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Abstract—In the realm of robotics, indoor robotics is an 

increasingly prominent field, and enhancing robot performance 

stands out as a crucial concern. This research undertakes a 

comparative analysis of various Simultaneous Localization and 

Mapping (SLAM) algorithms with the overarching objective of 

augmenting the navigational capabilities of robots. This is 

accomplished within an open-source framework known as the 

Robotic Operating System (ROS2) in conjunction with additional 

software components such as RVIZ and Gazebo. The central aim 

of this study is to identify the most efficient SLAM approach by 

evaluating map accuracy and the time it takes for a robot model 

to reach its destinations when employing three distinct SLAM 

algorithms: GMapping, Cartographer SLAM, and 

SLAM_toolbox. Furthermore, this study addresses indoor 

human detection and tracking assignments, in which we evaluate 

the effectiveness of YOLOv5, YOLOv6, YOLOv7, and YOLOv8 

models in conjunction with various optimization algorithms, 

including SGD, AdamW, and AMSGrad. The study concludes 

that YOLOv8 with SGD optimization yields the most favorable 

outcomes for human detection. These proposed systems are 

rigorously validated through experimentation, utilizing a 

simulated Gazebo environment within the Robot Operating 

System 2 (ROS2). 

Keywords—Indoor robotic; SLAM; ROS2; Robot model; 

Human detection; YOLO 

I. INTRODUCTION 

With the rapid advancement of Artificial Intelligence (AI) 
and the continuous evolution of sensor technologies, coupled 
with the introduction of the Robot Operating System (ROS) 
and its latest iteration, ROS 2 [1], the development of indoor 
robots has become more accessible than ever before. Mobile 
robots have yielded substantial economic benefits across 
various sectors, including industry, warehousing, and logistics 
[2]. Notably, robots are no longer confined to industrial 
applications; they are increasingly being deployed in the realm 
of mental healthcare, where they assist therapists in caring for 
the elderly and children struggling with depression [3]. In light 
of these developments, our objective is to create a pet robot 
designed to serve the purposes mentioned above. Within the 
realm of developing such a robot, we consider two 
fundamental tasks of paramount importance: Navigation and 
Human Detection. This article aims to compare different 
methods and put forth the most optimal approaches for 
accomplishing these critical tasks. 

Sensors play a crucial role in how robots and autonomous 
vehicles perceive their surroundings. The choice and 
installation of sensors have a significant impact on the specific 
results of observation and also influence the complexity of 
SLAM problems. Based on the primary type of sensor used, 
SLAM can be categorized into Visual-SLAM and LiDAR-
SLAM. Visual SLAM remains a particularly challenging task 
due to inherent difficulties. Moreover, vision cameras struggle 
to extract features from texture less areas, which limits the 
applicability of Visual SLAM. On the other hand, LiDAR 
SLAM primarily relies on LiDAR technology for 
environmental sensing. The relative movement and pose 
changes of the laser radar are determined by comparing point 
clouds captured at different moments. LiDAR SLAM offers 
advantages in terms of stability, simplicity, precise map data, 
and lower computational requirements compared to Visual 
SLAM. Numerous investigations have explored LIDAR-
SLAM techniques in the literature [4]-[9]. 

This research primarily centers on evaluating Slam 
techniques through the utilization of ROS2, with a primary 
emphasis on assessing their performance based on the 
resulting maps. The evaluated methods fall within the 
category of 2D LIDAR Slam techniques designed for indoor 
settings, including GMapping, Cartographer SLAM, and 
Slam-Toolbox. In addition, we have integrated a LIDAR-
SLAM technique with a human detection system. The 
methods we evaluated and tested for this integration include 
YOLOv5 [10], YOLOv6 [11], YOLOv7 [12] and YOLOv8 
[13], using multiple collected datasets. Ultimately, this 
research aims to develop an optimized system for indoor 
robotic operations, ensuring precise localization and robust 
human detection capabilities within indoor spaces. This 
system is designed to facilitate avoidance maneuvers and 
ensure safety during robot operations. 

II. RELATED WORK AND OUR SYSTEM 

A. Related Work 

Recent advancements in the field of mobile robot 
navigation have enabled robots to operate effectively in 
various environments, including warehouses, retail stores, and 
crowded pedestrian areas. A plethora of navigation solutions 
have been proposed to address these challenges [14]. One of 
these solutions introduced a navigation system and 
environmental representation that utilized 3D data obtained 
from tilting 2D laser scanners for navigation. Initially, 
conventional methods such as A* and DWA were employed 
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for path planning and obstacle avoidance. However, the 
prevalence of cost-effective 3D depth cameras and laser 
scanners has gradually overshadowed the use of tilting 2D 
laser scanners. Some aspects of these approaches were 
customized to account for the specific geometry, limited 
accuracy, and characteristics of 2D tilting laser setups. 
Furthermore, the emergence of sparse multi-beam laser 
scanners has rendered traditional raycasting methods 
ineffective in clearing free space, especially in dynamic 
environments. In response to this challenge, Sparse 
Traversability Volume (STVL) has emerged as a scalable 
alternative suitable for various types of sparse and long-range 
sensors, replacing traditional techniques effectively [15]. 

The Robot Operating System (ROS) Navigation has 
historically been one of the most popular navigation solutions 
built on top of ROS. However, with the introduction of ROS2, 
Navigation2 was developed as a successor to build upon the 
success of ROS Navigation. Navigation2 incorporates a 
behavior tree for orchestrating navigation tasks and utilizes 
novel methods designed to handle dynamic environments, 
making it applicable to a wider range of modern sensors. 
SLAM is a critical technology in mobile robotics, allowing 
robots to map unknown environments while simultaneously 
determining their own position based on the created map. 
Several SLAM algorithms have been proposed, categorized 
into two groups: earlier algorithms employing Bayes-based 
filter approaches like GMapping [16], and newer ones using 
graph-based methods such as Cartographer [17], Karto SLAM 
[18], and Slam Toolbox [19]. 

For our human detection task, we have chosen to leverage 
the YOLO (You Only Look Once) framework for several 
compelling reasons. Among the numerous object detection 
algorithms available, YOLO stands out due to its exceptional 
combination of speed and accuracy. It excels in rapidly and 
accurately identifying objects within images, making it an 
ideal choice for real-time applications. YOLO has gained 
prominence as a central system for real-time object detection 
in various domains, including robotics, autonomous vehicles, 
and video monitoring, demonstrating its reliability and 
versatility in a wide range of applications [20]. The YOLO 
family of object detection models has undergone a series of 
iterations, evolving from the original YOLOv1 to the most 
recent YOLOv8. Each iteration has built upon the foundation 
of its predecessors, aiming to address limitations and enhance 
overall performance in object detection tasks. However, in our 
research paper, we will specifically focus on evaluating 
human detection using YOLO versions ranging from 
YOLOv5 to YOLOv8. This selective approach allows us to 
assess the advancements and capabilities of these more recent 
YOLO iterations in the context of human detection, which is a 
pivotal aspect of our study. 

B. Our System 

In this study, we are using an open-source robotic 
middleware ROS 2. Inheriting from ROS, the libraries 
provided by ROS 2 used in this project make robotic programs 
and development more flexible and easier. ROS 2 also offers 
the capability to obtain hardware abstractions of the robot 
model, encompassing sensors, motors, and actuators which 
can be used for navigation and are accessible through URDF 

and XACRO files. Additionally, we utilize other open-source 
software in conjunction with ROS 2, namely Gazebo and 
RVIZ 2. Gazebo functions as simulation software, enabling 
the virtual simulation of robots through the use of plugins. 
This allows us to construct a simulated environment 
represented as URDF and WORLD files, facilitating the 
simulation of the robot within the Gazebo world, as depicted 
in Fig. 1. In this article, the robot model used is a mobile robot 
with two wheels, equipped with several sensors including a 
360° 2D LIDAR and a camera. These sensors play a crucial 
role in tasks like navigation and human tracking. The detailed 
illustration of this robot model is shown in Fig. 2. RVIZ 2 
serves as a data visualizer tool for robot data, presenting 
various data types, including laser scans, maps retrieved from 
the map server, and grid displays. As well as ROS, RVIZ 2 
also provides navigation goals and poses estimation 
functionalities, which are inherited from RVIZ in order to 
accomplish the Robot’s navigation in the ROS 2 virtual 
environment. 

In order to make the autonomous robot navigate in its 
environment safely without encountering collisions with either 
static or moving obstacles, the assistance of SLAM is 
required. Different SLAM algorithms can be used for mapping 
such as Karto SLAM, Cartographer SLAM, Gmapping 
SLAM, and Hector SLAM, but in this paper, we want to 
compare the package provided by ROS 2 (SLAM_toolbox). 

 
Fig. 1. Robot model in Gazebo virtual world. 

 
Fig. 2. Robot description on Rviz 2. 
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III. METHODOLOGY 

A. LIDAR 2D SLAM Algorithms 

In this section, an analysis of SLAM algorithms in the 
ROS2 environment will be conducted. Among the available 
open-source laser scanner SLAM algorithms, Cartographer is 
a graph-based algorithm that manages a graph representing 
robot poses and features. It offers resource efficiency, 
especially for constructing large-scale maps. It consists of a 
front-end responsible for tasks like scan matching, trajectory 
building, and submap generation, as well as a back-end that 
handles loop closure procedures, using the Google Ceres 
graph solver. Cartographer provides a pure localization mode 
for users with existing maps and supports data serialization for 
storing processed sub-maps. However, it has encountered 
challenges, such as the discontinuation of maintenance and 
support by Google, leading to its abandonment. This algorithm 
divides a large single map into smaller sub-maps by 
integrating two separate 2D SLAM techniques. One method 
focuses on local operations, while the other deals with global 
aspects, and both employ a LiDAR sensor. These two methods 
are optimized independently. In the local SLAM process, sub-
maps are created by collecting and arranging data, involving 
the alignment of multiple scans relative to the initial position. 
These sub-maps are grids with defined resolutions, with each 
grid point indicating occupancy probability based on prior 
measurements updated as new sub-maps are generated. An 
algorithm optimizes sub-map positioning for alignment, aiding 
extrapolation. The second part, global SLAM, leverages 
feedback from these sub-maps, which are associated with 
robot positions. This enhances maps and reduces accumulated 
SLAM errors, a process known as loop closure [24]. The well-
known optimization technique called Spare Pose Adjustment 
(SPA) [23] [38] is utilized in Cartographer SLAM, and a map-
scanner is activated whenever a sub-map is generated to close 
the loop and incorporate that sub-map into the graphic. Two 
formulas are provided to determine whether a cell is classified 
as busy, empty, or transitioning to an empty state within a map 
cell, enhancing comprehension. 

Mnew cell    F-  F Mold cell  F fhit     (1) 

where:            is the old probability of the cell which 
could be an error,      is the probability function that 

represents a map cell is busy, and   
 

     
. 

Scan matching process goes through a minimization of the 
following function: 

arg
 
min∑   -Msmoothen T sk  

2K
k      (2) 

where,           represents the value of a cell that has 
been smoothed using its neighboring values,    denotes the 
laser scan reading involves to the cell,    is the matrix 
transformation that displaces the point    to   , and   is the 
posture vector           . 

Additionally, Cartographer may struggle to create suitable 
maps for annotation and localization when integrated with 
other robotic platform localization software that lacks 
exceptional odometry. Its complexity can hinder modifications 

and resolution of seemingly straightforward issues, limiting its 
suitability for many applications. 

GMapping Slam is widely used within the Robot 
Operating System (ROS) and stands out for its frequent 
adoption. GMapping employs the Rao Blackwellized Particle 
Filter (RBPF) [21] technique for map generation. However, 
it's important to note that GMapping has limitations when 
applied to large environments and struggles with precise loop 
closure in industrial-scale spaces. The idea of the RBPF for 
SLAM, first introduced by Murphy [22] in 1999, is to estimate 
the joint posterior                         of the map where m 
is the map and the trajectory                  of the robot. 
The                  is the given observations and the 
odometry measurements is                     . These both 
can be obtained by the robot’s data. The fully RBPF 
factorization for SLAM is representing below: 

p m  a
 :t
    z :t   o  : t      p m   a

 :t
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p a :t   z :t  o :t-     (3) 

Nonetheless, filter-based approaches such as GMapping 
encounter difficulties when attempting to achieve seamless 
reinitialization across multiple sessions.  

The SLAM Toolbox is a versatile mapping solution that 
efficiently covers large areas using standard mobile Intel 
CPUs commonly found on robots. It simplifies space mapping 
through automation and supports session serialization, 
enabling users to easily improve existing maps. What makes it 
unique is its preservation of complete raw data and pose-
graph, enabling various innovative tools like manual pose-
graph manipulation and kinematic map merging. The SLAM 
Toolbox provides three primary operational modes: 
synchronous mapping for high-quality maps, asynchronous 
mapping for real-time performance, and pure localization for 
adapting to dynamic environments. 

Significant enhancements to the OpenKarto SLAM library 
[19], [38] have boosted its speed and adaptability, making it a 
valuable tool for robot navigation and mapping tasks. The 
SLAM Toolbox has been effectively integrated, tested, and 
utilized on diverse robotic platforms around the world by both 
professionals in the industry and researchers. It serves as the 
default SLAM solution in ROS 2, replacing GMapping. 
Incorporated into the ROS 2 Navigation2 project, it enables 
real-time positioning in changing environments, facilitating 
autonomous navigation. Its user-friendly interface empowers 
both experts and non-experts to map extensive spaces in real 
time, establishing its significance in robotics and autonomous 
system development. 

To evaluate a Slam algorithm, two criteria such as the 
accuracy of the generated map based on comparing the ground 
truth and the map generated or its feature locations, and the 
time taken for the robot to navigate and get to its destination 
for each environment are considered. In order to investigate 
the map's quality, we created three different simulation 
environments on the Gazebo simulator, and we added the 
robot model to those simulation worlds that we created. The 
robot model has laser scanner sensors (LIDAR 360) that 
supply data crucial for map creation when implementing three 
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SLAM techniques in RVIZ 2. The data were transmitted to the 
scan topic for the map, to generate and then visualize it on 
RVIZ 2; afterward, map topics were activated. The higher the 
map fits the ground truth the better the map quality. Fig. 3 
shows RVIZ 2 and Gazebo when launching our virtual world 
from their respective directories. In Fig. 4, we illustrate three 
maps generated by three different SLAM methods within a 
simulated environment. 

These maps are saved in PGM file format and have been 
compared with ground truth data. To create these maps, the 
robot navigated through the simulated environment using a 
control framework called "ros2_control," which is a 
reimplementation of the "ros_control" framework used in 
ROS. 

After mapping each environment using different SLAM 
techniques with their default parameters, the resulting maps 
were saved as YAML files. Notably, we observed that the 
SLAM_toolbox method exhibited higher accuracy. The map 
generated by this SLAM method had less noise and better 

alignment with the ground truth. Detailed evaluations of these 
SLAM methods will be discussed further in the experimental 
section. 

 
Fig. 3. Robot model creating the map of the environment. 

 

 

 

Fig. 4. Generated map results compared to ground truth with: (a) Cartographer SLAM, (b) Gmapping SLAM, (c) Slam_toolbox SLAM. 
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To enable autonomous navigation of the robot, the robot 
received a generated map of each algorithm as an input. The 
AMCL (Adaptive Monte Carlo Localization) algorithm 
employs a probabilistic localization model that aids the 
movement of the robot between different positions using a 
“2D Navigation Goal” provided by RVIZ 2 to reach each 
destination; and “2D Pose Estimator” that allows the position 
of the robot model to be set within an environment. 

B. Human Detection Algorithm 

In this section, we scrutinize and assess the human 
detection algorithm, aiming to propose an optimal model for 
indoor robots. This model is designed to help robots in tasks 
like obstacle avoidance and ensuring operational safety. 
Among the many algorithms for object detection, the YOLO 
(You Only Look Once) framework has gained recognition for 
its exceptional blend of speed and accuracy, enabling rapid 
and reliable object identification in images. Over time, the 
YOLO family has gone through multiple iterations, with each 
new version building upon the previous ones to address 
shortcomings and enhance performance. 

In 2020, Ultralytics introduced YOLOv5 [10]. Unlike 
YOLOv4, which utilized Darknet, YOLOv5 was developed 
using Pytorch and incorporated various improvements. 
YOLOv5 also integrated an AutoAnchor algorithm, a pre-
training tool that evaluates and adjusts anchor boxes to better 
suit the dataset and training parameters, including image size. 
Initially, it applies a k-means function to dataset labels to 
establish starting conditions for a Genetic Evolution (GE) 
algorithm. 

In September 2022, the Meituan Vision AI Department 
introduced YOLOv6 [11]. Its network design features an 
efficient backbone PAN topology neck, which utilizes 
RepVGG or CSPStackRep blocks. It uses an efficient 
decoupled head with a hybrid-channel strategy.  Furthermore, 
a new quantization technique was proposed to achieve faster 
and more accuracy. 

YOLOv7 [12] was published in July 2022. At the time of 
its release, it outperformed all known object detectors in terms 
of speed and accuracy, achieving frame rates ranging from 5-
160 FPS. It was trained only on the MS COCO dataset without 
pre-trained backbones. YOLOv7 brought forth numerous 
architectural modifications and a range of improvements, 
which boosted accuracy without affecting inference speed, 
albeit increasing training time. 

In January 2023, Ultralytics, the organization responsible 
for YOLOv5, released YOLOv8 [13]. It has the capability to 
handle multiple vision-related tasks, including classification, 
object detection, segmentation, pose estimation, and tracking. 

In Table I, we compare the structure and loss functions 
employed in various versions of YOLO. Fig. 5 illustrates the 
structure of the human detection model using YOLOv8-N, 
which we propose for adoption. With its compact size and 
high accuracy, YOLOv8-N is well-suited for deployment in 
resource-constrained hardware robots. Our evaluations 
indicate that YOLOv8-N outperforms other models. The 
results of our indoor detection capabilities will be presented in 
the experimental section. 

 
Fig. 5. The structure of the human detection model using YOLOv8-N. 
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TABLE I. ARCHITECTURE OF YOLO'S VERSION 

 YOLOv5-N YOLOv6-N YOLOv7-Tiny YOLOv8-N 

Backbone 
CSP 

Darkent53 [30] 
RepVGG [31] and CSPRepStack [32] EELAN [12] CSPDarkent53 [30] 

Neck PANet RepPAN PANet PAN-FPN 

Head B x (5 +C) 
Decoupled Classification, and 

Detection Head 
Lead Head Decoupled Head 

Loss Function 
Binary Cross Entropy (BCE) [25], 

and Logit Loss Function (LLF)[26] 

Varifocal Loss (VFL) [26], and 

Distribution Focal Loss (DFL) [27] 

BCE with Focal Loss, and 

IoU [28] 

VFL, DFL Loss, and CIOU 

[29] 

Parameters 1.9M 4.3M 6.2M 3.2M 
 

IV. EXPERIMENTAL RESULTS 

A. SLAM Performance and Results 

After utilizing the three SLAM techniques, Cartographer, 
GMapping, and SLAM_toolbox, the map was successfully 
generated with the highest level of precision using the 
SLAM_toolbox method, as depicted in Fig. 4. To assess the 
impact of map accuracy, we recorded the time taken by the 
robot to navigate and reach its destination in various 
environments. We divided the time measurement process into 
three segments for each map, conducted multiple test runs, 
and subsequently computed the average duration. 

The first two phases of testing were conducted on Map_2 
and Map_3, as illustrated in Fig. 6. In each of these navigation 
scenarios, a map generated by one of the three SLAM 
algorithms was utilized. Table II presents the time taken by 
the robot to reach its destination on the maps generated by 
Cartographer SLAM, GMapping, and SLAM_toolbox. For 
map 2, the goal point coordinates were set as (x = 4.0, y = 
2.0), while for Map_3, they were set as (x = 0.0, y = 6.0), with 
the z-axis being maintained at 0. 

 

Fig. 6. Map 2 and 3 with their goal point. 

TABLE II. THREE SLAM METHOD TRAILS FOR THE SECOND AND THIRD 

MAP 

 Cartographer (s) Gmapping (s) Slam_toolbox (s) 

 Map_2 Map_3 Map_2 Map_3 Map_2 Map_3 

Test 1 25.90 72.64 25.73 70.72 24.29 70.11 

Test 2 26.10 70.15 26.10 72.17 24.45 70.12 

Test 3 26.24 72.45 26.12 72.66 24.71 70.07 

Average 26.08 71.75 25.983 71.85 24.483 70.1 

Upon examination of Table II, it becomes apparent that 
when the robot is in operation with the SLAM_toolbox map, it 
achieves a quicker trajectory completion compared to the two 
other methods. This phenomenon is attributed to the 
SLAM_toolbox's capacity to produce maps characterized by a 
higher degree of precision and reduced noise levels. 
Consequently, the robot's operational stability is significantly 
improved. 

A wide and intricate map with numerous obstacles was 
tested, as shown in Map_1. Fig. 7 illustrates the map when the 
robot navigates to its destination, with the green line 
indicating the path that the robot model must follow to reach 
its destination. The destination is set using RVIZ's 2D Goal 
Pose tool and is represented by a green arrow. 

 

Fig. 7. Robot navigates to its destination in Map_1. 

The last part was tested on Map_1 with three goal points. 
Each of these navigation tasks is executed using a map 
generated by its respective SLAM algorithm. The coordinates 
for point 1 is (x = 7.5, y = -2.0, z = 0.0); point 2: (x = 4.0, y =  
-8.0, z = 0.0); point 3: (x = -5.0, y = 0.0, z = 0.0). Fig. 8 shows 
Map_1 and the three goal points where the robot will move to, 
each represented by specific coordinates. 
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Fig. 8. The Map_1 with 3 different goal points. 

Table III presents the duration it took for the robot to reach 
its destinations on the maps created by each method. It was 
observed that the map created using Slam Toolbox is more 
accurate than GMapping and Cartographer SLAM. To 
calculate the accuracy percentage of the point on the created 
map compared to the point we give before, we use the 
following Eq. (4):  

                     
     

     
           (4) 

where: Error is the Euclidean distance between actual goal 
points and the robot location after navigating, Range is the 
maximum possible distance between the two points, which is 
the distance between the actual point and the origin (0, 0) on 
Gazebo virtual world. Although the travel times to the 
destination points being relatively close for the use of maps in 

all three methods, Table IV shows the robot movement of the 
SLAM_toolbox method is more accurate to the virtual world 
than the other. The reason is Gmapping uses a particle filter to 
build grid maps from 2D lidar data and primarily relies on 
LIDAR data for mapping which is not well suited for 
expansive environments and struggles to accurately complete 
loop closures on an industrial scale, and the Cartographer 
relies on incorporating LIDAR and IMU data for highly 
accurate mapping because of its complexity in algorithm 
(IMU is not used in this robot model). Based on the empirical 
evidence from our conducted experiments, we readily infer 
that the utilization of the SLAM_toolbox for SLAM mapping 
is demonstrably superior. 

B. Human Detection Results 

The experiments were conducted to train and evaluate 
YOLO’s versions using two distinct datasets. The training 
model was executed on an Ubuntu 20.04 platform, utilizing an 
Intel Core i7 processor and 16 GB of RAM. Firstly, we train 
YOLO’s versions 20 epochs with the same hyparameters on a 
small dataset to choosing up the best optimal version for our 
work. After that we train chosen version 50 epochs on larger 
dataset with different optimizations such as SGD, AdamW 

[33], and AMSGrad [34]. Performance was assessed based on 
metrics such as Recision, Recall, and mAP(0.5-0.95). 

1) Datasets and Evaluation Metrics: 

a) Datasets: The research paper ultilizes three datasets 

created by using framework FiftyOne [35] to spliting human 

images, bounding box from the MSCOCO dataset [36], and 

JRDB dataset [39]. The small dataset contains 12.6K images 

with 10K for train and 2.6K for validation. The large dataset 

ontains 66.6K images with 64K for train and 2.6K for 

validation. Moreover, we also use augmentation methods on 

each of those dataset before training. Augment methods used 

are Blur, MedianBlur, ToGray, CLAHE. 

TABLE III. THREE SLAM METHOD TIME RECORDED FOR THE FIRST MAP 

 Cartographer (s) Gmapping (s) Slam Toolbox (s) 

 
1st 

destination 

2nd 

destination 

3rd 

destination 

1st 

destination 

2nd 

destination 

3rd 

destination 

1st 

destination 

2nd 

destination 

3rd 

destination 

Test 1 35.76 41.32 55.31 35.98 43.39 54.29 35.05 41.35 53.58 

Test 2 35.90 42.35 54.91 35.74 43.51 54.77 35.22 41.62 53.79 

Test 3 35.04 42.38 55.39 35.20 43.28 54.42 35.01 41.84 53.45 

Average 35.56 42.01 55.20 35.64 43.39 54.49 35.09 41.60 53.60 

TABLE IV. DISTANCE ACCURACY OF THREE SLAM METHODS FOR THE FIRST MAP 

 Cartographer (m) Gmapping (m) Slam Toolbox (m) 

 Goal point 1 Goal point 2 Goal point 3 Goal point 1 Goal point 2 Goal point 3 Goal point 1 Goal point 2 Goal point 3 

Test 1 
x: 7.73867 
y: -1.93425 

x: 4.11695 
y: -8.24249 

x: -4.9892 
y: -0.4127 

x: 7.4873 
y: -2.1837 

x: 4.0047 
y: -7.838 

x: -4.988 
y: 0.210 

x: 7.583 

y: -2.088 

x: 4.036 

y: -8.046 

x: -5.007 

y: -0.027 

Test 2 
x: 7.73895 

y: -1.93484 

x: 4.11672 

y: -8.2428 

x: -4.9896 

y: -0.4125 

x: 7.4933 

y: -2.1807 

x: 4.0123 

y: -7.8801 

x: -4.874 

y: 0.1199 
x: 7.484 

y: -2.018 

x: 4.06252 

y: -8.13627 

x: -5.0832 

y: -0.0174 

Test 3 
x: 7.7385 

y: -1.9343 

x: 4.1163 

y: -8.24216 

x: -4.9890 

y: -0.4122 

x: 7.4854 

y: -2.1858 

x: 4.0098 

y: -7.8823 

x: -5.003 

y: -0.173 
x: 7.5276 

y: -2.092 

x: 4.04852 

y: -8.07527 

x: -4.968 

y: -0.027 

Average 
x: 7.7387 

y: -1.9344 

x: 4.11668 

y: -8.24248 

x: -4.9893 

y: -0.41254 

x: 7.48874 

y: -2.1834 

x: 4.0089 

y: -7.8668 

x: -5.1035 

y: -0.173 
x: 7.532 

y: -2.066 

x: 4.04952 

y: -8.08527 

x: -5.0198 

y: -0.0242 

Accuracy 96.81% 97.0% 91.74% 97.63% 98.5% 96.04% 99.05% 98.89% 99.37% 
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b) Evaluation metrics: In object detection challenges 

and scientific research, various annotated datasets are used, 

and the primary metric for assessing the accuracy of object 

detections is the Average Precision (AP). AP relies on four 

fundamental concepts: 

- True positive (TP): Accurately identifying a real 

bounding box in line with the ground truth. 

- False positive (FP): Incorrectly identifying a non-

existent object or inaccurately placing an existing 

object's detection. 

- False negative (FN): Failing to detect a bounding box 

that matches the ground truth. 

- True Negative (TN): Nevertheless, in the realm of 

object detection, the concept of True Negative (TN) 

is not relevant. 

To address this, the intersection over union (IOU) metric is 
commonly employed. IOU is a measurement based on the 
Jaccard Index, which quantifies the similarity between two 
sets of data. In object detection, IOU calculates the overlap 
between the predicted bounding box (Bp) and the ground-truth 
bounding box (Bgt), dividing it by the area of their union. This 
provides a more suitable and informative metric for evaluating 
object detection performance, particularly in scenarios where 
True Negatives are not relevant [37]. 

In our research, we will primarily evaluate the 
performance of our model using the mean Average Precision 
(mAP) metric over a range of IoU thresholds (0.5 to 0.95). 
This mAP score considers the integral of mAP across these 
different IoU thresholds, providing a comprehensive 
assessment of detection accuracy. Additionally, we will also 
utilize the Precision metric to evaluate the percentage of 
correct positive predictions made by our model and the Recall 
metric to assess the percentage of correct positive predictions 
among all the ground truth annotations. These metrics 
collectively offer a well-rounded evaluation of our model's 
performance in object detection tasks. 

The equation of those metrics is shown below: 

IoU   
area of overlap

area of union
    (5) 

Precision   
TP

FP TP
   (6) 

Recall   TP

FN TP
     (7) 

2) Results and discussion: Fig. 9 to Fig. 11 illustrate the 

mAP (0.5-0.95), precision, and recall, while Table V presents 

the final results of training models on our dataset. In this set of 

results, two models, YOLOv8 and YOLOv6, outperform 

YOLOv5 and YOLOv7, with mAP@0.5:0.95 scores of 0.438 

and 0.503, compared to 0.424 and 0.407, respectively. 

Notably, YOLOv6 demonstrates superiority across these 

metrics, as evidenced by its leading performance in Fig. 9 with 

the highest mAP score. 

However, despite YOLOv6's impressive performance, we 
decided to exclude it from further consideration due to two 

critical factors. Firstly, it boasts a substantial number of 
parameters, totaling 4.3 million, which can strain 
computational resources. Secondly, its convergence appears to 
plateau within the first 20 epochs, suggesting that other 
models might potentially achieve even higher performance 
with prolonged training. Thus, we have opted for a trade-off 
between processing speed and accuracy in our model selection 
process. 

Furthermore, YOLOv8, while not particularly outstanding 
in the initial 20 epochs, is our preferred choice. This decision 
is rooted in its consistent convergence, indicating that with 
more training time, it can potentially outperform other models. 
Additionally, as referenced in [13], YOLOv8 currently boasts 
superior processing speed compared to its counterparts, 
making it well-suited for real-time object detection 
applications. 

 

Fig. 9. mAP@0.5:0.95 of YOLO’s versions. 

 

Fig. 10. Precision of YOLO’s versions. 

 
Fig. 11. Recall of YOLO’s versions. 
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TABLE V. LAST RESULT OF FIRST EXPERIMENT 

 Precision Recall AP (IoU=0.5) AP (IoU=0.5:0.95) 

YOLOv5 0.503 0.58 0.696 0.424 

YOLOv6 0.768 0.651 0.791 0.503 

YOLOv7 0.725 0.679 0.664 0.407 

YOLOv8 0.766 0.604 0.728 0.438 

 

Fig. 12. mAP@0.5:0.95 of YOLOv8 with optimizers. 

In the second experiment, we conducted training for 50 
epochs using YOLOv8 on a dataset larger than the first with 
66.6K images, employing various optimizers, including SGD, 
AdamW, and AMSGrad. The results from the last epoch are 
presented in Table VI. Notably, the SGD optimizer 
demonstrated superior performance across precision, recall, 
and mean Average Precision (mAP) with 0.794 Precision, 
0.657 Recall, and 0.527_mAP@0.5:0.95. It has shown an 
increase over the original YOLOv8 model in [13] with only 
smaller than 0.4 mAP@0.5:0.95, which is obvious because 
here the parameters are trained to focus exclusively on human 
detection compared to numbers of class up to 80 in the 
original model. In Fig. 12, 13, and 14, we provide insights into 
the mAP@0.5:0.95, precision, and recall results throughout 
the 50-epoch training process. Remarkably, SGD consistently 
outperformed the other optimizers. Nonetheless, it's worth 
highlighting that even at the 50th epoch, all three methods 
exhibited ongoing improvement. This suggests that they have 
not yet reached their maximum potential, indicating that 
AdamW and AMSGrad might still have untapped strengths. 

In Fig. 15, we conducted another evaluation to assess the 
human detection capability of the YOLOv8-SGD framework 

that we propose for the task of detecting individuals, 
particularly humans, within the JRDB dataset. This evaluation 
involved detecting individuals in various indoor settings, such 
as shopping centers, train stations, and cinemas. 

 

Fig. 13. Precision of YOLOv8 with optimizers. 

 

Fig. 14. Recall of YOLOv8 with optimizers. 

TABLE VI. LAST RESULT OF THE SECOND EXPERIMENT 

 
Train 

/Box 

_loss 

Val 

/Box 

_loss 

Val 

/dfl 

_loss 

(Pre) (Re) 

AP 

IoU 

=0.5 

AP 

IoU= 

0.5:0.95 

YOLO 

v8-SGD 
1.024 1.029 1.08 0.794 0.657 0.757 0.527 

YOLO 

v8-

ADAMW 

1.082 1.087 1.15 0.782 0.639 0.735 0.498 

YOLO 

v8-

AMSGrad 

1.205 1.2 1.28 0.754 0.577 0.674 0.438 

 

  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 11, 2023 

309 | P a g e  

www.ijacsa.thesai.org 

  

  
Fig. 15. The human detection capability of the YOLOv8-SGD framework with JRDB dataset. 

V. CONCLUSION 

We have successfully compared currently commonly used 
state-of-the-art methods for each task such as SLAM, 
Navigation, and Human detection. Furthermore, we have also 
provided analysis and evaluation of the experimental results. 

Our findings align with our expectations, and we have 
identified potential areas for enhancement. We utilized the 
maps generated by each algorithm in both RVIZ 2 and Gazebo 
for guiding the robot to three distinct destinations. We 
repeated this process in five trials. The average values 
obtained from these tests were then used to create graphs that 
depict the time taken for various destinations, as shown in the 
table. The comparison revealed that the map generated with 
the Slam Toolbox exhibits greater precision compared to 
GMapping and Hector SLAM. The robot's motion aligns more 
accurately with the virtual world when using Slam Toolbox, in 
contrast to the others. However, the choice between these 
SLAM solutions depends on your specific project 
requirements, familiarity with the tools, hardware capabilities, 
and the complexity of your robot's operating environment. 
Each of these options has its strengths and weaknesses, and 
the better choice will vary depending on the context of your 
application. 

As for human detection, the experimental results returned 
were quite surprising as the YOLOv8 model did not have 
outstanding results compared to older models; however, we 
see it still has potential for development, so we still choose it. 
Furthermore, because our initial goal was to apply to mobile 
robots with small microprocessors, this trade-off between 
processing speed and accuracy was extremely reasonable. 

After this article, our next direction is to research more 
deeply into other more advanced tasks such as tracking, 
determine people's location, movements and behaviors of 
using 3D point cloud, etc. It will have some challenges such as 
privacy, security, fairness, scalability, and interdisciplinary 
collaboration will be addressed to ensure ethical and impactful 
innovation. But we hope that we can further apply modern 
technology to contribute to improving human happiness in 
today's society. 
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