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Abstract—The emotional state is an essential factor that 

affects mental health. Electroencephalography (EEG) signal 

analysis is a promising method for detecting emotional states. 

Although multiple studies exist on EEG emotional signals 

classification, they have rarely considered processing time as a 

metric for classification model evaluation. Instead, they used 

either model accuracy and/or the number of features for 

evaluation. Processing time is an important factor to be 

considered in the context of mental health. Many people 

commonly use smart devices, such as smartwatches to monitor 

their emotional state and such devices require a short processing 

time. This research proposes an EEG-based model that detects 

emotional signals based on three factors: accuracy, number of 

features, and processing time. Two feature extraction algorithms 

were applied to EEG emotional signals: principal components 

analysis (PCA) and fast independent components analysis 

(FastICA). In the classification process, ensemble method 

classifiers were adopted due to their powerful performance. 

Three ensemble classifiers were used: random forest (RF), 

extreme gradient boosting (XGBoost), and adaptive boost 

(AdaBoost). The experimental results showed that the RF and 

XGBoost achieved the best accuracy, i.e., 95%, for both methods. 

However, XGBoost outperformed RF in terms of the number of 

features; it used 33 components extracted by PCA within 14 

seconds, while RF used 36 within 4 seconds. AdaBoost was the 

worst in terms of both accuracy and processing time in the two 

experiments. 

Keywords—Electroencephalograph; mental health; feature 

extraction; random forest; extreme gradient boosting; adaptive 

boost 

I. INTRODUCTION 

Mental health is a source of concern due to its significant 
impact on an individual’s quality of life and on society, where 
poor mental health can lead to multiple health and financial 
losses, in addition to suicide in critical cases. Mental health 
issues are increasing due to different factors such as social 
media, social state, and financial state. Additionally, natural 
disasters and global epidemics affect an individual’s mental 
health, such as what is caused by the Covid-19 pandemic [1]. 
In 2011, the World Health Organization predicted that 
depression would be the leading cause of the global illness 
burden by 2030 [2]. Twenty-five percent of people worldwide 
have mental health problems [3]. Hence, it is essential to pay 
attention to this field and find solutions to mitigate the 
expected impacts of poor mental health. 

Furthermore, personal emotions primarily affect people’s 
mental health [4]. EEG signals contain brain electrical activity 
information gathered from the scalp by electrodes [5]. Thus, 
several studies have been concerned with conducting 
experiments classifying emotions using EEG signals. Multiple 
previous studies have focused on classification accuracy and 
the number of features. The previous experiments achieved 
high accuracy with an appropriate number of components in 
the EEG signal classification process [6], but ignored 
processing time. On the other hand, limited studies have 
considered time to be an essential factor for the model 
evaluation. However, their results have shown that the 
processing took a relatively long time, impairing the model’s 
efficiency. A short processing time is a required factor in 
mental health data processing, enabling smart devices to adopt 
these models and allowing their users to monitor their 
emotional states through them directly. Moreover, fast 
processing to detect personal emotions contributes to 
preventing critical cases, such as suicide due to depression. 

This gap encouraged us to propose a model that classifies 
emotional signals considering accuracy, number of features, 
and processing time.  PCA and FastICA were used in the 
extraction feature stage due to their speed in the extraction, 
while RF, AdaBoost, and XGBoost were implemented to 
classify the emotions. 

The contributions of this study are summarized as follows: 

 Implementing three ensemble classification algorithms 
on EEG signals using two feature extraction algorithms. 

 Defining the best combination of feature extraction and 
classification algorithms based on three factors: 
accuracy, number of features, and processing time. 

 Comparison of the proposed model results with several 
studies that used the same dataset. 

II. LITERATURE REVIEW 

Table I shows a summary of related works in terms of the 
dataset, features extraction algorithm, number of features, best 
accuracy, and processing times. As shown in the table, few 
studies have been concerned with the models’ processing 
times. On the other hand, various datasets and algorithms were 
used. 
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TABLE I. SUMMARIZATION OF RELATED WORK

Ref Dataset Best Feature Algorithm Number of features/channels Best Accuracy 
Time 

(s) 

[7] Emotional state 
Biologically inspired 

computing 
500 features 

AdaBoost LSTM: 

97.06% 
595 

[8] Emotional state Info-Gain 63 features 
RF: 
97.89% 

- 

[9] Emotional state - - 3D CNN: 98.43% - 

[10] SEED - 62 channels 
STRNN: 

89.5% 
- 

[11] SEED 
PCA and  

t-statistics 
5 channels 

ANN: 

86.57% 
- 

[12] DEAP PCA - 

F1-score 
SVM: 

84.73% 

in Arousal class 

- 

[13] DEAP - - KohonenNN I: 87% - 

[14] DEAP differential entropy - 
ECLGCNN: 
90.60% of Arousal class 

- 

[15] DEAP EMD, SODP - 
MLP: 
100% in high and low of arousal 

- 

[16] 
Preprocessed version of 

DEAP 
Statistical 14 channels 

SVM: 

78.96% of arousal class 
- 

[17] DEAP and DREAMER 
spatial and temporal 
information 

- 

Deep Forest: 

97.69% of valence class 

90.41% of arousal class 

693 

 

1307 

[18] SEED and DEAP FAWT, IP - 
SVM: 
SEED: 83.33% 

DEAP: 59.06% 

- 

[19] SEED and DEAP variance, DWT, FFT 
SEED: 62 input neurons 
DEAP: 

32 input neurons 

SNNs 
SEED: 96.67%. 

DEAP: 86.27%  in liking class. 

- 

[20] Clips of Indian films EMD, VMD - 
MC-LS-SVM with MD: 
93.13% of relax 

- 

[21] 
sad, happy, fear, and 

neutral emotions dataset 
sub bands 10 features for each channel 

ELM: 

94.72% 
- 

 

The emotions-state dataset was used in several studies; it 
contained 2548 features and classified the emotions into three 
classes: negative, positive, and nature [7]. For instance, Bird et 
al. [7] used the dataset to propose a work that included 
biological inspiration used in all implementation steps rather 
than being limited to the classification stage. Additionally, 
they explored deep learning and tuning using long short-term 
memory (LSTM). Moreover, they have tested AdaBoost using 
two different models. 

The system implements an evolutionary optimization of a 
multilayer perceptron (MLP) to estimate the network’s best 
hyperparameters. The model extracted 500 features and tested 
them with several classifiers: deep evolutionary multilayer 
perceptron (DEvo MLP), LSTM, AdaBoost deep evolutionary 
multilayer perceptron (AdaBoost DEvo MLP), and AdaBoost 
LSTM. The accuracy results were 96.11%, 96.86%, 96.23%, 
and 97.06%, while the training times were 16.66, 65.11, 
32.88, and 594.55 seconds, respectively. In study [8], the 
authors implemented four feature extraction methods: One 
Rule (OneR), Bayes Network (BN), Info-Gain, and 
Symmetrical Uncertainty. This study conducted a 
classification using single and ensemble methods on a dataset 
to determine the best result. The single models were: OneR, 

RT, Sequential Minimal Optimization (SMO), Naive Bayes 
(NB), BN, Logistic Regression (LR), and MLP. In contrast, 
the ensemble models were RF, Vote, and AdaBoost of random 
forest (AdaBoost RF). In the single model, MLP with Info-
Gain achieved the highest accuracy by 94.89%. 
Simultaneously, RF with Info-Gain gained the best accuracy 
in ensemble methods by 97.89%. On the other hand, this 
experiment [9] converted the EEG signs to 2D and 3D 
convolutional neural network (CNN) images. In the 
beginning, the authors used three feature selection methods: 
Kullback-Leibler Divergence, OneR, and Symmetrical 
Uncertainty. The best results for each feature selection of 2D 
CNN were 98.22%, 97.28%, and 97.12%. In contrast, the 
accuracy of 3D CNN was 97.28%, 96.97%, and 97.12%, 
respectively. 

On the other hand, multiple studies used a popular dataset 
called SEED [22]; the signals were collected from 15 
participants using 15 Chinese film clips. Each participant 
experimented three times, and they classified the films into 
three classes: negative, positive, and neutral. Authors in [10] 
used the SEED dataset to propose a model called (STRNN) 
which integrated spatial and temporal dependencies with a 
recurrent neural network (RNN). The proposed approach had 
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two layers: a multi-direction spatial RNN (SRNN) and a bi-
direction temporal RNN (TRNN) layer. These layers captured 
spatial and temporal information within the sequence signal. 
The accuracy of this experiment was 89.50%. While Asadur 
Rahman et al., in [11] used PCA and t-statistics to extract five 
channels and used them with four classifiers: support vector 
machine (SVM), artificial neural network (ANN), linear 
discriminant analysis (LDA), and k-nearest neighbor (KNN). 
The classification accuracy was 85.85%, 86.57%, 82.50%, and 
73.42%, respectively. 

DEAP [23] dataset signals were collected from 32 
participants; each participant watched 40 music videos for one 
minute per video. The participants classified the videos based 
on their levels of valence, arousal, liking, dominance, and 
familiarity. It is another common dataset used broadly in the 
state of the art. For instance, Doma and Pirouz in [12] used the 
DEAP dataset with PCA, and without PCA, with several 
classifiers: SVM, logistic regression, decision tree, KNN, and 
naive bayes. The classifiers achieved accuracy ranging from 
55% to 75% and an F1 score between 70% and 86%. The 
better F1-score was 84.73% obtained by SVM with PCA of 
arousal classification. However, Hemanth in [13] used a 
Kohonen neural network (KohonenNN) with several 
modifications to achieve better accuracy. The modified 
KohonenNN I and II improved the accuracy by 1% to 2%. The 
best accuracy was achieved using KohonenNN I, which was 
87%. In this study [14] suggested a novel model called 
ECLGCNN. ECLGCNN consists of three layers. The first 
layer is a graph convolutional neural network (GCNNs) 
devoted to calculating the relationship between two channels 
of EEG signals and extracting the graph domain features from 
differential entropy. The second layer is LSTM, which handles 
memorizing the changes between two EEG channels. The 
final layer is the dense layer, which focuses on classifying the 
emotions. The study conducted two experiments; the first 
experiment was subject-dependent, and it achieved 90.45% 
and 90.60% for valence and arousal. The second experiment 
was subject-independent and achieved lower accuracy, which 
was 84.81% and 85.27%. In this study [15], authors suggested 
using an empirical mode decomposition (EMD) to decompose 
the signals. Then they extracted the features using second-
order difference plots (SODP), which are the mean, area, and 
measure of central tendency. The experiment used an SVM 
and two-hidden layers of MLP to classify the multi-class 
emotions. MLP achieved good results in each classification. 
However, the best accuracy was 100% for high and low of 
arousal. Another study [16] carried out several feature 
extraction algorithms: power, entropy, fractal dimension, and 
statistical. Additionally, they used several classifiers: SVM, 
KNN, and decision tree. They adopted PCA to select features. 
The system achieved the overall best accuracies of 78.96%, 
77.62%, and 77.60% for arousal, valence, and dominance, 
respectively, using SVM with statistical features. 

Some studies have used multiple emotional datasets. For 
instance, Cheng et al. [24] used the DEAP and DREAMER 
[17] datasets. The authors used the deep forest to extract 
spatial and temporal information from these two datasets. 
Both experiments achieved good results. The accuracy of the 
first dataset was 97.69% and 97.53% for valence and arousal, 

respectively.  In contrast, the second dataset’s accuracies were 
89.03%, 90.41%, and 89.89% for valence, arousal, and 
dominance, respectively. This study considered the running 
time; the experiment took 693.4861 seconds in the first 
experiment and 1307.406 seconds in the second experiment. 
In contrast, another study [18] used SEED and DEAP datasets 
to implement their model. The research used a flexible 
analytic wavelet transform (FAWT) with information potential 
(IP) to extract the features. The experiment was tested using 
two classifiers: RF and SVM. SVM was better than RF, where 
it achieved 59.06% accuracy on DEAP and 83.33% accuracy 
on the SEED database.  Additionally, authors in [19] used the 
same two datasets; they used three algorithms to extract the 
EEG signals. The three algorithms are variance, discrete 
wavelet transform (DWT), and fast Fourier transform (FFT). 
DEAP and SEED were used to validate the model. The DEAP 
dataset contains four states: valence, arousal, dominance, and 
liking. In contrast, the SEED has three states: negative, 
positive, and neutral. The classifier used spiking neural 
networks (SNNs), which achieved 78%, 74%, 80%, and 
86.27% accuracy, respectively, on the first dataset, while on 
the second dataset, it achieved 96.67% accuracy. 

On the other hand, some studies have used a different 
dataset. For example, authors in [20] used Indian films to 
classify emotions into happy, sad, fear, and relax. The study 
worked in two stages to remove the noise of the dataset. The 
first stage used empirical mode decomposition (EMD), while 
the second stage used variational mode decomposition 
(VMD).  A Multi-class least squares SVM (MC-LS-SVM) 
classifier was used to classify the emotions alongside the 
morlet wavelet (MW) kernel function. This model’s best 
accuracies were 92.79%, 88.98%, 87.62%, and 93.13% for 
happy, sad, fear, and relaxed emotions, respectively. Seal et al. 
in [21] used a dataset that classified the EEG into four 
categories: sad, fear, happy, and neutral.  The experiment used 
a discrete wavelet transform and an extreme learning machine 
(ELM). The best accuracy was 94.72% from the FP1-F7 
channel in the subband of gamma. 

III. METHOD 

In this section, we present the proposed model’s method, 
as shown in Fig. 1. We experimented on the emotional state 
dataset used by some researchers, as mentioned in the 
literature review section [7]. The database classified a 
person’s emotional state into positive, negative, and neutral. 
Data were collected from one man and one woman using 
electrodes via an EEG headband while watching six clips for 
one minute per clip. Three films stimulated positive emotions, 
while the other three stimulated negative emotions. Six minutes 
were recorded for each person in a neutral or normal state. This 
experiment resulted in a dataset of 2,549 attributes and 2,132 
rows. Two algorithms of the feature extraction stage, PCA and 
FastICA, were applied in this experiment. In addition, three 
ensemble classifiers were included in the classification stage: 
RF, XGBoost, and AdaBoost. Moreover, each experiment was 
tested using 10-cross-fold validation accuracy. Each 
experiment will be discussed in detail in the following 
subsections.
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Fig. 1. Research Methodology. The research methodology included three main steps. The first step was the feature extraction step, which contained two methods: 

PCA and FastICA. The second step was the classification step, which consisted of three classifiers: random forest, XGBoost, and adaptive boost. Finally, the third 

step was the evaluation step, which was based on three criteria: the accuracy of the model, the number of features, and the processing time.

A. Feature Extraction 

This model used two feature extraction algorithms to 
extract the most important EEG signals of emotions: PCA and 
FastICA. Several studies used different extraction feature 
algorithms based on several specifications. In this study, we 
used PCA for its fast-processing capabilities [25]. Similarly, 
FastICA is a fast version of ICA and is suitable for large 
datasets [26]. The two following subsections will discuss the 
two selected extract feature algorithms. 

1) Principal component analysis: The main concept of 

principal component analysis is dimension reduction by 

transforming the correlated variables into new uncorrelated 

components, which maintain a maximum variation of the 

original components [27]. Based on [28], there are some steps 

to extracting the features using a PCA, which are presented as 

follows: 

a) Suppose there is a matrix of m × n size. 

b) Convert the matrix to an N dimension vector with 

input data x as                 . 

c) Calculate the mean vector as follows: 

      (
 

 
)∑   

 
     

d) Calculate the covariance matrix. 

e) Compute the eigenvalues and eigenvectors. 

f)  Select the components using k-eigenvectors of the 

highest eigenvalues, then construct a w matrix of     

dimensions. 

g) Construct the principal components using the w 

matrix to transform the samples into a new subspace. 

In this study, PCA was used with each classifier algorithm 
to obtain a good result. Based on multiple experiments, we 
have seen that the best selections were 36 components with 
RF, 33 components with XGBoost, and 28 components with 
AdaBoost. 

2) Fast independent component analysis: Fast 

independent component analysis is a type of ICA algorithm 

responsible for separating the unknown mixed signals to obtain 

useful independent signals using the source signal’s 

independent and non-Gaussian nature [29]. An algorithm of 

FastICA works faster and is iteratively used at constant points 

with a simple structure and fast convergence [30]. 

To implement FastICA, some steps follow, as mentioned 
in [31]: 

a) Remove the mean of x by centralization. 

b) Transform x linearly to obtain an uncorrelated vector 

called z. Thus, the covariance matrix of z will be:         . 

c) Construct an operation matrix called w, which 

satisfies: ‖ ‖    . 

d) Update the separation matrix w, then iterate it based 

on the Newton iteration method to obtain   . 

e) Normalize    to be      ‖  ‖ . 

f)  Judge the coverage of w. If it is good, then the best 

estimate of the source signal      if not, go back to step 3. 

In FastICA experiments, we selected 33 components with 
RF and 31 components with AdaBoost and XGBoost. 

B. Classifiers 

This subsection shows the three classifiers used in this 
study. We focused on using ensemble classifiers based on 
their powerful performance. RF and AdaBoost were selected 
based on their good performance in classifying the EEG 
signals in some studies [32] [33]. Additionally, we used 
XGBoost due to its effective label classifications and fast 
computation [34]. The following subsections will discuss the 
selected classifiers. 

1) Random forest: RF consists of multiple decision trees. 

Each decision tree makes a classification separately and then 

provides its result. The final result was identified based on the 

voting of all the decision trees [35]. The RF algorithm 

describes the steps according to Evans et al., in [36] as follows: 

a) Construct iterative N bootstraps of n size sampled 

from z population. 
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b) Grow an RF tree    randomly at each node and 

define m variables from M to permute over each node to know 

the best split using the Gini entropy index. 

c) Use out-of-bag data to validate every tree     

d) Produce several RF trees: 

      
 

 
   

To predict a new observation x_i,  
 

     be a class 
prediction of  th RF tree, then: 

 
 

  
                    

 

     
 

 
 

In this study, we tuned parameters where the best 
parameters of RF with PCA and Fast ICA are illustrated in 
Table II. 

2) Extreme gradient boosting: Extreme gradient boosting 

(XGBoost) is a robust algorithm based on a gradient boosting 

system [37]. It is a tree-boosting system; however, there is a 

major difference between RF and gradient-boosted machines 

(GBM): RF trees are built independently. In contrast, the GBM 

added a new tree to complete the previously built ones [38]. 

According to Duan et al. [39], the general points of XGBoost 

algorithms are presented as follows: 

 Assume             is a dataset of n samples and m 
features                  . 

 The model uses z additive functions to approximate the 
response of the system, as follows: 

 
 

        ∑   
 
              

where, F is the regression trees space, and it is defined as: 

  {          }    
          

where,   stands for the tree structure,   indicates the 
number of leaf nodes, and the w represents the weights. 
Besides,    is a function that illustrates that   and   are 
compatible with an independent tree. 

Table III illustrates the parameters we used with the 
XGBoost classifier with PCA and FastICA based on the 
tuning parameters process. 

3) Adaptive boost: Adaptive boost (AdaBoost) is an 

algorithm that improves learners’ accuracy by changing the 

sample weight distribution [40]. As mentioned in [41] 

AdaBoost works to reduce the exponential loss greedily. Eq. 

(6) shows that: 

      ∑      
 
     

where,    indicates to a weak learner and x is the object 
used. 

      ∑   [                 ] 

where, h(x_i) is the hypothesis made by a weak learner, 
and αt is the parameter of it to minimize the sum of error in 
training. 

In this experiment, AdaBoost was used two times, first 
with PCA while the second was with FastICA. The parameters 
we have used in the two experiments are shown in Table IV. 

C. Performance Measures 

The proposed model was evaluated in terms of accuracy, 
number of features, and processing times. The formulation of 
accuracy is presented as follows: 

           
       

                 
  

where: 

 True Positive (TP): means when the actual class was 
positive, and the model was predicted to be positive. 

 True Negative (TN): means when the actual class was 
not positive, and the model was predicted to be not 
positive. 

 False Positive (FP): means when the actual class was 
not positive, but the model was predicted to be positive. 

 False Negative (FN): means when the actual class was 
positive, but the model was predicted to be not positive. 

TABLE II. PARAMETERS USED BY RF SELECTED BASED ON PARAMETERS TUNING 

PARAMETERS BOOTSTRAP MAX_DEPTH MAX_FEATURES MIN_SAMPLES_LEAF MIN_SAMPLES_SPLIT N_ESTIMATORS 

PCA FALSE 100 AUTO 1 2 400 

FASTICA TRUE 60 SQRT 1 5 400 

TABLE III. PARAMETERS USED BY XGBOOST SELECTED BASED ON PARAMETERS TUNING 

PARAMETERS BOOTSTRAP MAX_DEPTH MAX_FEATURES MIN_SAMPLES_LEAF MIN_SAMPLES_SPLIT N_ESTIMATORS 

PCA TRUE 20 AUTO 1 2 2000 

FASTICA TRUE 20 AUTO 1 2 800 

TABLE IV. PARAMETERS USED BY ADABOOST SELECTED BASED ON PARAMETERS TUNING 

Parameters Algorithm Learning_Rate n_Estimators 

PCA SAMME 0.01 2000 

FastICA SAMME 0.3 1600 
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Fig. 2. Proposed model results.

To achieve scientific accuracy, we tested each classifier 
ten times with PCA and FastICA, avoiding biased results of 
the classifier accuracy. Then, we calculated the average of 
these experiments. 

Additionally, several measures were calculated to give 
complete view of the results, namely precision, recall, and F1-
score. 

Precision was calculated as follows: 

            
  

       
  

This means the percentage of the relevant results. Recall 
was calculated as follows: 

         
  

       
  

This indicates the average of precision and recall. 

IV. RESULT AND DISCUSSION 

One of the goals of this study was to reduce the number of 
features to fewer than 63, which is the lowest number of 
features achieved by previous studies that used the same 
dataset [8]. We succeeded in reducing it by 48%, which equals 
33 features using PCA with an accuracy equal to 95% using 
the XGBoost classifier. On the other hand, FastICA decreased 
the features by 51%, which is 31 features using the XGBoost 
classifier with 94% accuracy. According to the time, we 
noticed that all classifiers’ processing times were between 2 

seconds and 15 seconds. Notably, all classifiers take a short 
time to process; thus, we decided to take time as the third 
factor in the evaluation process. However, RF was the faster 
algorithm; it took just four and two seconds of processing time 
with PCA and FastICA. 

On the other hand, AdaBoost had the lowest accuracy, 
achieving 86% in the two experiments. Additionally, 
AdaBoost was the slowest algorithm in both experiments. The 
highest accuracy achieved in the experiments was 95% using 
the XGBoost classifier, with 33 features extracted by PCA. In 
contrast, the same accuracy was achieved by RF using PCA, 
but with 36 features. Fig. 2 shows the results of the three 
classifiers for the three evaluation criteria. The figure shows 
the performance of the three classifiers with PCA and 
FastICA. The accuracy of the RF and XGBoost were high and 
equal in both experiments. However, RF outperformed in the 
time processing criteria, while XGBoost outperformed in the 
number of features. AdaBoost was the lowest and slowest 
classifier in this work. Table V shows the results of each 
measure of the three emotions in all experiments. 

Generally, some existing works achieved better accuracy 
than this experiment, but with more features, such as [7]. 
However, we think 95% is not a bad percentage, especially 
within a short processing time of 14 seconds. Table VI 
presents a performance comparison of the proposed work and 
existing works that used the same emotional dataset. 

TABLE V. CLASSIFICATION PERFORMANCE 

Feature Extraction Classifier Class Precision Recall F1-score 

 

 

 

 

 

 

PCA  

 
RF 

 

Negative 0.96 0.98 0.97 

Natural 0.95 0.95 0.95 

Positive 0.93 0.91 0.92 

 

XGBoost 

Negative 0.95 0.98 0.96 

Natural 0.95 0.97 0.96 
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 Positive 0.95 0.89 0.92 

 

AdaBoost 

 

Negative 0.81 0.97 0.88 

Natural 0.93 0.91 0.92 

Positive 0.85 0.66 0.74 

 

 

 

 

 

 

FastICA 

 

RF 

 

Negative 0.95 0.97 0.96 

Natural 0.94 0.97 0.95 

Positive 0.93 0.88 0.91 

 
XGBoost 

 

Negative 0.95 0.97 0.96 

Natural 0.94 0.96 0.95 

Positive 0.92 0.88 0.90 

AdaBoost Negative 0.82 0.94 0.87 

Natural 0.94 0.89 0.91 

Positive 0.76 0.67 0.71 

TABLE VI. PERFORMANCE COMPARISON BETWEEN THE MODELS USING THE SAME DATASET IN THIS WORK 

Ref Number of features Best accuracy Time (s) 

[7] 500 97.06% 595 

[8] 63 97.89% - 

[9] - 98.43% - 

Proposal model: XGBoost with PCA 33 95% 14 

Proposal model: XGBoost with FastICA 31 94% 8 
 

V. CONCLUSION 

This paper presented an EEG signals emotion prediction 
model that concerns three factors: accuracy, number of 
features, and processing time. PCA and FastICA were used to 
extract the features from the signals. RF, XGBoost, and 
AdaBoost have been used to classify the signals. The 
XGBoost results were the best in the two experiments. The 
best accuracy of this work was 95% using 33 features 
extracted by PCA; the classification process took 14 seconds. 
In contrast, RF achieved the same accuracy in the PCA 
experiment but used 36 features within four seconds. 
AdaBoost achieved the lowest accuracy and longest time in 
both experiments. XGBoost was the fastest classifier in both 
experiments. This model can be adopted in smart devices, 
such as smartwatches that offer dynamic monitoring of 
mentally patients to protect them from the probable 
implications. In future work, the authors will utilize other 
methods and techniques to obtain better accuracy with fewer 
features and processing time. 
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