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Abstract—Real-time handgun and knife detection on edge 

devices within the Internet of Things (IoT) video surveillance 

systems hold paramount importance in ensuring public safety 

and security. Numerous methods have been explored for 

handgun and knife detection in video-based surveillance systems, 

with deep learning-based approaches demonstrating superior 

accuracy compared to other methods. However, the current 

research challenge lies in achieving high accuracy rates while 

managing the computational demands to meet real-time 

requirements. This paper proposes a solution by introducing a 

single-stage convolutional neural network (CNN) model tailored 

to address this challenge. The proposed method is developed 

using a custom dataset, encompassing model generation, training, 

validation, and testing phases. Extensive experiments and 

performance evaluations substantiate the efficacy of the proposed 

approach, which achieves remarkable accuracy results, thus 

showcasing its potential for enhancing real-time handgun and 

knife and knife detection capabilities in IoT-based video 

surveillance systems. 
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I. INTRODUCTION 

Video Surveillance Systems (VSS) have gained tremendous 
significance in various domains due to their ability to monitor 
and analyze activities in real-time [1, 2]. With the advent of the 
Internet of Things (IoT), these surveillance systems have 
become even more versatile and effective [3]. The integration 
of IoT technology into video surveillance systems has opened 
up new avenues for efficient data collection, analysis, and 
decision-making in diverse applications ranging from security 
and safety to healthcare and industrial automation [4, 5]. 

In the realm of IoT-based video surveillance, a pivotal role 
is played by edge computing devices [6]. These devices, 
situated at the edge of the network, are responsible for 
processing data closer to the data source, thereby reducing 
latency, conserving bandwidth, and enabling real-time analytics 
[7]. Edge computing enhances the capabilities of IoT video 
surveillance systems by enabling rapid data processing and 
timely response to detected events. 

One specific and critical application in this context is real-
time detection on edge devices [8]. The ability to detect 
firearms in real time has significant implications for enhancing 
public safety and security measures [9, 10]. Achieving accurate 
and rapid handgun detection on edge devices requires 
sophisticated methods that can handle the computational 

constraints posed by these devices while maintaining high 
levels of accuracy. 

Deep learning-based approaches have garnered substantial 
attention in the realm of real-time handgun detection due to 
their remarkable capabilities in handling complex visual 
patterns and achieving high accuracy [11, 12]. These methods 
utilize deep neural networks to automatically learn intricate 
features from images and videos, thus enabling accurate object 
detection tasks [13]. This has led to a surge in research efforts 
exploring deep learning-based methodologies for real-time 
handgun detection compared to traditional methods. 

Despite the advancements, there exist certain limitations 
and research challenges in the realm of deep learning-based 
approaches for handgun detection [14]. Pursuing high accuracy 
while maintaining real-time performance demands innovative 
solutions [15, 16]. Addressing these challenges necessitates 
further investigation and exploration of novel methodologies to 
ensure the efficacy of real-time handgun detection systems. 

In this study, we propose a deep learning method utilizing 
single-stage convolutional neural network (CNN) architecture 
to address the requirements of handgun detection. The adopted 
deep learning approach is justified by its ability to balance 
accuracy and real-time constraints, making it a promising 
candidate for the addressed research challenge. The proposed 
model is trained, validated, and tested using a custom dataset, 
allowing for robust evaluation of its performance. 

This research contributes to the field in three key ways. 
Firstly, a custom dataset is generated specifically designed for 
the challenge of handgun detection. Secondly, an efficient 
deep-learning method is proposed for accurate and real-time 
handgun detection on edge devices. Lastly, extensive 
experiments and performance evaluations are conducted to 
validate the effectiveness of the proposed method, shedding 
light on its potential contributions to the domain of IoT-based 
video surveillance and public safety. 

II. RELATED WORK 

The author in [11] presented a method for automatic 
handgun detection using deep learning in video surveillance 
images. The approach involves training a deep neural network 
on a labeled dataset of surveillance images containing 
handguns. The network utilizes convolutional layers to extract 
features and make predictions. The method achieves promising 
results in detecting handguns in real-time video streams. 
However, there are some limitations to consider. The accuracy 
of detection can be influenced by variations in lighting, object 
occlusions, and different camera angles. Additionally, the 
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model's performance might degrade when faced with new 
environments or different handgun types not well-represented 
in the training data. Further research is needed to enhance the 
robustness of the method and address these challenges 
effectively. 

The paper in [17] introduced a technique for handgun 
detection using human pose information. The method involves 
utilizing pose estimation models to extract key human joint 
positions from images. By analyzing the spatial relationships 
between these joints, potential handguns can be identified. The 
approach demonstrates effectiveness in identifying handguns in 
various poses. However, limitations include potential false 
positives due to similar joint configurations and the reliance on 
accurate pose estimation, which may suffer in challenging 
scenarios such as low-resolution or occluded images. Further 
refinement of the method and addressing these limitations are 
essential for real-world application. 

The paper in [18]  presented TYOLOV5, a real-time 
handgun detection system for videos based on quasi-recurrent 
neural networks. The method integrates YOLOv5 architecture 
with temporal information to enhance detection accuracy. It 
successfully detects handguns in video streams, but it may face 
challenges with complex backgrounds and rapid motion, 
leading to false positives or missed detections. Further 
improvements are needed to optimize its performance in 
dynamic scenarios and mitigate limitations related to 
occlusions and varying lighting conditions. 

The author in [19] focused on enhancing handgun detection 
by combining visual features with body pose-based data. The 
method involves extracting both appearance-based features and 
human body joint positions from images. By integrating these 
features, the detection algorithm achieves improved accuracy in 
identifying handguns. However, challenges like limited 
effectiveness in cases of occlusion and varying poses, as well 
as potential false positives from similar joint configurations, 
need to be addressed for robust real-world deployment. 

The author in [20]  presented the CCTV-Gun benchmark 
for handgun detection in CCTV images. The method involves 
curating a dataset with labeled images containing handguns to 
assess detection algorithms. Various state-of-the-art models are 
evaluated using this benchmark, demonstrating their 
effectiveness. However, limitations include potential biases in 
the dataset and a focus on handguns only, neglecting other 
potential threats. To address these limitations, future work 
should encompass a more diverse range of objects and consider 
broader contextual factors to ensure comprehensive video 
surveillance. 

The paper in [13] introduced a deep-learning framework for 
handgun and knife detection using edge devices with indoor 
video surveillance cameras. The method employs a neural 
network model optimized for edge computing to identify 
handguns and knives. While achieving real-time detection, 
limitations arise from potential constraints of edge devices, 
such as limited processing power and memory. Additionally, 
the model's performance might be affected by variations in 
lighting conditions and camera angles, warranting further 
research to enhance robustness and adaptability to diverse 
scenarios. 

III. RESEARCH METHODOLOGY 

A. Dataset Preparation 

The dataset creation process involves two distinct 
variations: augmented and non-augmented. Augmentation 
entails the application of transformations such as rotation, 
scaling, and flips to the original images. These alterations 
expand the dataset's diversity and complexity, enabling the 
model to comprehend a broader array of scenarios. Rotation 
introduces images from various angles, scaling accounts for 
size variations, and flips reflect different orientations. Rotation 
is one of the key augmentation techniques, and it entails 
rotating the original images at different angles. This introduces 
images from various perspectives, allowing the model to learn 
from different viewpoints and orientations. For example, in a 
dataset of handwritten digits, rotating the images can help the 
model recognize numbers written at various angles, just like 
how humans can read numbers whether they are upside down 
or sideways. This augmentation enriches the dataset by 
simulating real-world variability, enhancing the model's 
adaptability when confronted with novel situations. Scaling, 
another important augmentation technique, takes care of size 
variations. This means resizing the images to different scales, 
which can simulate scenarios where objects appear closer or 
farther away in the real world. For instance, in an image dataset 
for object recognition, scaling can help the model recognize 
objects that are either close up or in the distance. 

Flips are yet another augmentation technique and involve 
creating mirror images or reversing the orientation of the 
original images. This mimics situations where an object or 
scene is seen from a different perspective or orientation. For 
instance, in image recognition for self-driving cars, flips can 
help the model adapt to objects that are seen in the rearview 
mirror or through the side mirrors 

As shown in Table I, in terms of dataset composition, it 
adheres to a structured distribution of 70-20-10, allocated for 
training, validation, and testing, respectively. This distribution 
is strategically designed to ensure that the model learns 
extensively, validates its performance, and rigorously tests its 
capabilities. With 70% of the data devoted to training, the 
model grasps underlying patterns and learns to recognize 
handguns and knives under differing conditions. The 20% 
validation subset enables performance evaluation during 
training, allowing fine-tuning and parameter adjustment. 
Lastly, the 10% testing fraction evaluates the model's 
generalization on entirely new, unseen data, objectively 
assessing its practical applicability. 

Incorporating these assumptions into the broader context 
underscores the importance of assembling a dataset that 
encapsulates the intricacies of real-world scenarios. The 
diversity of images featuring handguns and knives, captured 
from multiple angles, lighting settings, and backgrounds, 
emulates the complexity of actual situations. To empower the 
model for precise detection and classification, annotations 
encompass bounding box coordinates and class labels. This 
information equips the model to not only identify the presence 
of handguns and knives but also understand their spatial 
arrangement within the images. The combination of data 
augmentation techniques, well-structured dataset distribution, 
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and comprehensive annotations collectively fortifies the 
model's ability to generalize effectively, paving the way for 
robust performance across diverse real-world settings. 

B. YOLO-based Model Setup 

Fig. 1 shows the structure of the proposed method. As 
shown in Fig 1, the YOLO-based handgun and knife detection 
models are configured by adapting key parameters in the 
model's architecture and hyperparameters. This involves 
selecting the appropriate YOLO variant or backbone, setting 
the number of classes to 2 for handguns and knives, and 
specifying a consistent input image size of 416x416 pixels. 
Anchor box sizes are tailored based on object statistics, 

enhancing object localization accuracy. Hyperparameters like 
learning rate, weight decay, and loss function weights are 
meticulously fine-tuned through iterative experimentation to 
optimize accuracy while accounting for computational 
efficiency. Table II shows the model configuration for Yolo-
based models in the proposed method. 

TABLE I. NO AUGMENTED IMAGES IN A DATASET 

Number of Images Train (70%) Valid (20%) Test (10%) 

965 676 193 96 

 

 

Fig. 1. The structure of the proposed method. 

TABLE II. MODEL CONFIGURATION IN THE PROPOSED METHOD 

model: 

  # Choose an appropriate variant: 'n' 

  type: YOLOv5  # Or CSPDarknet53 for backbone 

nc: 2  # Number of classes: handguns and knives 

# Input image size 

img_size: 416 

# Anchors - Adapt these based on your dataset statistics 

anchors: 

  - [10,13, 16,30, 33,23] 

  - [30,61, 62,45, 59,119] 

  - [116,90, 156,198, 373,326] 

# Hyperparameters - Fine-tune these based on experimentation 

hyp: 

  lr0: 0.001  # Initial learning rate 

  lrf: 0.2   # Learning rate reduction factor 

  momentum: 0.937  # SGD momentum 

  weight_decay: 0.0005  # Weight decay 

  giou: 0.05  # GIoU loss weight 

  cls: 0.58   # Classification loss weight 

  cls_pw: 1.0 

  obj: 1.0 

  obj_pw: 1.0 

  iou_t: 0.20  # IOU threshold for objectness loss 

  anchor_t: 4.0  # Anchor-multiple threshold 

  fl_gamma: 0.0  # Focal loss gamma 

  hsv_h: 0.0138 

  hsv_s: 0.678 

  hsv_v: 0.36 

  

Datasct Preparation YOLO based Model Setup Model Training

Deployment
Experiments and 

Comparisons
Testing

Validation
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As shown in Table II, in the YOLOv5 configuration, the 
model type is specified by the type parameter, which can be 
'YOLOv5' or 'CSPDarknet53', determining the core 
architecture and feature extractor. The nc parameter sets the 
number of classes, denoting handguns and knives, while 
img_size standardizes input image dimensions at 416x416 
pixels. The anchors parameter encompasses anchor box sets, 
vital for object localization, and should be adapted to object 
aspect ratios and scales. The hyperparameters, central to model 
optimization, include lr0 for the initial learning rate, lrf for 
learning rate reduction, momentum for optimization 
acceleration, and weight_decay for regularization. Parameters 
like giou, cls, and obj influence loss functions, while iou_t and 
anchor_t dictate object detection thresholds. Fine-tuning 
factors like cls_pw, obj_pw, and fl_gamma, along with hsv_h, 
hsv_s, and hsv_v for augmentation, are also pivotal. It's crucial 
to iteratively fine-tune these parameters based on 
experimentation and evaluation to strike the right balance 
between accuracy and computational efficiency in the context 
of handgun and knife detection using YOLO models. 

C. Training 

Training a YOLOv5 model for handgun and knife detection 
involves several crucial stages that collectively contribute to its 
accuracy and adaptability. Firstly, during the data loading and 
augmentation phase, the model's script meticulously processes 
images and annotations sourced from the training dataset. 
Augmentation techniques, encompassing random rotations, 
scaling, flips, and color adjustments, are strategically applied. 
This augmentation strategy enhances the model's robustness, 
allowing it to handle a diverse array of real-world scenarios. 
By exposing the model to a wider range of training examples 
through augmentation, it gains the capacity to discern objects 
across varying angles, scales, and lighting conditions. 

Subsequently, in the loss calculation step, the model 
embarks on each training iteration by predicting bounding box 
coordinates and class probabilities for every object within the 
images. The pivotal loss function comes into play, which 
amalgamates crucial components, including localization loss 
(measured by the Generalized Intersection over Union or GIoU 
metric), objectness loss, and classification loss. This calculated 
loss acts as a gauge of the dissimilarity between the model's 
predictions and the factual annotations, thereby steering the 
optimization process toward convergence. The calculated 
losses provide feedback that guides the model in adjusting its 
internal parameters to align with ground truth annotations more 
accurately. 

As the training unfolds, the process of backpropagation and 
optimization plays a central role. The computed loss is 
propagated backward through the model's layers, influencing 
the gradient updates of the model's weights and biases. The 
optimization method employed here is stochastic gradient 
descent (SGD), a foundational algorithm in machine learning. 

The learning rate and momentum parameters within the 
optimization process directly impact the extent of weight 
updates, influencing the model's capacity to navigate the 
optimization landscape. Furthermore, to finely tune the training 
procedure, learning rate scheduling is introduced. By 
incorporating the lr0 parameter and the reduction factor lrf, the 
learning rate gradually diminishes across training epochs. This 
dynamic learning rate adjustment facilitates a controlled 
convergence process, enhancing the accuracy and precision of 
the model's predictions. 

D. Validation and Testing 

Validation and testing are essential steps in generating 
accurate models for handgun and knife detection using the 
YOLO models. These phases ensure that the trained models 
not only perform well on the training data but also generalize 
effectively to unseen scenarios. 

During the validation phase, a separate subset of the dataset 
is used to assess the model's performance as it undergoes 
training. This helps prevent overfitting, where the model 
becomes overly specialized to the training data and struggles to 
perform on new data. The validation dataset consists of images 
the model hasn't seen before, and the annotations for these 
images are used to evaluate the model's predictions. By 
comparing the predicted bounding box coordinates and class 
probabilities to the ground truth annotations, metrics such as 
mean average precision (mAP) are calculated. mAP quantifies 
the model's accuracy across different object categories and 
various confidence thresholds. This validation process aids in 
fine-tuning hyperparameters, adjusting learning rates, and 
making decisions on model checkpoints that offer the best 
trade-off between precision and recall. 

The testing phase evaluates the model's performance on 
entirely new and unseen data, further confirming its 
generalization capabilities. A distinct testing dataset is used to 
assess how well the model can detect handguns and knives in 
real-world scenarios it has not encountered during training or 
validation. Similar to validation, the model's predictions are 
compared to the ground truth annotations to calculate metrics 
like mAP, offering insights into the model's accuracy on 
unfamiliar data. Testing validates the model's readiness for 
real-world deployment and gives an indication of how well it 
will perform in live environments. 

IV. RESULTS AND DISCUSSION 

This section presents the visual representation of our 
experimental results and performance evaluation. Fig. 2 
demonstrates a visual representation of our experimental 
results for Yolo models. Moreover, for performance 
evaluation, standards performance evaluation metrics, 
including precision, recall, and F- score, are employed inspired 
by [21, 22]. The details of performance evaluation are 
discussed in the following sections. 
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(a) (b) 

  
(c) (d) 

Fig. 2. Visual illustration of experimental results, (a): YOLOv5n-no-aug, (b): YOLOv5n-aug, (c): YOLOv8n-no-aug, (d): YOLOv8n-aug. 

V. PERFORMANCE EVALUATIONS 

A. Performance Evaluations of YOLOv5n with No 

Augmentation Results 

In this study, we first employed the YOLOv5 model for the 
specific task of handgun and knife detection. Notably, we 
chose to conduct our experiments without incorporating any 
data augmentation techniques into the dataset. This decision 
was made to assess the inherent capability of the model 
without any external modifications to the training data. After 

training, we rigorously evaluated the model's performance 
using standard metrics such as precision, recall, and F1-score. 
These metrics provide a comprehensive view of the model's 
ability to correctly identify instances of handguns and knives in 
the test dataset. The absence of augmentation allowed us to 
directly gauge the model's performance on the original dataset, 
shedding light on its raw detection capabilities and potential 
strengths or weaknesses. Fig. 3 shows the results of the 
performance evaluation of the generated YoloV5 model with 
no augmentation. 
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Fig. 3. The result of YOLOv5n on no-augmented dataset. 

As depicted in Fig. 3, the evaluation of our YOLOv5 model 
using precision, recall, PR-curve, and F1-score has provided 
insightful results that showcase its effectiveness, even in the 
absence of data augmentation. The average precision (P-curve) 
of 0.77 for gun detection and 0.92 for knife detection suggests 
that the model is capable of correctly identifying a significant 
portion of relevant instances within these classes. Similarly, the 
high average recall (R-curve) of 0.65 indicates the model's 
proficiency in capturing a considerable proportion of actual 
positives within the dataset. 

The PR-curve, with an average value of 0.66, illustrates a 
balanced trade-off between precision and recall. This implies 
that the model strikes a commendable equilibrium between 
minimizing false positives and maximizing true positives. 
Moreover, the F1-score of 0.65 signifies a harmonious blend of 
precision and recall, indicating the model's strong performance 
in terms of both accuracy and completeness. 

Considering these metrics collectively, the YOLOv5 model 
demonstrates its reliability and suitability for real-time 
applications. Despite the absence of data augmentation, the 

model maintains a consistent and respectable level of 
performance across multiple evaluation criteria. The high recall 
values suggest that the model effectively captures instances of 
handguns and knives, essential for accurate detection in 
scenarios where prompt identification is critical. Furthermore, 
the balanced PR-curve and F1-score underscore the model's 
potential for reliable and precise detection, making it a 
promising candidate for real-time applications where accurate 
and swift identification of these objects is paramount. 

B. Performance Evaluations YOLOv5n with Augmentation 

Results 

Secondly, we developed a YOLOv5 model for handgun 
and knife detection. Through dataset augmentation, we 
diversified the training data with rotations, scaling, and flips. 
This improved the model's adaptability to real-world scenarios. 
We evaluated the model using precision, recall, and F1-score, 
highlighting its capacity to identify instances accurately. The 
augmentation-enhanced model showcases potential for 
effective real-time applications, addressing dataset limitations 
and fostering improved detection performance. 
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Fig. 4. The result of YOLOv5n on the augmented dataset. 

As illustrated in Fig. 4, the evaluation results of the 
YOLOv5 model for handgun and knife detection, enriched 
with dataset augmentation, highlight its improved performance 
compared to the version without augmentation. The higher 
average precision values of 0.77 for gun and 0.91 for knife 
detection imply that the augmented model excels in correctly 
pinpointing instances of these objects. Moreover, the 
substantial average recall of 0.69 underscores its proficiency in 
capturing a noteworthy portion of actual positives within the 
dataset. 

The PR-curve's average value of 0.69 signifies that the 
model effectively balances precision and recall, indicating its 
capacity to minimize false positives while maximizing true 
positives. This indicates the model's heightened accuracy in 
distinguishing relevant instances from the background. The F1-
score of 0.68, combining precision and recall, reflects the 
model's improved overall performance and ability to 
harmonize between precise detection and comprehensive 
coverage. 

These enhanced metrics collectively demonstrate that the 
augmented model presents a substantial advancement. 
Augmentation has expanded the model's understanding of 
different object appearances and contexts, enabling it to 

generalize better to unseen scenarios. This has led to 
heightened accuracy in identifying handguns and knives. 
Consequently, the augmented YOLOv5 model holds greater 
potential for real-time applications, where the improved 
precision, recall, and balanced performance make it a more 
reliable tool for swift and accurate object detection in dynamic 
environments. 

C. Performance Evaluations YOLOv8n with No 

Augmentation Results 

Thirdly, we developed a YOLOv8n model specifically 
designed for the detection of handguns and knives. Notably, 
our experimentation followed a no-augmentation approach, 
where the dataset remained unaltered. We aimed to evaluate 
the model's performance in its raw form without the influence 
of external data modifications. Subsequently, the model 
underwent a comprehensive evaluation, utilizing precision, 
recall, and F1-score as the primary metrics. These metrics 
allowed us to assess the model's precision in identifying 
instances accurately, its ability to capture actual positives, and 
the balance between these two factors. Through this evaluation, 
we sought to gain insights into the model's intrinsic detection 
capabilities when subjected to real-world scenarios without the 
aid of dataset augmentation techniques. 
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Fig. 5. The result of YOLOv8n on no-augmented dataset. 

As shown in Fig. 5, the evaluation results of the YOLOv8n 
model in handgun and knife detection are highly promising. 
With an average precision of 0.79 for gun detection and an 
impressive 0.96 for knife detection, the model showcases its 
accuracy in correctly identifying instances within these specific 
classes. These values indicate that the model's predictions are 
consistently precise, minimizing the occurrence of false 
positives and boosting its reliability in distinguishing objects of 
interest. 

The average recall of 0.80 is a testament to the YOLOv8n 
model's exceptional ability to capture a significant proportion 
of true positives, thereby avoiding missed detections. This 
indicates that the model effectively identifies and localizes 
instances of handguns and knives in a wide range of scenarios. 
The high recall value reflects its proficiency in 
comprehensively covering the target classes, which is vital for 
real-time applications where objects might appear in various 
orientations and scales. 

The PR-curve's average value of 0.76 highlights the 
balanced trade-off between precision and recall achieved by 
the YOLOv8n model. This equilibrium suggests that the model 
can achieve high levels of accuracy in identifying relevant 
instances while maintaining a strong ability to capture true 
positives. A balanced PR-curve is especially advantageous in 
scenarios where minimizing false alarms and maximizing 
detections are critical, making the model suitable for real-world 
applications. 

The F1-score of 0.73 reflects the YOLOv8n model's 
capacity to integrate precision and recall harmoniously. This 
indicates that the model is not only precise but also exhibits 
comprehensive coverage of relevant instances. The F1-score is 
particularly valuable as it provides a single metric that 
considers both false positives and false negatives, offering a 
holistic assessment of the model's performance in a real-world 
context. 
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Comparing the YOLOv8n model's performance with the 
YOLOv5 model, both without augmentation and the 
augmented YOLOv5 model, reveals distinct trends. While the 
YOLOv5 model without augmentation had lower precision, 
recall, PR-curve, and F1-score values, the augmented YOLOv5 
model showcased improved performance. However, the 
YOLOv8n model consistently outperformed both counterparts, 
excelling in all metrics. This superiority can be attributed to the 
unique architecture and design choices of YOLOv8n, allowing 
it to capture object features and contexts better, ultimately 
resulting in higher accuracy, recall, and balanced performance. 

D. Performance Evaluations YOLOv8n With Augmentation 

Results 

Lastly, we developed a YOLOv8n model tailored 
specifically for handgun and knife detection. Contrasting with 

the no-augmentation approach, we expanded the dataset 
through augmentation techniques, effectively diversifying the 
training data. Similar to the generated YOLOv5 model with 
augmentation, we aimed to enhance the model's ability to 
generalize across a broader range of real-world scenarios by 
introducing variations like rotations, scaling and flips. Our 
experimentation involved a comparison of the augmented 
dataset against the original one to evaluate the model's 
performance under different conditions. This allowed us to 
gauge the impact of augmentation on the model's detection 
capabilities, assessing its potential for improved accuracy and 
robustness when faced with varying object orientations, scales, 
and backgrounds. 

  

 
 

Fig. 6. The result of YOLOv8n on the augmented dataset. 
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As illustrated in Fig. 6, the evaluation results of the 
YOLOv8n model with augmentation underscore its remarkable 
performance, with average precision values of 0.89 for guns 
and 0.93 for knives. These values suggest that the model 
accurately identifies instances within these classes, indicating a 
notable improvement compared to YOLOv8n without 
augmentation. Additionally, the impressive average recalls of 
0.76 highlights the model's proficiency in capturing a 
significant portion of true positives, further affirming its 
robustness. 

The PR-curve's average value of 0.71 reflects the 
YOLOv8n model with augmentation's ability to achieve an 
effective balance between precision and recall. This balance is 
pivotal in real-time applications, ensuring that the model 
minimizes false positives while maximizing the identification 
of true positives. Similarly, the F1-score of 0.69 signifies the 
model's success in harmonizing precision and recall, which is 
crucial for maintaining high accuracy and comprehensive 
coverage. 

When comparing the YOLOv8n model with augmentation 
against its no-augmentation counterpart, the improvements in 
precision, recall, PR-curve, and F1-score affirm the value of 
dataset augmentation. Augmentation techniques introduce 
diversity to the training data, enabling the model to better adapt 
to real-world variations in object appearance, background, and 
orientation. This results in enhanced detection performance and 
better prepares the model for challenges it might encounter in 
dynamic environments. To ensure fair and objective 
comparisons between the proposed methodology and other 
popular methods discussed in the manuscript, a rigorous and 
standardized evaluation protocol must be employed. By 
adhering to a transparent and reproducible evaluation 
framework, the manuscript can provide a clear and credible 
basis for comparing the proposed approach against existing 
methods. 

In comparison to YOLOv5 without augmentation, the 
YOLOv8n model with augmentation consistently outperforms 
it across all metrics. This indicates that YOLOv8n's 
architecture, combined with augmentation, provides a more 
effective framework for handgun and knife detection tasks. The 
YOLOv5 model, although renowned, demonstrates limitations 
in terms of precision and recall in comparison to both versions 
of YOLOv8n, reinforcing the advantages of the latter. Fig. 7 
shows the comparison of performance results of different 
experiments. 

As depicted in Fig. 7, when contrasting with augmented 
YOLOv5, the YOLOv8n model maintains its superiority. This 
suggests that YOLOv8n's architectural enhancements, coupled 
with augmentation, result in a more refined and adaptable 
model. While augmentation does enhance YOLOv5, the 
performance boost offered by YOLOv8n is still apparent, 
showcasing its advanced capabilities in handling object 
detection tasks. 

Ultimately, the YOLOv8n model with augmentation 
emerges as the optimal choice for handgun and knife detection 
in real-time scenarios. Its superior performance across multiple 
metrics attests to its accuracy, versatility, and robustness. 
Augmentation proves to be a crucial factor, as it empowers the 
model to handle diverse and challenging situations, making it 
more reliable and effective in real-world applications where 
timely and accurate detection is essential. 

As a result, the combination of YOLOv8n's architecture 
and dataset augmentation yields a powerful model that excels 
in handgun and knife detection tasks. Its superior precision, 
recall, PR-curve, and F1-score values, when compared to both 
YOLOv8n without augmentation and YOLOv5 models, 
demonstrate its efficacy. This model is well-equipped to 
address the intricacies of real-time applications, offering 
heightened accuracy, adaptability, and efficiency in identifying 
handguns and knives. 

 

Fig. 7. Comparison of performance results of different experiments. 
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Moreover, to ascertain the scalability and efficacy of the 
proposed dataset creation methodology, it is imperative to 
conduct a comprehensive evaluation of the results obtained. 
This evaluation process should involve comparing the 
performance of models trained on augmented and non-
augmented datasets across various real-world scenarios and 
challenges. By using the augmented dataset, the model's ability 
to adapt to different angles, sizes, and orientations can be 
thoroughly tested, allowing for a more robust assessment of its 
capabilities. Metrics such as accuracy, precision, and recall 
should be considered, along with real-world benchmarks and 
use cases. The results of this evaluation will not only validate 
the significance of the augmentation techniques but also 
demonstrate the dataset's utility in enhancing the model's 
generalization and adaptability, making it a crucial step in 
ensuring the success of the proposed work in various practical 
applications. 

VI. CONCLUSION 

Real-time handgun and knife detection on edge devices are 
paramount for enhancing the effectiveness of IoT video 
surveillance systems. This paper addresses the significance of 
accurate and timely firearm detection in such systems, 
highlighting the various methods explored in video-based 
surveillance contexts. Deep learning-based approaches have 
demonstrated superior results in handgun and knife detection 
due to their ability to learn intricate patterns, yet they face 
challenges concerning accuracy and computational efficiency 
for real-time operation. This study proposes a solution by 
introducing a single-stage convolutional neural network model 
tailored to address the aforementioned research challenge. The 
proposed method involves model generation through a custom 
dataset and encompasses comprehensive training, validation, 
and testing phases. Experimental results and performance 
evaluations validate the effectiveness of the proposed approach 
in achieving accurate firearm detection, demonstrating its 
potential impact on IoT video surveillance systems. Two 
potential avenues for future research stem from the findings of 
this study. Firstly, considering the evolving nature of IoT 
technologies and edge computing, exploring methods to 
optimize the computational efficiency of the proposed single-
stage convolutional neural network model would be valuable. 
Addressing the current challenges of high computation costs 
while maintaining real-time capabilities could lead to more 
scalable and practical implementations. Secondly, delving into 
the integration of multi-modal sensor inputs, such as audio and 
environmental data, with the proposed handgun and knife 
detection model could enhance its robustness and accuracy in 
complex real-world scenarios. By incorporating additional 
contextual information, the proposed approach could offer 
more reliable and comprehensive firearm detection outcomes 
in diverse IoT video surveillance applications. 
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