled specific 
eligibility criteria were invited to take part in the study. The 
criteria included being 18 years of age or older, not having 
concealed identities, possessing sufficient proficiency in 
reading and comprehending Swedish, and not having been 
diagnosed with bloodborne infections or non-viable 
pregnancies based on routine ultrasound examinations. In the 
BASIC study, data collection primarily relied on online 
surveys and questionnaires administered to women at various 
stages: during pregnancy at the 17th and 32nd week of 
gestation, as well as at 6 weeks, 6 months, and 12 months after 
giving birth. These surveys and questionnaires were designed 
to gather information from participants during these specific 
time points. The surveys consisted of inquiries regarding 
various background characteristics, encompassing 
sociodemographic variables, psychological assessments, 
medical details, reproductive history, lifestyle factors, and 
sleep patterns. All questionnaires were completed by the 
participants themselves and were conducted online. 
Information was additionally sourced from medical journals. 
The study had a participation rate of 20%, but the cohort 
experienced a comparatively low dropout rate, as 71% of the 
participants remained in the study during the 12-month 
follow-up period. The study obtained approval from the 
Research Ethics Board in Uppsala (Dnr 2009/171, with 
amendments). Prior to their inclusion in the study, all 
participating women provided written informed consent. The 
research methods adhered to applicable guidelines and 
regulations. 

B. Model Performance 

Our project utilizes a 64-bit Windows operating system, 
complemented with 64 GB of RAM and a 64 GB GPU. Table 
I presents the hyperparameters applied to the proposed model. 
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TABLE I.  HYPERPARAMETER SETTING FOR THE PROPOSED MODEL 

Hyperparameter Value 

Epoch 256 

Batch size 64 

Learning rate 0.02 

Dropout rate 0.5 

Discount factor 0.3 

TABLE II.  HYPERPARAMETER SETTING FOR MACHINE LEARNING METHODS

Algorithm Parameter Value 

Naïve Bayes α (Lidstone smoothing parameter) 0.5 

KNN   (Number of neighbors) 5 

Distance Metric Euclidean (p=2), Manhattan (p=1) 

SVM Kernel polynomial 

γ (Kernel coefficient) 0.5 

Random Forests Number of trees 20 

Max depth of tree 10 

Logistic Regression C (Inverse regularization strength) 0.3 

Solver liblinear 

Decision Tree Criterion entropy 

Max depth 10 

In the evaluation process, the suggested model underwent 
rigorous comparison with six distinct machine learning 
models: Naïve Bayes [46], KNN [47], SVM [48], Random 
forests [49], Logistic Regression [50], and Decision tree [51]. 
In the evaluation process, the suggested model underwent 
rigorous comparison with six distinct machine learning 
models: Naïve Bayes [46], KNN [47], SVM [48], Random 
forests [49], Logistic Regression [50], and Decision tree [51].  
Table II shows the parameters applied to these models. 

Additionally, two modified versions were included in the 
analysis to explore different variations of the proposed model. 
The first modified version, proposed+random weights, 
adopted a similar foundational architecture to our model but 
employed random weights for initialization. This alternative 
initialization method allowed for a comparative investigation 
of the impact of weight initialization on the performance of 
the model. The second modified version, Proposed+random 
weights+RL, incorporated RL techniques for classification. 
This integration of RL aimed to enhance the ability of the 
model to make accurate predictions and improve its overall 
performance. Standard metrics were employed to assess these 
models' performance, with particular emphasis on the 

geometry average and F-measure due to their suitability for 
unbalanced info [52]. The results, which can be found in Table 
III, clearly demonstrate the superiority of the proposed model 
over all other models, including the previously recognized top 
performer, Decision Tree. The evaluation results are shown 
schematically in Fig. 2 to understand the results better. Across 
all evaluation criteria, the proposed model consistently 
outperformed its counterparts. Notably, the proposed model 
achieved remarkable error reductions over 65%; plus, 29% in 
the G-averages and F-measure metrics, orderly. These 
substantial improvements illustrate the effectiveness of the 
proposed model in tackling the challenges posed by 
imbalanced data and its ability to generate more accurate 
predictions. Contrasting the offered sample with the modified 
versions, Offered+arbitrary loads+RL and Offered+arbitrary 
loads, the significance of the integration of DE and RL 
approaches becomes apparent. Our model demonstrated an 
impressive decrease in the error rate of approximately 62% 
when compared to these modified versions. This finding 
underscores the critical role played by DE and RL in 
enhancing the model's performance and highlights their 
importance in developing state-of-the-art machine learning 
models. 
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TABLE III.  OUTCOMES OF SEVERAL CATEGORIZATION METHODS 

 accuracy recall precision F-measure G-means 

Naïve Bayes 0.6804±0.0501 0.5909±0.0653 0.5353±0.1206 0.5601±0.0652 0.6562±0.0052 

KNN 0.8101±0.1553 0.7351±0.0043 0.7653±0.1002 0.7471±0.1054 0.8002±0.0402 

SVM 0.7803±0.1005 0.6603±0.0054 0.6903±0.0452 0.6702±0.2103 0.7503±0.0051 

Random forests 0.6901±0.1006 0.5602±0.2202 0.5453±0.1001 0.5502±0.0953 0.6505±0.2502 

Logistic Regression 0.8105±0.1404 0.7706±0.0456 0.7005±0.1003 0.7302±0.1404 0.8006±0.1201 

Decision tree 0.8304±0.1405 0.8103±0.1006 0.7502±0.2704 0.7902±0.2001 0.8202±0.0104 

Proposed+random weights 0.8104 ± 0.0627 0.8202 ± 0.1108 0.8013 ± 0.0109 0.7918 ± 0.1623 0.8303 ± 0.2622 

Proposed+random weights+RL 0.8615 ± 0.0243 0.8704 ± 0.1256 0.8509 ± 0.2691 0.8506 ± 0.0517 0.8609 ± 0.0921 

Proposed 0.8907 ± 0.0384 0.9053 ± 0.1132 0.8847 ± 0.0315 0.8844 ± 0.0297 0.9066 .0423 

 

Fig. 2. Graphical comparison of various classification algorithms. 

TABLE IV.  HYPERPARAMETER SETTING FOR METAHEURISTIC ALGORITHMS 

Algorithm Parameter Value 

DE 

 

scaling factor 0.5 

crossover probability 0.7 

ABC 

limit    × dimensionality 

   50% of the colony 

   50% of the colony 

   1 

FA 

light absorption coefficient 1 

attractiveness at r = 0 0.2 

scaling factor 0.25 

BA 

constant for loudness update 0.5 

constant for an emission rate update 0.5 

initial pulse emission rate 0.001 

COA discovery rate of alien solutions 0.25 
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TABLE V.  OUTCOMES OF SEVERAL METAHEURISTIC METHODS 

 accuracy recall precision F-measure G-means 

Proposed + ABC + RL 0.8510 ± 0.1470 0.8390 ± 0.1220 0.8570 ± 0.0500 0.8400 ± 0.0080 0.8190 ± 0.4110 

Proposed + GWO+ RL 0.8400 ± 0.1560 0.8290 ± 0.1010 0.8400 ± 0.2490 0.8280 ± 0.0140 0.7980 ± 0.0230 

Proposed + FA+ RL 0.8250 ± 0.0020 0.8130 ± 0.1210 0.8090 ± 0.2600 0.8170 ± 0.0630 0.7780 ± 0.0000 

Proposed + BA+ RL 0.8080 ± 0.0120 0.7980 ± 0.0040 0.8000 ± 0.0590 0.8030 ± 0.1430 0.7600 ± 0.1180 

Proposed + COA+ RL 0.7900 ± 0.1570 0.7700 ± 0.0120 0.7840 ± 0.2590 0.7700 ± 0.1640 0.7390 ± 0.1480 

 

Fig. 3. Graphical comparison of various classification algorithms.

A detailed analysis was conducted in the subsequent 
experiment to compare the DE algorithm with various well-
established metaheuristic optimization algorithms. To ensure a 
fair comparison, different metaheuristics were employed to 
derive the initial weights while keeping the remaining 
components of the model consistent. The evaluation 
encompassed six distinct algorithms, namely ABC [53], GWO 
[54], FA [55], BA [56], and COA [57]. For every algorithm, 
both the population size and the count of function evaluations 
are configured to 200 and 3,000, respectively. The default 
configurations are detailed in Table IV. The results of this 
comprehensive experiment were systematically presented in 
Table V and Fig. 3, providing valuable insights into the 
performance of each algorithm. Notably, the findings 
highlighted the remarkable achievement of DE, which 
demonstrated a significant reduction in error of approximately 
52% when compared to the ABC algorithm. Furthermore, the 
DE algorithm outperformed other well-known algorithms, 
including GWO and BA. This outcome solidified the position 
of the DE algorithm as a leading contender among the 
considered metaheuristic optimization approaches. 

C. Award Operation Effect 

The rewards given to the majority and minority classes for 
correct and incorrect classifications are +1 and ±λ, in order. 
The λ value is determined by the scale of major to minor 
demos, and by increasing this scale, the ideal value of λ is 
expected to decrease. For researching the λ effect, we assessed 
the offered demo's efficiency through various λ on a scale of 0 
to 1 (in increments of 0.1) as saving the bonus for the major 
category. The outcomes are represented in Fig. 4. By the time 
the λ is 0, the major category's effect gets insignificant, while 
at λ = 1, both categories have the same effects. The findings 
reveal the model performs optimally when λ is set to 0.4 for 
every measured criterion, recommending that the optimum λ 
value is on the scale of 0 to 1. We should notice that when it is 
crucial to diminish the major category's effect by adjusting λ, 
adjusting it to a lower level might have a detrimental effect on 
the overall model performance. The results indicate that the 
choice of λ has a substantial impact on the performance of the 
model. The optimal value of λ depends on the relative 
proportions of the majority and minority samples, 
underscoring the significance of careful selection to achieve 
the best possible outcomes. 
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Fig. 4. Visual depiction showcasing the alteration in performance parameters caused by fluctuations in the value of λ. 

 

Fig. 5. The plotted performance metrics as a function of the MLP layers.

D. Impact of the MLP Layers 

The article emphasizes that increasing the number of 
layers in an MLP leads to a higher model complexity, which 
in turn increases the risk of overfitting. On the other hand, 
having too few layers may limit the ability of the model to 
capture important features in the training data. In our proposed 
approach, we conducted experiments with six different values 
(1, 2, 4, 8, 10, 12) for the number of layers in the MLP to 
examine its impact on model performance. The results, 
presented in Fig. 5, demonstrate a decreasing trend in 
performance as the number of layers is in the 1 to 4 range, 
next to a rising trend for 4 to 12 values. This suggests that 
having four layers in the MLP yields optimal performance and 
achieves the best results. 

E. Impact of the Loss Function 

Various techniques are available to tackle data imbalances 
in machine learning models, including adjusting data 
augmentation methods and selecting an appropriate loss 
function. Among these techniques, the choice of loss function 
plays a crucial role in enabling the model to learn from the 
minority class effectively. To assess the efficacy of different 

loss functions, we examined five specific functions: WCE 
[58], BCE [59], DL [60], TL [61], and CL [62]. BCE and 
WCE commonly use loss functions that equally treat positive 
and negative examples. However, in the case of imbalanced 
datasets where the emphasis needs to be placed on the 
minority class, these loss functions may not be suitable. 

On the other hand, DL and TL loss functions are better 
suited for imbalanced datasets as they yield improved 
performance ojn the minority class. As a promising loss 
function, CL is particularly beneficial for applications 
involving unbalanced data. By adjusting the weights of the 
loss function, CL can assign lower importance to simple 
examples and focus more on learning complex samples. To 
evaluate the effectiveness of these loss functions, we 
conducted experiments and presented the results in Table 6 
and Fig. 6. The findings demonstrate that the CL function 
surpasses the TL function, resulting in a 25% reduction in the 
error rate for the accuracy metric and a 39% reduction for the 
F-measure metric. However, it is worth noting that the CL 
function performs 60% worse than the FL function, which is a 
specialized loss function specifically designed for binary 
classification tasks. It is important to consider these results in 
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the context of the specific problem at hand and the nature of 
the dataset. While the CL function outperforms the TL 
function, it falls short when compared to the FL function. 
Further investigation is required to understand the factors 
contributing to these differences in performance and to 
explore the potential of customized loss functions specifically 

tailored to address the challenges posed by imbalanced 
datasets. Additionally, research can focus on developing novel 
loss functions or adapting existing ones to strike a balance 
between emphasizing the minority class and maintaining 
overall classification accuracy across various classification 
tasks and datasets. 

TABLE VI.  RESULTS FROM VARIOUS LFS 

 accuracy recall precision F-measure G-means 

WCE 0.7432± 0.1132 0.7200± 0.0100 0.7174± 0.0155 0.7215± 0.0130 0.7510± 0.1255 

BCE 0.8001± 0.1021 0.7830± 0.1145 0.7520± 0.1051 0.7622± 0.0102 0.8025± 0.0101 

DL 0.8042± 0.2033 0.8151± 0.0025 0.7936± 0.0106 0.7992± 0.0106 0.826± 0.1000 

TL 0.8320± 0.1203 0.8252± 0.0006 0.8014± 0.0216 0.8148± 0.0436 0.8450± 0.2062 

CL 0.8630± 0.0247 0.8545± 0.2045 0.8415± 0.0148 0.8440± 0.0152 0.8639± 0.0152 

 
Fig. 6. Graphical comparison of various loss functions.

F. Discussion 

The findings presented in this study have important 
implications for PPD identification and intervention. 
Developing an automated model using a deep reinforcement 
learning approach and a DE algorithm for weight initialization 
shows the potency of advanced ML approaches for addressing 
the challenges associated with PPD identification. One of the 
key advantages of using the DE algorithm for weight 
initialization is its ability to explore high-dimensional spaces 
and find optimal weight values effectively. This ensures that 
the model is initialized in a manner that enables it to make 
accurate predictions and classify PPD effectively. By 
leveraging an ANN and treating the categorization issue as a 
policymaking stage-by-stage process, the sample considers the 
complexity and nuances of PPD, enhancing its predictive 
capabilities. Using an encouraging learning system and a 

particular compensatory technique further enhances the 
model's performance. By assigning a higher reward for 
identifying the minority class, the model is incentivized to 
focus on precise detection, addressing the challenge of 
identifying at-risk individuals. This approach acknowledges 
the importance of early identification to provide timely 
interventions and support to those most in need. The 
evaluation of the model's performance using a comprehensive 
dataset acquired from the population-based BASIC study in 
Uppsala, Sweden, strengthens the validity of the findings. 
With a large sample size of 4313 samples spanning a 
significant period, the study provides robust evidence of the 
high accuracy of the model in identifying PPD. This accuracy 
underscores the potential effectiveness of the model in real-
world applications for identifying at-risk women. The 
implications of this research are far-reaching. By accurately 
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identifying women at risk for PPD, healthcare professionals 
can provide timely interventions and support, thus improving 
maternal and child health outcomes. Preventative 
interventions targeted at high-risk individuals have been 
shown to be more cost-effective, making the automated model 
a valuable tool in resource allocation and optimizing 
healthcare services. 

To offer a more in-depth assessment of our model's 
capabilities, we reached out for external expert opinions. By 
teaming up with seasoned professionals, possessing extensive 
experience in the field, we embarked on a comprehensive 
qualitative review of the model's performance. These experts, 
hailing from diverse backgrounds and having a rich tapestry of 
experiences in similar research areas, thoroughly scrutinized 
the model's underpinnings, methodologies, and outcomes. 
Their rigorous evaluations and constructive feedback painted a 
clear picture. Their collective insights resoundingly echoed 
our preliminary findings, particularly highlighting the model's 
unparalleled precision, steadfast reliability, and robust 
adaptability. When our model was placed side by side with 
pre-existing algorithms for a comparative analysis, it distinctly 
stood out, showcasing its superior design and performance. 
The external validation from such esteemed professionals not 
only fortified our confidence in the model but also 
underscored its potential for real-world applications and future 
research endeavors. 

However, it is important to acknowledge the limitations of 
this study and consider avenues for future research. Firstly, the 
dataset used in this study was acquired from a specific 
population-based study conducted in Uppsala, Sweden. While 
this provides valuable insights into the model's performance 
within that particular context, it raises questions about the 
generalizability of the findings to diverse populations and 
settings [63]. Variations in cultural, socioeconomic, and 
healthcare factors may influence the prevalence and 
presentation of PPD, potentially impacting the model's 
performance [64]. Therefore, future studies should aim to 
validate the model using datasets from different regions and 
populations to ensure its applicability across various contexts 
[65]. 

Additionally, while the model demonstrates high accuracy 
in identifying PPD, assessing its performance in real-world 
clinical arrangements is crucial [66]. The controlled 
environment of the study may not fully reflect the 
complexities and challenges faced by healthcare professionals 
in their daily practice. 

Evaluating the model's effectiveness in a clinical setting, 
where multiple factors can influence the identification and 
treatment of PPD, would provide valuable insights into its 
practical utility. Longitudinal studies tracking patient 
outcomes and the impact of the model's predictions on 
treatment decisions and health outcomes would further 
enhance our understanding of its clinical relevance. 
Furthermore, expanding the scope of research beyond the 
model accuracy is essential. While accuracy is a crucial 
metric, evaluating other performance measures such as 
sensitivity, specificity, positive predictive value, and negative 
predictive value is equally important [67]. These metrics 

provide a more comprehensive assessment of the model's 
diagnostic capabilities and ability to identify individuals at 
risk and those not at risk for PPD. Understanding the model 
performance across these measures can guide healthcare 
professionals in effectively utilizing its predictions and 
making informed interventions and resource allocation 
decisions. 

Moreover, assessing the impact of the model on patient 
outcomes is a critical aspect that requires further investigation 
[68]. While timely identification of at-risk women is essential, 
evaluating whether the interventions based on the model 
predictions lead to improved maternal and child health 
outcomes is equally vital [69]. Conducting studies that 
measure the effectiveness of interventions guided by the 
model, such as targeted support programs or personalized 
treatment plans, would provide valuable evidence of the 
model's potential to impact patient outcomes positively. 

Finally, it is important to consider the ethical implications 
and potential challenges associated with the implementation of 
an automated model for PPD identification [70]. Issues such 
as privacy, data security, and the potential for biases in the 
model's predictions need to be thoroughly examined and 
addressed. Ensuring transparency, fairness, and accountability 
in developing and deploying such models is essential to 
maintaining trust among healthcare professionals and the 
wider public [71]. 

VI. CONCLUSION 

In this study, we have developed an automated model to 
identify PPD using a deep reinforcement learning approach 
combined with a DE algorithm for weight initialization. The 
DE algorithm is renowned for its ability to effectively explore 
high-dimensional spaces and find optimal weight values, 
making it well-suited for weight initialization in our model. 
Our approach utilizes an ANN and treats the PPD 
classification problem as a policymaking stage-by-stage 
process. At every stage, the operator acquires samples and 
employs classifications, while the habitat maintains rewards 
for every classifying activity. For inspiring precise detection, a 
greater award is determined for recognizing the minor 
category. Through a particular compensatory technique and an 
encouraging learning system, the operator learns and chooses 
the most effective method for achieving the goals. To evaluate 
our sample's efficiency, we analyzed a comprehensive set of 
data obtained from the population-based BASIC study 
conducted in Uppsala, Sweden, spanning from 2009 to 2018, 
and comprising 4313 samples. The experiential results were 
assessed by known analysis criteria, revealing our sample 
achieved greater precision and correctness, demonstrating its 
suitability for identifying PPD. These findings carry 
significant implications for identifying at-risk women and 
providing timely interventions to improve maternal and child 
health outcomes. 

Reinforcement learning algorithms often face the 
challenge of striking a balance between exploration and 
exploitation. Future research can delve deeper into exploring 
effective strategies for addressing this trade-off in the context 
of PPD identification. Techniques such as adaptive 
exploration policies, multi-objective optimization, or 
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incorporating domain knowledge can help optimize the 
model's performance in identifying at-risk women while 
minimizing false positives and negatives. Moreover, 
investigating the potential of transfer learning and domain 
adaptation techniques can contribute to improving the 
generalization capabilities of the PPD identification model. By 
leveraging knowledge gained from related domains or pre-
trained samples, the sample's efficiency can be enhanced when 
applied to different populations, cultures, or healthcare 
settings. This research direction can help address the 
challenges of model generalizability and make the automated 
PPD identification model more robust. 
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